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 1 

Abstract 17 

Asthma is a common allergic airway disease that develops in association with the 18 

human microbiome early in life. Both the composition and function of the infant gut 19 

microbiota have been linked to asthma risk, but functional alterations in the gut 20 

microbiota of older patients with established asthma remain an important knowledge 21 

gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples 22 

from 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the 23 

metagenomes of gut microbiota in children and adults 6 years and older. Mapping of 24 

functional orthologs revealed that asthma contributes to 2.9% of the variation in 25 

metagenomic content even when accounting for other important clinical demographics. 26 

Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) 27 

metabolism pathways which have been previously implicated in airway smooth muscle 28 

and immune responses in asthma. We also observed increased richness of antibiotic 29 

resistance genes (ARGs) in people with asthma. One differentially abundant ARG was a 30 

macrolide resistance marker, ermF, which significantly co-occurred with the Bacteroides 31 

fragilis toxin, suggesting a possible relationship between enterotoxigenic B. fragilis, 32 

antibiotic resistance, and asthma. Lastly, we found multiple virulence factor (VF) and 33 

ARG pairs that co-occurred in both cohorts suggesting that virulence and antibiotic 34 

resistance traits are co-selected and maintained in the fecal microbiota of people with 35 

asthma. Overall, our results show functional alterations via LCFA biosynthetic genes 36 

and increases in antibiotic resistance genes in the gut microbiota of subjects with 37 

moderate-to-severe asthma and could have implications for asthma management and 38 

treatment. 39 
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 42 

Background 43 

Asthma is a common respiratory disease characterized by symptoms of airway 44 

obstruction including wheeze, cough, and shortness of breath. In most cases, asthma 45 

onsets in early childhood with the development of sensitization to environmental 46 

allergens. Ongoing environmental exposures lead to airway inflammation and ultimately 47 

result in asthma symptoms manifesting within the first few years of life. Recent findings 48 

support the notion that asthma develops in association with the human gut microbiome 49 

composition early in life[1, 2]. This finding is supported by 16S rRNA sequencing 50 

surveys demonstrating that alterations in the gut microbiota precede asthma 51 

development within the first few months of life[1, 3].  52 

Early childhood gut microbial communities have been proposed to contribute to 53 

asthma by several mechanisms. Epoxide hydrolases encoded by enterococci and other 54 

gut bacteria produce the lipokine 12,13-diHOME that predisposes towards atopic 55 

sensitization and asthma[3, 4]. Similarly, short-chain fatty acids (SCFAs), produced by 56 

the metabolism of dietary fibers by diverse members of the gut microbiota, are thought 57 

to protect from asthma through their effect on the host G-protein coupled receptor 58 

GPR41, shaping immune cell differentiation in the lungs, and ameliorating allergic 59 

airway inflammation[1, 5–8].  60 

In addition to microbially-encoded metabolic features, carriage of antibiotic 61 

resistance genes (ARGs) within the gut microbiota, termed the resistome, has been 62 
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associated with asthma risk. In infants, microbial signatures associated with the 63 

development of asthma are also associated with increased richness of ARGs in the gut 64 

microbiome[9]. These differences in ARG carriage were found to be driven primarily by 65 

E. coli, which is a common colonizer in the first days of life[9]. These findings are 66 

important in understanding the origins of asthma since antibiotic exposure correlates 67 

both to the number of ARGs within the gut microbiome[10] and the later development of 68 

asthma and other allergic diseases[11–13]. This association between antibiotic 69 

exposure and asthma is supported by animal models that found antibiotic treatment 70 

worsens allergic airway inflammation (AAI)[14–16].  71 

While there is an abundance of data supporting the idea that asthma 72 

susceptibility is associated with features of the gut microbiota in early childhood, the 73 

potential effect of gut microbial functions on asthma later in life remains an important 74 

knowledge gap. Since asthma often begins in infancy when the gut microbiota 75 

composition is highly unstable, disease-causing microbial functions may not persist into 76 

older children and adults. Nevertheless, the gut microbiota in older individuals could 77 

underlie the variable manifestations of asthma[17] and may hold valuable prognostic 78 

and therapeutic significance. 79 

Asthma-associated differences in later childhood and adult gut microbial 80 

communities have already been noted in several reports. Studies in preschool-aged 81 

children have noted distinct taxonomic composition of gut microbial communities in 82 

asthmatic subjects compared to healthy controls[2]. These differences are reported to 83 

include reductions in Akkermansia muciniphila[18], Faecalibacterium prausnitzii[19] as 84 

well as Roseburia species[20]. Functional characterization of microbial communities by 85 
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whole metagenomic sequencing from an older population of asthmatic women[19] has 86 

shown that pathways related to lipid and amino acid metabolism, as well as 87 

carbohydrate utilization were enriched in asthmatics. In contrast, microbial pathways 88 

involved in the production of SCFAs, like butyrate, were enriched in the healthy cohort 89 

of the same study[19]. These findings are supported by a complementary study 90 

designed to test the effect of probiotic supplementation on asthma that found an 91 

association of improved asthma symptoms with SCFA biosynthesis as well as 92 

tryptophan metabolism pathways in the adult gut microbiota[21].  93 

Here, we describe an analysis of whole metagenomic sequencing data from a 94 

cohort of 36 subjects with physician-diagnosed, moderate-severe asthma along with a 95 

matched cohort of 59 healthy controls. This study tests the hypothesis that the gut 96 

metagenome harbors signatures of asthma later in life. Our results identify global 97 

differences in metagenomic functions between healthy and asthmatic subjects and 98 

reveal an enrichment in long-chain fatty acid biosynthetic pathways. We also find an 99 

increased richness of ARGs in asthmatics and co-occurrence of ARGs with known 100 

bacterial virulence factors, suggesting a potential relationship between antibiotic 101 

exposure and pathogen colonization in asthmatics. 102 

 103 

Methods 104 

MARS Study Population 105 

The Microbiome and Asthma Research Study (MARS) consisted of 104 subjects 106 

from the St Louis, MO USA area that are either healthy or had physician-diagnosed 107 

moderate-to-severe asthma. This study included an adult cohort (ages 18-40 years) and 108 
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pediatric cohort (ages 6-10 years). As described in previous manuscripts[22, 23], 9 109 

patients were disqualified or did not donate stool samples. The remaining 95 patients 110 

donated stool samples either at home or at the recruitment visit and were evaluated with 111 

a clinical questionnaire to gather relevant metadata. Stool samples were kept at -20°C 112 

and delivered within 24 hours to the study site, Kau Lab at Washington University 113 

School of Medicine, where they were stored at -80°C for no more than three years until 114 

processing for DNA isolation. All recruitment, follow up, and sample acquisition occurred 115 

between November 2015 and December 2017.  116 

 117 

Fecal DNA Isolation 118 

Frozen human stool samples were pulverized in liquid nitrogen using a pestle 119 

and mortar. We then homogenized the stool in a mixture of phenol, chloroform, and 120 

isoamyl alcohol with a bead beater using sterilized zirconium and steel beads as 121 

previously described[24] to extract crude DNA. We purified the fecal DNA with a 96-well 122 

QIAGEN PCR Clean up kit and quantitated by measuring the absorbance at 260/280 123 

nm. Sample DNA concentrations were normalized to 0.5 ng/mL. Neither depletion of 124 

human DNA sequence nor enrichment of microbial or viral DNA was performed. No 125 

experimental quantification like a spike-in were used. 126 

 127 

Whole Metagenomic Sequencing of Fecal Communities 128 

To generate fecal metagenomic sequencing data, we adapter-ligated libraries by 129 

tagmentation using an adaptation of the Nextera Library Prep kit (Illumina, cat. No. FC-130 

121-1030/1031)[25]. Individual libraries were then purified with AMPure XP SPRI beads, 131 
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quantitated using Quant-iT (Invitrogen, cat. Q33130), and then combined in an 132 

equimolar ratio. We confirmed that each library was adequately represented in the 133 

combined library by preliminary sequencing on a MiSeq instrument at the Washington 134 

University in St. Louis Center for Genome Sciences to assess the evenness of the 135 

library. Once the quality of the library was assured, we sequenced the combined library 136 

on a NovaSeq 6000 S4 with 2x150 bp chemistry to achieve an average of 3.4 Giga-137 

base-pairs (Gb) per sample. NovaSeq services and data demultiplexing were performed 138 

by the Genome Technology Access Center at the McDonnell Genome Institute (St 139 

Louis, MO). All samples were tagmented simultaneously and sequenced on the same 140 

run to avoid batch effects. 141 

 142 

Processing of sequencing data 143 

Metagenomic raw demultiplexed reads were then processed to (1) remove 144 

spurious human sequences (human reference database was hg37dec_v0.1.1), (2) 145 

remove low quality sequences, and (3) trim remaining adapter content using Kneaddata 146 

v. 0.10.0 (huttenhower.sph.harvard.edu/kneaddata) bypassing the tandem repeat finder 147 

step (“- -bypass-trf"). FastQC (fastqc v0.11.7) and MultiQC (multiqc v1.2) with default 148 

settings were used to create quality reports and visualize processing steps. See Figure 149 

S1A and Table S1 for number of reads dropped per processing step. After trimming and 150 

filtering, no samples had adaptor content, overrepresented sequences, or an average 151 

sequence quality score below Phred 24. Estimated metagenome coverage was 152 

calculated with Nonpareil[26, 27] (version 3.4.1) via the online querying tool at 153 

http://enve-omics.ce.gatech.edu/nonpareil/submit. 154 
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 155 

Read-based metagenome profiling 156 

To obtain functional information about the metagenomic contents of fecal 157 

samples, we processed samples using HUMAnN[28] v3.0.0 on filtered reads with 158 

default parameters. The marker gene database used by HUMAnN to identify taxonomic 159 

identities was ChocoPhlAn v201901b and the protein database used by HUMAnN to 160 

identify functions was the UniRef90 full database v201901b. Alpha diversity analysis of 161 

Uniref90 genes and two-sample tests of KEGG orthologs were performed on respective 162 

genes that were present (>0 copies per million) in at least 16 out of 95 samples, which 163 

was the lowest prevalence cutoff that would allow for Bonferroni corrected Wilcoxon p-164 

values below 0.0001. HUMAnN was used to determine the abundance of metagenomic 165 

pathways by mapping UniRef90 genes to the MetaCyc database. We performed 166 

differential abundance analysis using the Wilcoxon 2-sample tests on pathways that had 167 

a minimum of 10% prevalence. 168 

To identify antibiotic resistance genes present in the fecal metagenomes of 169 

MARS stools, we used ShortBRED-identify[29] (v0.9.4) with the Comprehensive 170 

Antibiotic Resistance Database[30] (downloaded 2021-07-05 16:10:04.04555) and 171 

Virulence Factor Database[31] (downloaded Fri Jul 16 10:06:01 2021). ShortBRED-172 

Quantify was run on the filtered reads with default parameters. ARGs or VFs that had 173 

an abundance greater than zero in less than 7 out of 95 samples were excluded from 174 

downstream analyses. This prevalence cutoff was determined using the binomial 175 

distribution to maintain a 95% confidence that enrichment was not due to random 176 

chance (using stats::binom in R). In the analyses that compared virulence factor profiles 177 
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 8 

to antibiotic resistance gene profiles, any gene with the same name was excluded from 178 

the list of antibiotic resistance and considered a virulence factor only, to prevent 179 

spurious results due to co-correlations. Only one gene matched this criterion: ugd 180 

(UDP-glucose 6-dehydrogenase). 181 

Microbial composition was determined with MetaPhlAn 3.0[28] which is included 182 

in the HUMAnN pipeline described[28]. MaasLin[32] (Maaslin2_1.5.1) was used in R to 183 

find taxa of any taxonomic level that correlated with asthma by setting asthma as a fixed 184 

effect and setting age group and race as random effects. 185 

For PERMANOVA analyses, BMI class refers to two stratifications: Non-obese 186 

(underweight, healthy, or overweight) and obese determined for adults by BMI cutoffs 187 

and for pediatric patients by BMI-for-age percentile as defined by the Centers for 188 

Disease Control and Prevention (see 189 

cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html). Race 190 

was reported by the subject and split into the two categories of Caucasian and non-191 

Caucasian. 192 

 193 

Metagenome Assemblies 194 

Filtered reads were assembled into contigs using spades[33] (v3.14.0) with the 195 

“meta” flag and k-mers lengths as follows: -k 21,33,55,77. The resulting scaffolds 196 

achieved an average N50 of 3525 +/- 178 bp, an average L50 of 7192 +/- 372 and an 197 

average total length of 136.8 +/- 4.5 Mbp as measured by QUAST (v 4.5) [34, 35] (see 198 

Table S1). Determination of ermF location was performed by aligning the 801-bp coding 199 

sequence of ermF from CARD[30] to all scaffolds. Scaffolds containing BLAST hits with 200 
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98% identity or higher to the full-length CARD ermF sequence were further annotated 201 

by Prokka (v1.14.5) to find open reading frames and annotate them. Manual BLAST 202 

was used to annotate “hypothetical protein” open reading frames for the contexts of 203 

ermF hits.  204 

 205 

Statistics 206 

R version 3.6.3 was used for all analyses downstream of HUMAnN and 207 

ShortBRED, and for data visualization. Wilcoxon tests with false discovery rate multiple 208 

testing correction or Type II ANOVAs were used to determine statistically significant 209 

differences with the car::Anova package in R. PERMANOVAs were performed in R 210 

using the vegan::adonis package with default settings and 100,000 iterations. The 211 

following symbols were used to designate significance:  * p < 0.05, ** p < 0.01, *** p < 212 

0.001 and the following for q values (FDR-adjusted p-values): * q < 0.2, ** q < 0.05. 213 

 214 

Results 215 

Whole metagenomic shotgun sequencing of fecal samples from adults and 216 

children with asthma and healthy controls 217 

We performed whole metagenomic sequencing on fecal samples from asthmatic 218 

subjects and healthy controls taking part in the Microbiome & Asthma Research Study 219 

(MARS), which we have previously described[22, 23]. MARS participants were recruited 220 

from the St. Louis, Missouri area and included pediatric (6-10 years) and adult (18-40 221 

years) age groups. All asthma cohort patients had a physician diagnosis of moderate-to-222 

severe asthma, and history of allergic sensitization as evidenced by positive skin testing 223 
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or serum specific-IgE to one or more common aeroallergens. In total, we analyzed 95 224 

patient stool samples including 17 adults and 19 school-aged participants with asthma, 225 

and 40 adults and 19 school-aged participants without asthma.  226 

NovaSeq S4 sequencing of our libraries yielded 1.69 billion paired-end reads 227 

translating to a total of approximately 500 Gigabases (Gb). After filtering for read quality, 228 

dropping host contaminants, and trimming adaptor content, we achieved 1.23 billion 229 

paired-end reads and an average 3.4 Gb per stool sample with a range of 0.4-9.9 230 

Gb/sample (Figure S1A). Neither host contamination nor sequencing depth differed 231 

between asthma and healthy cohorts (t-test p=0.2 and 0.7, Table S1). All samples 232 

achieved an estimated average metagenomic coverage of at 89% (range of 61-98%) 233 

with the annotation-free redundancy-based metagenome coverage estimator, 234 

Nonpareil[26] (Figure S1B). Further, estimated metagenome coverage was not different 235 

between the asthma and healthy cohorts, although we noted coverage was slightly 236 

reduced in the pediatric cohort (Figure SB, Table S1). We employed the read-based 237 

annotation pipeline, HUMAnN[28] to determine the abundance of genes and functional 238 

pathways in the stool metagenomes. We found that the most abundant functional 239 

pathways (Figure S1C) across all MARS participants are involved in essential 240 

processes of gut microbes such as starch degradation and glycolysis, demonstrating 241 

that our sequencing captured core functions of the gut metagenome, as expected. 242 

Taken together, we concluded that our sequencing is of sufficient depth and quality to 243 

be used for further analyses. 244 

 245 

Gut taxonomic composition differs between people with and without asthma   246 
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 We first leveraged the clade marker annotation tool, MetaPhlAn[28], to analyze 247 

the taxonomic composition of the study participants. We found dominate genera typical 248 

in gut microbiota communities including Bacteroides (phylum Bacteroidota) and 249 

Faecalibacterium (phylum Bacillota) (Figure S1D). Simpson alpha diversity was slightly 250 

higher in the asthma cohort even when taking read depth and age group into account 251 

(Figure S1E). Bray-Curtis dissimilarity (Figure 1F) was shifted between the asthma and 252 

healthy cohorts (p<0.0004, R2=0.029) even when accounting for other covariates 253 

including age (p<0.001, R2=0.032), race (p=0.0006, R2=0.026), recent antibiotic usage 254 

(p=0.9, R2=0.006), read depth (p=0.2, R2=0.013), obesity (p=0.7, R2=0.008), sex (p=0.4, 255 

R2=0.011), and tobacco exposure (p=0.2, R2=0.012) by sequential PERMANOVA 256 

(Figure 1G). There was also no significant interaction between asthma status and age 257 

group (p=0.8, R2=0.007), or between asthma status and recent antibiotic usage (p=0.6, 258 

R2=0.009) (Figure S1G). To determine differentially abundant taxa, we tested the fixed 259 

effect of asthma along with the random effects of age group and race in a general linear 260 

model[32] and found Eubacterium rectale and Prevotella copri were enriched in the 261 

healthy cohort (Figure S1H, Table S2). All of these findings are consistent with 16S 262 

rRNA sequencing performed in a previous study[23] which lent us further confidence 263 

that our sequencing data was suitable for functional profiling. 264 

 265 

Fatty acid metabolism pathways are enriched in the gut metagenomes of people 266 

with asthma 267 

Given that our samples had adequate coverage to capture expected taxonomic 268 

shifts, we started interrogating the differences in metagenomic functions of the gut 269 
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microbiota attributable to asthma status. The alpha diversity of genes (UniRef90 270 

clusters) was neither different between the asthma and healthy cohorts nor between the 271 

pediatric and adult cohorts, suggesting that our gene profiling reached a similar total 272 

number of genes in both cohorts (Figure 1A). Using PERMANOVA, we noted that, even 273 

while accounting for significant covariates of age (p<0.001, R2=0.029), race (p<0.001, 274 

R2=0.024), and read depth (p=0.03, R2=0.015), asthma status also significantly 275 

impacted gut microbiome functional composition (p=0.008, R2=0.017; Figure 1B, C). We 276 

note that age group’s interaction term with asthma did not significantly contribute to the 277 

variance in beta diversity, suggesting that the influence of asthma and age on beta 278 

diversity is non-overlapping. These findings support the idea that the gut metagenomic 279 

content of people with asthma is different than that of healthy individuals, even when 280 

accounting for other clinical sources of interpersonal gut microbiome variation.  281 

We next considered which metagenomic functions and metabolic pathways may 282 

be involved in the differences between asthma and healthy cohorts. We first examined a 283 

list of specific metagenomic functions previously implicated in asthma, including genes 284 

related to histamine production, 12-13 diHOME biosynthesis, and tryptophan 285 

metabolism, but we were unable to identify a difference between cohorts (Figure S2A). 286 

To identify pathways that differed between asthma and healthy subjects, we performed 287 

a Wilcoxon Rank Sum test with a false discovery rate q<0.2 on the relative abundance 288 

of all pathways annotated by the MetaCyc database that were above 10% prevalence 289 

within the population. Using these criteria, we found seven pathways that were enriched 290 

in asthma and one that was enriched in the healthy cohort out of 312 total pathways 291 

(Figure 1D). To determine if these findings were robust to other analysis methods, we  292 
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 293 
Figure 1: Gut metagenomes from individuals with asthma show increased genes encoding fatty 294 

acid metabolism. A) Stacked violin plots of Uniref90 cluster richness (unique Uniref90 cluster with 295 

CPM>0) grouped by either healthy and asthma cohort (blue green colors in background) or age (brown 296 

colors in foreground. B) Non-metric multidimensional scaling plot of Bray-Curtis Dissimilarity distance 297 

between Uniref90 (copies per million) profiles. Axis 1 and 2 of five total are shown of an NMDS with stress 298 

value 0.09. C) Sequential PERMANOVA of Bray-Curtis dissimilarities between Uniref90 profiles. Input 299 

order of terms to the test is identical to the order of the barplot from top to bottom. D) Relative abundance 300 

of MetaCyc pathways that were differentially abundant given a Wilcoxon q value below 0.2 (p-value after 301 

FDR correction). E) Stacked bar plot of differentially abundant fatty acid metabolism pathways mapped to 302 

respective taxa by MetaPhlAn3.0/HUMAnN3.0, averaged within asthma or healthy cohorts. F) Heatmap 303 

of MetaCyc pathway abundance ratios between groups in important clinical demographics: Asthma vs. 304 

Healthy, Adult vs. Pediatric, Obese vs Non-Obese, and Well-Controlled Asthmatics vs. Poorly-Controlled 305 

Asthmatics. Asterisk denotes a significant differential abundance (*q<0.2) according to Wilcoxon tests 306 

controlled for multiple comparison testing within each demographic category. G) Differentially abundant 307 

MetaCyc pathways plotted as four cohorts: asthma by age with respective Two-Way ANOVAs. Only 308 

statistically significant p values shown. 309 
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performed additional differential abundance approaches on the 312 MetaCyc pathways, 310 

including a Wilcoxon test on centered log-transformed counts and ALDEX2, both of 311 

which demonstrated that these pathways differed between healthy and asthmatic 312 

cohorts (See Table S3). All differentially abundant pathways enriched in patients with 313 

asthma were involved in fatty acid synthesis, and included the production of oleate, 314 

palmitoleate, (5Z)-dodecenoate, 8-amino-7-oxononanoate, biotin, and octanoyl acyl-315 

carrier protein, as well as saturated fatty acid elongation. In the healthy cohort, only a 316 

single L-lysine biosynthesis pathway was enriched.  317 

Using taxonomically tiered functional mapping, we determined which taxa were 318 

driving the observed differences in asthma-associated pathways. For the L-lysine 319 

biosynthesis III pathway which was more abundant in healthy subject, we found that it 320 

primarily originated from Blautia obeum, Figure S2B). In the case of the asthma-321 

enriched pathways, we found that Bacteroides vulgatus and Alistipes finegoldii account 322 

for the largest fraction of complete fatty acid biosynthesis pathways (Figure 1E, Figures 323 

S3C). However, the differential abundance of these asthma-associated pathways was 324 

probably not due solely to an enrichment of B. vulgatus or A. finegoldii in asthma stool 325 

since neither species was differentially abundant (maaslin2 q-value=0.58 and 0.25, 326 

respectively; See Table S2). Further, the majority of mapped pathways were not 327 

attributable to any single species and these unmapped pathway counts made up more 328 

of the overall pathway richness than B. vulgatus (Wilcoxon q values < 0.05 for all seven 329 

pathways; see “Community” stratification in Figure S2C). Taken together, these findings 330 

indicate that the differences may be either driven by community-level effort (i.e. distinct 331 

steps of the pathway are encoded across more than one species), or that current 332 
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databases are insufficiently granular to identify the key taxa responsible for these 333 

differences. 334 

We reviewed the enzymatic steps of each of the eight pathways represented in 335 

Figure 1D and found that, of the 78 total reactions in these pathways, only 11 reactions 336 

were shared between 2 pathways (Figure S3). The 8-amino-7-oxononanoate 337 

biosynthesis I pathway consists of the first 11 reactions of the larger biotin biosynthesis 338 

pathway and the latter only has four additional reaction steps past synthesizing 8-339 

amino-7-oxonanoate to produce biotin. Additionally, the (5Z)-dodecenoate pathway can 340 

feed directly into the palmitoleate biosynthesis pathway, and that the octanoyl acyl 341 

carrier protein pathway shares an upstream substrate (acetoacetyl-acyl carrier protein) 342 

with the saturated fatty acid elongation pathway (Figure S3). Together, our findings 343 

indicate that long chain fatty acid biosynthesis is differentially abundant in the asthma 344 

gut metagenome via related but largely non-redundant pathways. 345 

 Given the association between obesity with fatty acid metabolism[36] as well as 346 

asthma[37–39], we next wanted to determine whether obesity (which we define here as 347 

a BMI greater than 30 in adults or a BMI-for-age percentile of greater than 95% in 348 

children) confounds the association of microbial fatty acid metabolism with asthma. We 349 

compared the abundance of the differentially abundant fatty acid pathways between all 350 

non-obese and obese patients and found no significant difference (Figure 1F). Within 351 

the asthma cohort, there was similarly no statistically significant difference between the 352 

asthmatic obese and asthmatic non-obese patients, suggesting that obesity is not a 353 

confounder for the difference we observed in fatty acid metabolism. To determine 354 

whether fatty acid metabolism is related to the intensity of asthma symptoms and their 355 
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effect on everyday life activities, we utilized a validated survey of asthma control (The 356 

Asthma Control Test; ACT)[40]. None of the fatty acid pathways were differentially 357 

abundant between well-controlled and poorly-controlled asthmatics (Figure 1F). We 358 

tested if age group affects the differentially abundant metabolic pathways and found that 359 

these pathways were not differentially abundant between age groups alone (Figure 1F). 360 

We also tested the impact of asthma and age as independent variables to differentially 361 

abundant metabolic pathways using a Two-way ANOVA. We found that, even while 362 

taking age into account, these pathways are differentially abundant between asthma 363 

and healthy cohorts, but are not different by age or an interaction between asthma and 364 

age (Figure 1G, 2-Way ANOVA). Given that the effect of asthma status on differentially 365 

abundant metagenomic functions was distinct from that of age, we primarily focused our 366 

subsequent analyses on the asthma and healthy cohorts overall, combining age groups. 367 

 368 

Richness of antibiotic resistance genes is increased in the gut metagenomes of 369 

people with asthma 370 

Since people with asthma tend to be prescribed antibiotics frequently[41] and 371 

oral antibiotic exposure is a risk factor for the acquisition of ARGs in the gut[10], we 372 

wanted to determine if the members of our asthma cohort were more likely to have 373 

received antibiotics. To test this, we counted how many subjects had taken a course of 374 

antibiotics within one year of their participation in the study. As part of the study design, 375 

participants could not take antibiotics in the month prior to fecal donation. We found that 376 

a greater proportion of the asthma cohort received antibiotics in the past year compared 377 

to that of healthy participants (42% of asthma cohort versus 15% of the healthy cohort, 378 
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Fisher’s test, p=0.011, Figure 2A). This finding represents evidence of increased 379 

antibiotic exposure amongst subjects with asthma in our study.   380 

We next sought to characterize the gut antibiotic resistome in the asthma and 381 

healthy cohorts. To test if the increased antibiotic exposure in the asthma cohort was 382 

reflected in the gut resistome, we utilized the ShortBRED pipeline[29] to detect reads 383 

mapped to the Comprehensive Antibiotic Resistance Database (CARD)[30]. We first 384 

asked whether there were more ARGs in our asthma cohort by summarizing our dataset 385 

into richness (Total number of unique ARGs detected per sample) and load (Total sum 386 

of ARG RPKM per sample). We found that ARG richness was higher in people with 387 

asthma even when accounting for differences due to age (p=0.03) and sequencing 388 

depth (p=0.09 while ARG load was not different between asthma and healthy cohorts 389 

(p=0.4) when accounting for age (p<0.001) and read depth (0.002) (Figure 2B). We note 390 

that E coli was not differentially abundant between asthma and healthy cohorts (p=0.52, 391 

Table S2), so the richness increase we observe in the asthma cohort is not due solely to 392 

an increase in E. coli relative abundance. These results suggest that there are a higher 393 

number of unique ARGs, or a higher diversity, in asthma compared to healthy controls. 394 

From our 95 stool samples, we detected 71 unique ARGs, comprising 32 395 

antimicrobial resistance families, 29 drug classes, and 7 mechanisms of resistance, with 396 

26 ARGs (37% of the total) conferring multi-drug resistance (Figure 2C). Similar to 397 

previous studies of gut resistomes, we found that tetracycline resistance markers were 398 

the most commonly detected ARGs and inactivation is the most common mechanism of 399 

resistance followed by efflux pumps[9]  (Figure 2C). Using the abundance data of each 400 

detected ARG, we determined that asthma (p=0.005, R2=0.028) and age (p<0.001,  401 
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 402 
Figure 2: Gut metagenomes from individuals with asthma harbor an increased richness of 403 
antibiotic resistance genes. A) Table describing short-term antibiotic usage in the MARS cohorts. B) 404 
Overlapping violin plots of ARG richness and load by grouped by either healthy and asthma cohort (blue 405 
green colors in background) or age (brown colors in foreground. C) Stacked bar plots of average ARG 406 
richness painted by antimicrobial family (AMR), drug class to which the ARG confers resistance, and ARG 407 
resistance mechanism. 408 
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R2=0.053) were the strongest factors contributing to the variance in ARG beta diversity 409 

even when accounting for important technical and demographic covariates (Figure 3A 410 

and 3B). We next wanted to ascertain to what degree the resistome profile was 411 

determined by microbial composition. We used a Procrustes analysis[42] to compare 412 

compositional data generated from MetaPhlAn[28] to the antibiotic resistome profile 413 

derived from ShortBRED and found that the microbiome composition correlated to the 414 

resistome profile (Figure 3C, PROTEST corr = 0.627, p-value < 0.0001), indicating that 415 

ARG profiles are directly related to bacterial species composition. 416 

 417 
Figure 3: The gut antibiotic resistome is altered in asthma patients. A) Non-metric Multidimensional 418 
Scaling (NMDS) plot of antibiotic resistome with units in Bray-Curtis dissimilarity of total-sum scaled 419 
RPKM, labeled by asthma and age cohorts. Showing two axes out of five with stress value=0.1. B) Effect 420 
of demographic categories on antibiotic resistome data in A (sequential PERMANOVA). C) Procrustes 421 
and PROTEST analysis between MetaPhlAn species-level Bray-Curtis dissimilarity distances and CARD 422 
ShortBRED Bray-Curtis dissimilarity distances. Arrows connect the two data points belonging to identical 423 
samples. 424 
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Macrolide resistance markers are differentially abundant in asthma 425 

To determine ARGs that are differentially abundant between asthmatic and 426 

healthy gut metagenomes, we applied negative binomial tests to the abundance of all 427 

ARGs detected in at least 7 samples. This prevalence cutoff was chose because it is 428 

the minimum number of samples needed to detect a difference using a negative 429 

binomial distribution. We found that genes encoding resistance to macrolides (ermF, 430 

ermB and ermA), vancomycin (vanRO), tetracycline (tet(45)), as well as multi-drug 431 

efflux pumps (smeB, mdtO, and oqxA) were enriched in the asthma cohort (Figure 4A, 432 

Table S4). Prominent amongst these was the 23S rRNA methyltransferase ermF, which 433 

is typically encoded by Bacteroides species and confers resistance to macrolides. 434 

Next, we explored the genomic context of ermF by assembling metagenomic 435 

sequencing reads into contigs with metaSPAdes[33] and annotating open reading 436 

frames with Prokka[43] and BLAST. We detected full-length ermF with 98% or higher 437 

identity in 53 out of 95 samples. Out of 53 contigs, the vast majority originated from 438 

members of the Bacteroidota, 75.4% originated from the Bacteroides genus and 60.3% 439 

of them were likely from B. fragilis based on the top BLAST homology. Of the contigs 440 

that encoded ermF, 68% occurred on scaffolds with at least one other open reading 441 

frame within ten kilobases (Figure 4B). We found that many ermF genes are co-located 442 

with genes associated with mobile genetic elements such as transposases, mobilization 443 

genes, and toxin/antitoxin systems, as well as with other ARGs like btgA which encodes 444 

clindamycin resistance (Figure 4B,C). This indicates that ermF occurs in multiple 445 

different genomic contexts within our cohort and suggests that its presence is not strictly 446 

due to propagation of a single B. fragilis strain.  447 
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 448 
Figure 4: Resistance gene ermF is differentially abundant in diverse genomic contexts of gut 449 
resistomes belonging to individuals with asthma. A) Boxplots of antibiotic resistance gene (ARG) 450 
abundance by cohort on log-scale. Showing only ARGs present in at least 7 out of 95 samples and have 451 
q-values less than 0.2. A pseudocount of 0.0015 RPKM (designated as the limit of detection “LOD”) was 452 
used for the negative binomial tests. Bolded genes are enriched in the asthma cohort while non-bolded 453 
are enriched in the healthy cohort. B) Summary of ermF contexts on contigs from metagenomic 454 
assemblies that had at least one detectable open reading frame flanking the ermF within 10 kilobases. C) 455 
Three representative ermF context maps generated in GeneSpy. D) Count tables of ermF+ (top) and 456 
ermF- (bottom) MARS fecal samples split by bft presence and asthma status. Both tables showing two-457 
sided p-value. E) Count tables of metagenomes (top from MARS and bottom from Human Microbiome 458 
Project) split by the presence of B. fragilis toxin (bft) and ermF. Top: one-sided p-value shown; bottom: 459 
two-sided p-value shown. 460 

People with asthma have a distinct set of co-existing pairs of antibiotic resistance 461 

genes and virulence factors in the gut metagenome 462 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.03.522677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

In our prior work on this same cohort of patients, we found that, compared to 463 

healthy subjects, a greater portion of asthma subjects were colonized with B. fragilis 464 

strains harboring the virulence factor B. fragilis toxin (bft), which we showed has the 465 

potential to shape inflammation in the lung[23]. Given that our resistome analysis 466 

pointed to an enrichment of a B. fragilis ARG, we wanted to test whether the ermF gene 467 

is co-selected with bft. When only taking metagenomes encoding ermF into account, we 468 

observed an enrichment of bft prevalence in the asthma cohort (Figure 4D, p=0.009). In 469 

contrast, among metagenomes with no detectable ermF, there is no enrichment of bft in 470 

the asthma cohort (Figure 4D, p=0.39). When reviewing the entire MARS population, we 471 

found no statistically significant co-occurrence of ermF with bft (Figure 4E; one-tailed 472 

Fishers test p>0.05) and this was consistent with healthy gut metagenomes from the 473 

Human Microbiome Project (Figure 4E, Fisher’s test p=0.56). However, in our MARS 474 

samples, we did not find any instances where bft and ermF occurred on the same 475 

scaffold, so it remains unclear whether these two genes are encoded within the same B. 476 

fragilis strain or within two separate strains. Nevertheless, these results suggest that the 477 

environment supporting the gut microbiota of asthmatic individuals presents 478 

opportunities or niches for ermF and bft to co-occur.  479 

To explore the possibility that virulence traits and ARGs are linked in the gut 480 

microbiota, we characterized virulence factor (VF) content of all samples using the 481 

Virulence Factor Database[31] and compared these data to the antibiotic resistome 482 

profiles. We did not find the same overall shift in the virulence factor beta diversity 483 

between asthma and healthy that we observed with the resistomes (Figure S4A-C), but 484 

we did find differentially abundant VFs belonging to capsule and peritrichous flagella VF 485 
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families (Table S5, q values<0.2). Further, we found that microbiota composition is 486 

highly correlated with virulence factor profile (Figure S4D, Protest correlation 487 

coefficient=0.61, p<0.0001). Given that microbiota composition strongly affects both VF 488 

and ARG content, we used a partial correlation between VF and ARG richness to test 489 

our hypothesis while removing the effect of total metagenomic content. We found a 490 

positive partial correlation between VF and ARG richness in both the asthma and 491 

healthy cohorts (Figure 5A). Similarly, virulence factor and resistome beta diversity 492 

profiles were also positively correlated (Figure 5B, Protest correlation coefficient=0.574, 493 

p=1e-4). Together, our results suggest that these two microbial features, virulence and 494 

antibiotic resistance, are closely linked within the gut metagenome.  495 

We next performed a co-occurrence analysis to uncover other linked virulence 496 

and antibiotic resistance traits that could be important in gut ecology. We found 497 

numerous co-occurring VF-ARG pairs in MARS gut metagenomes (Figure 5C, p<0.05). 498 

Several of these positively co-occurring pairs were shared between the two cohorts 499 

(yellow), suggesting that these relationships are not dependent on asthma status. In 500 

contrast, many pairs specifically co-occur in one cohort and may indicate microbial 501 

interactions important in asthma but not healthy gut metagenomes (Figure 5C). In 502 

summary, we found that VF and ARG presence is linked in the gut metagenome and 503 

that people with asthma have a distinct set of co-occurring functions compared to 504 

healthy people. 505 

While our co-occurrence analysis between VFs and ARGs demonstrated multiple 506 

examples of virulence and antibiotic resistance traits found in the same gut 507 

metagenome, this analysis does not indicate if these genes are present in a single  508 
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 509 
Figure 5: Asthma patients have unique sets of virulence factor and antibiotic resistance gene 510 
associations. A) Partial correlations split by asthma status between virulence factor richness and ARG 511 
richness after accounting for species richness. B) Procrustes and PROTEST analysis between Bray-512 
Curtis dissimilarity distances of virulence factors and CARD resistomes. Arrows connect the two data 513 
points belonging to identical samples. C) Heatmap of statistically significant (cooccur R package p<0.05) 514 
co-occurrence relationships between all VFs and ARGs. Colors indicate direction of co-occurrence and in 515 
which cohort(s) the respective effect was detected. Grey squares mark pairs with no statistically 516 
significant co-occurrence. White squares were pairs filtered out due to a lack of observed co-occurrence. 517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.03.522677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

organism. To obtain a more granular view of VF-ARG co-occurrence, we limited our 518 

analysis to look for VF-ARG pairs that could be encoded by the same species. This 519 

analysis showed that the asthma cohort had a greater number of ARGs (p=0.007 and 520 

0.01) and VFs (p=0.005 and 0.09) annotated as coming from Klebsiella pneumoniae 521 

and Escherichia coli, respectively (Figure S5A). Individual co-occurrences attributable to 522 

each of these species are summarized in Figure S5B and show that cepA, encoding a 523 

beta-lactamase, and chuU, a VF involved in iron acquisition, are both putatively 524 

encoded by E. coli and co-occur in asthmatics, suggesting that the metagenome-wide 525 

co-occurrence of CepA and Chu families observed in Figure 5C may be due to 526 

enrichment within one or more E. coli strains harboring these VF/ARG pairs. Together, 527 

our co-occurrence analyses show that there appear to be multiple co-occurring VFs and 528 

ARGs, similar to B. fragilis-encoded bft and ermF, in the gut metagenome and within 529 

putative individual species that could be important for asthma. The cohort-specific co-530 

occurring VF-ARG pairs found here could serve as candidates for future studies of 531 

asthma gut microbiome ecology.  532 

 533 

Discussion  534 

In this study, we present an exploratory analysis of fecal whole metagenomic 535 

sequencing contrasting subjects with moderate-to-severe asthma to a group of healthy 536 

controls to identify disease-associated microbial genes with the strongest likelihood of 537 

affecting disease. Our sequencing and subsequent analyses revealed that the 538 

functional content of individuals with asthma differed significantly from that of healthy 539 

controls. We found an enrichment of functions associated with saturated and mono-540 
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unsaturated fatty acids, including oleate, palmitoleate, 5(Z)-dodecenoate, biotin, 8-541 

amino-oxononanoate, saturated fatty acid elongation, and octanoyl acyl carrier protein 542 

pathways. Currently, the functional significance of gut bacterial synthesis of these long-543 

chain fatty acids (LCFA) to asthma has not been well defined. Excess LCFAs, usually 544 

studied in the context of dietary fat intake, have been associated with metabolic 545 

diseases including diabetes, obesity, and atherosclerosis risk[38] but is also linked to 546 

asthma risk in adults[37–39, 44]. Increasing recognition that obesity predisposes to 547 

asthma has motivated investigation of the impact of fatty acids on airway biology and 548 

has shown that LCFA signaling through free fatty acid receptor 1 (FFAR1, also called 549 

GPR40) induces airway smooth muscle cell contraction and proliferation, both of which 550 

are important components of asthma pathophysiology[38, 45]. Notably, a study that 551 

sequenced airway microbes in children with cystic fibrosis implicated a similar list of 552 

LCFA production pathways during exacerbations, suggesting that microbially produced 553 

LCFAs may influence airway physiology[46]. To our knowledge, the potential for gut 554 

microbes to contribute to the amount of free fatty acids available to the lung has not yet 555 

been defined, however, LCFAs are readily absorbed into the circulation[47] and could 556 

plausibly reach the airways. Further, previous studies have shown the effect of SCFA 557 

(e.g. acetate, butyrate, propionate) produced by gut microbes to directly alter lung 558 

inflammation via GPR41 (FFAR3)[7, 8]. While our study did not find a direct enrichment 559 

of SCFA production pathways in the healthy cohort as has been previously reported[19], 560 

we did observe that lysine biosynthesis was enriched. Since lysine may serve as a 561 

precursor to the SCFA butyrate[48], SCFAs may still be more abundant in our healthy 562 

cohort but may be subject to transcriptional regulation that would not be detected by 563 
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metagenomic DNA sequencing. Together, our metabolic pathway analyses of the gut 564 

metagenome demonstrate a positive association between LCFAs produced by gut 565 

microbes and asthma, in contrast to the negatively associated SCFAs. 566 

In addition to metabolic alterations, analysis of the gut resistome demonstrated 567 

that subjects with asthma had a distinct ARG composition. In a recently published 568 

prospective gut metagenomic study of infants, asthma-associated taxonomic signatures 569 

were associated with a higher number of ARGs[9]. These differences in the resistome 570 

were largely driven by a single species of bacteria, E. coli, and reveals that acquisition 571 

of ARGs in subjects with asthma may begin in early childhood and could affect asthma 572 

development. In our study of older subjects with established asthma, we similarly found 573 

a higher richness of ARGs that is associated with asthma in both school-aged children 574 

and adults, supporting the idea that increased ARG carriage may persist in people with 575 

asthma throughout life. Based on our resistome annotation, however, ARGs in our 576 

cohort were likely from a diverse assemblage of bacteria in contrast to what was 577 

observed in infants. This is likely due to differences in gut dynamics between age 578 

groups. The infant microbiome is heavily shaped by limited available niches in the 579 

developing gut, which favor transient, facultative anaerobes like E. coli [9], whereas the 580 

gut resistome in older subjects reflects selective pressures experienced over a lifetime. 581 

One important consequence of increased richness of ARGs in people with asthma is 582 

that it may promote persistence of some bacterial strains[49, 50] and contribute to the 583 

taxonomic differences in the gut microbiota between asthma and healthy people[2, 23].  584 

While asthma was among the important factors accounting for a significant 585 

amount of the variance in ARG beta diversity, we found that recent antibiotic exposure 586 
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(within the past year) was not. Notably, no participant in our cohort received a course of 587 

antibiotics in the month prior to fecal sampling since this could have confounded our 588 

analyses on asthma-associated microbial community changes. Previous studies have 589 

shown that the gut microbiota recovers in approximately a month after perturbation from 590 

antibiotics in healthy adults[51]. We interpret these findings to mean that recent 591 

exposure (within 1 - 12 months) to antibiotics does not drastically change the resistome, 592 

whereas repeated exposures over time may be more important for driving the 593 

population-wide shifts we observed in our cohort[50]. 594 

Of the ARGs found to be enriched within asthmatic resistomes, the ARG ermF, 595 

encoding resistance to macrolide antibiotics, was especially prominent amongst the 596 

asthmatic cohort. While we did not collect data on the antibiotic drug classes, number of 597 

courses and their duration, or the reason for prescription of antibiotics, our subjects 598 

received, it is likely that our asthma population has been exposed to macrolides. 599 

Macrolide antibiotics, including clarithromycin and azithromycin, are commonly 600 

prescribed for upper and lower airway infections which disproportionately affect people 601 

with asthma[52]. This class of antibiotics, particularly azithromycin, have been a focus of 602 

special concern for driving antibiotic resistance due to their frequent usage and 603 

pharmacological properties[53–55]. Nevertheless, azithromycin has been noted to have 604 

beneficial effects in asthma, and some[56], but not all[57], studies suggest that 605 

azithromycin may prevent exacerbations in asthmatics. Given the interest in 606 

azithromycin as a treatment modality in asthma, there will be an urgent need for 607 

additional studies to determine the robustness of the association between asthma and 608 

macrolide ARG accumulation in the gut to inform parameters for antibiotic selection and 609 
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prescription in people with asthma. 610 

Additional exploration of the gut metagenomes revealed potential co-selection in 611 

people with asthma for B. fragilis genes ermF and bft (B. fragilis toxin), the latter of 612 

which is more prevalent in fecal samples from the asthma compared to healthy 613 

cohort[23]. Untargeted analysis of gut resistomes revealed multiple examples of 614 

virulence factor and ARG co-occurrence as well as positive correlations between ARG 615 

and VF richness in people with and without asthma. Our findings are consistent with 616 

previous reports that found correlations between VFs and ARG richness and VF-ARG 617 

cooccurrence relationships in both gut metagenomes[58] and human-associated 618 

bacterial genomes[59]. Our findings also add to these studies by demonstrating that, 619 

while the correlation between VF and ARG richness does not appear to be any stronger 620 

in the asthma cohort after taking gene richness into account, the two MARS cohorts do 621 

not have identical sets of statistically significant co-occurring VF-ARG pairs. These data 622 

suggest that people with asthma may be experiencing different selection pressures from 623 

that of healthy people, leading to accumulation of a distinct set of virulence and 624 

antibiotic determinants. Given that antibiotics induce gut inflammation through the 625 

disruption of the gut microbiota[60], and strains encoding virulence factors such as bft 626 

are known to thrive in an inflammatory environment[61], one plausible model for the 627 

apparent accumulation of distinct VF-ARG pairs is that antibiotic treatment not only 628 

selects for ARGs[10, 50], but simultaneously selects for VFs. Together with evidence 629 

that virulence determinants, such as bft, are associated with airway inflammation[23], 630 

our model implies that heightened antibiotic treatment may contribute to the 631 

manifestations of asthma via co-selection for VFs and ARGs. Considering that prenatal 632 
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and early life antibiotic exposure is linked to asthma risk[12, 60], this model could be 633 

used to test whether the initial events driving VF and ARG co-occurrence start with the 634 

first vertical transmission events in very early life. 635 

Our study has several limitations that constrain the scope of our claims. First, 636 

MARS is an exploratory, cross-sectional study with only a moderate number of subjects 637 

recruited from a single site, which is less ideal for identifying disease-associated 638 

microbiome differences[62]. As a result, our study had limited statistical power to detect 639 

less prevalent or abundant functions. Second, our study focused on school-aged and 640 

older subjects with moderate-to-severe asthma, and thus our findings may not be 641 

applicable to other younger populations or those with less severe disease. These 642 

population differences may explain why we were unable to identify statistically 643 

significant differences in microbial metabolic pathways identified from other studies 644 

including bile acid metabolism[1], epoxide hydrolases[4], histamine metabolism[63, 64], 645 

or tryptophan metabolism[65, 66] (Figure S2A). Third, the factors driving the shift in gut 646 

bacterial metabolism to LCFA biosynthesis and whether gut microbiome enrichment of 647 

this pathway is sufficient to change the hosts’ LCFA profile is not known. Collecting 648 

blood to interrogate host metabolism as well as dietary information at the time of fecal 649 

sample collection would have helped to disentangle the effects of diet on host and gut 650 

microbiota metabolism. Fourth, a record of the frequency and class of antibiotics 651 

administered to our participants would have allowed us to confirm whether macrolide 652 

administration associates with the enrichment of ermF in our asthma cohort and 653 

whether a higher diversity of antibiotic usage correlates with ARG richness. It is likely 654 

that antibiotic exposures accumulated throughout life contribute to the resistome, and a 655 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.03.522677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

complete catalog of exposures is critical to determine patterns of antibiotic prescription 656 

most likely to account for the ARG associations to asthma found in this study. Fifth, as 657 

with all metagenomic sequencing studies, we are limited by annotation bias in existing 658 

databases. This is a concern for our virulence factor and antibiotic resistance profiling 659 

especially, where we rely on the database to predict source species for ARGs and VFs. 660 

We also recognize that the databases we used for these two analyses are biased 661 

towards well-studied human pathogens rather than commensals or opportunistic 662 

pathogens. However, we note that other investigators have reported similar co-663 

occurrence of ARGs and VFs[58, 59], and co-selection of these features is biologically 664 

plausible.  665 

Despite these constraints on the scope of our study, we provide evidence that 666 

there is an increased production of LCFA and an increased richness of ARGs encoded 667 

by the gut microbiota in people with asthma. These findings could have applications in 668 

the care of patients with asthma. If LCFA pathways are shown to play a causal role in 669 

airway inflammation in future studies, microbiota-directed therapeutics in the form of 670 

dietary interventions or probiotics, could be developed to modify gut microbial 671 

metabolism to protect against asthma. Additionally, our resistome findings add to the 672 

growing concern over antibiotic resistance in patients with asthma by suggesting that 673 

antibiotic administration may also contribute to gut carriage of virulence factors that can 674 

alter airway inflammation. Ultimately, our study shows that the gut microbiota of school-675 

aged and older subjects with moderate-to-severe asthma harbor important functional 676 

alterations that could serve as a foundation for future studies investigating how gut 677 

microbial functions affect pulmonary diseases. 678 
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Conclusions 679 

Asthma is an airway disease that affects the everyday lives of millions of people 680 

and accounts for approximately 1.5 million emergency room visits yearly in the US[67] 681 

Both antibiotic usage and gut microbiota dysbiosis have been linked to the development 682 

of asthma, however, little is known about the specific gut microbial functions associated 683 

with asthma, particularly in older populations. In this study, we characterized the gut 684 

microbiota of school-aged children and adults with moderate-to-severe asthma and 685 

uncovered asthma-associated microbial functions that may contribute to disease 686 

features. We found that people with asthma have an increase in gut microbial genes 687 

associated with long-chain fatty acid metabolism as well as an accumulation of antibiotic 688 

resistance genes, both of which may have practical consequences for monitoring and 689 

treatment of asthma. 690 
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Supplemental Figure and Data Table Captions 924 

 925 

Figures: 926 

Figure S1: MARS whole metagenomic shotgun sequencing captures essential 927 

functions and taxonomic shifts of the asthma gut microbiota. A) Summary of select 928 

sequencing statistics from NovaSeq shotgun metagenomic sequencing and subsequent 929 

filtering steps. B) Boxplot of redundancy-based estimated metagenome coverage (%) 930 

as calculated by running the forward reads through the Nonpareil tool. Split into asthma 931 

and age group and Two-way Type II ANOVA results shown. C) Bar plot of MetaCyc 932 

pathway copies per million (CPM) in all MARS samples annotated by HUMANnN 933 

pipeline, with horizontal length representing mean and bars the standard error. For all 934 

panels: N= 20 healthy children, 39 healthy adults, 19 asthmatic children, 17 asthmatic 935 

adults. D) Relative abundance stacked barplots of top abundant bacterial genera split 936 

by age group and asthma cohort. E) Simpson alpha diversity boxplots split by asthma 937 

and age group cohorts (2-Way Type II ANOVA). F) NMDS of Bray-Curtis Dissimilarity of 938 

species-level relative abundance grouped by age and asthma. G) Sequential 939 

PERMANOVA to test effect of demographics on beta diversity. Terms were input into 940 

the test as ordered from top to bottom of barplot. Dotted vertical line represents a p 941 

value of 0.05. Color scale is mapped to the R2 value. H) Arcsine transformed relative 942 

abundance boxplots of differentially abundant species as determined by Maaslin2 with 943 

age group and race modeled as random effects. For all panels: N= 20 healthy children, 944 

39 healthy adults, 19 asthmatic children, 17 asthmatic adults. 945 

 946 

Figure S2: KEGG orthologs, KEGG pathways, and differentially abundant 947 

MetaCyc fatty acid pathways. A) Relative abundance of KEGG orthologs previously 948 

implicated in asthma. Copies per million (CPM) are counts normalized by gene size and 949 

read depth, then total-sum-scaled to one million. B-C) Stacked bar plots of differentially 950 

abundant pathways mapped to respective taxa including “Community” bin which 951 

accounts for the remaining reads that mapped to the pathway but not to any single 952 

species by MetaPhlAn3.0/HUMAnN3.0, averaged within asthma or healthy cohorts. B) 953 

L-lysine biosynthesis III pathway. Only top 13 taxa shown in addition to Community 954 

category. C) Seven fatty acid metabolism pathways differentially abundant in the 955 

asthma cohort. Only top 9 taxa shown in addition to Community category. Stars 956 

represent a q value < 0.05 of Wilcoxon tests between the Community pathway richness 957 

and B. vulgatus-encoded pathway richness. For all panels: N= 59 healthy, 36 asthmatic 958 

individuals. 959 

 960 

Figure S3: Pathway collage for differentially abundant MetaCyc pathways. “PWY-961 

6519: 8-amino-7-oxononanoate biosynthesis I” is completely overlapping with “BIOTIN-962 

BIOSYNTHESIS-PWY: biotin biosynthesis I” and its steps are highlighted in blue text. 963 

Pathway collage made on MetaCyc browser tool. 964 

 965 

Figure S4: Gut virulence factor ecology shifts with age group but not asthma 966 

cohort. A) Total-sum scaled RPKM Bray-Curtis Dissimilarity Non-metric 967 

Multidimensional Scaling (NMDS) plot labeled by asthma and age cohorts. Showing two 968 

axes out of 5 with stress value=0.09. B) Effect of demographic categories on virulence 969 
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factor profile in A (by sequential PERMANOVA, input terms ordered from top to bottom 970 

of barplot). C) Stacked violin plots of virulence factor alpha diversity grouped by eithter 971 

healthy and asthma cohort (blue green colors in background) or age (brown colors in 972 

foreground). Two-Way ANOVA results shown in table above plot. D) Procrustes plot 973 

and PROTEST analysis between virulence factor profile Bray-Curtis dissimilarity 974 

distances and Metaphlan species relative abundance Bray-Curtis dissimilarity 975 

distances. Arrows connect the two data points belonging to identical samples. For all 976 

panels: N= 20 healthy children, 39 healthy adults, 19 asthmatic children, 17 asthmatic 977 

adults. 978 

 979 

Figure S5: Asthma-associated ARG richness and ARG-VF co-occurrence 980 

relationships are observed within K. pneumoniae and E. coli. A) Richness bar plots 981 

between antibiotic resistance genes (ARGs) and virulence factors (VFs) grouped by 982 

asthma status. B) Heatmap of the co-occurrence of each VF/ARG pair colored by the 983 

direction in which (positively or negatively co-occurring) and the cohort for which 984 

(asthma vs. healthy) the pair had a p-value less than 0.05 via R cooccur function. Blank 985 

squares were pairs filtered out due to a lack of observed co-occurrence. SS: secretion 986 

systems. (N=36 Healthy, 59 Asthmatic) 987 

 988 

Tables: 989 

Table S1: Fecal shotgun metagenomics filtering and assembly summary statistics 990 

Table S2: Maaslin 2 Analysis of Metaphlan Community Composition 991 

Table S3: Comparison of MetaCyc Pathway Differential Abundance Analyses 992 

Table S4: Negative Binomial tests of antibiotic resistance gene abundance (RPKM) 993 

between healthy and asthma cohorts 994 

Table S5: Negative Binomial tests of virulence factor abundance (RPKM) between 995 

healthy and asthma cohorts 996 

 997 

Additional Files 998 

Additional File 1: Statistical Analyses for 'The gut metagenome harbors metabolic and 999 

antibiotic resistance signatures of moderate-to-severe asthma' knitr document 1000 
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