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Abstract

Activating mutations in Ras (N- and K-) are the most common point mutations found in patients with multiple myeloma
(MM) and are associated with poor clinical outcome. We sought to directly examine the role of Ras activation in MM
pathogenesis and used two different tissue-specific Cre recombinase mouse lines (Cc1-Cre and AID-Cre), to generate mice
with mutant Kras (KrasG12D) activated specifically in germinal center B-cells. We also generated mice with activation of the
KrasG12D allele in a tumor-prone Arf-null genetic background. Surprisingly, we observed no significant disruption in B-cell
homeostasis in any of these models by serum immunoglobulin ELISA, SPEP, flow cytometry and histological examination.
We observed development of non-overlapping tumor types due to off-target Cre expression, but despite successful
recombination in germinal center and later B-cell populations, we observed no B-cell phenotype. Together, these data
demonstrate that Ras activation is not sufficient to transform primary germinal center B-cells, even in an Arf-null context,
and that the temporal order of mutation acquisition may be critical for myeloma development. Specific pathways, yet to be
identified, are required before Kras can contribute to the development of MM.
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Introduction

Multiple myeloma (MM) is an incurable malignancy of

antibody-secreting plasma B-cells, whose etiology remains poorly

understood. Mutations in Ras genes, encoding key proteins

regulating cell growth, differentiation and survival, occur com-

monly in MM with a prevalence of 20–39% [1–3]. Indeed, using a

targeted sequencing approach to screen highly expressed tyrosine

kinase and cytokine signaling genes in primary human patient

myeloma, we previously identified mutations at codon 12 and 61

in N- and KRAS as being the only recurrent variation in our

sample set [4]. Recent genome sequencing efforts also found Ras

mutations to be the most common single nucleotide variant (SNV)

in MM [4], suggesting that Ras activation is an important event in

MM pathogenesis. The somatic SNVs found most frequently in

MM are gain-of-function mutations in Ras oncogenes (Kras and

Nras), causing constitutive activation of the Ras protein [5].

Despite the genomic evidence for Ras pathogenesis, the

functional role of Ras activation in MM has not previously been

tested. This issue is not trivial as the induction of neoplasia by Ras

activation is highly dependent on cellular context [6]. Under-

standing the effects of Ras activation in mature B-cells will allow us

to better define the downstream pathways critical for development

of MM. Moreoever, pharmaceutical approaches to target cancers

with mutant Ras are underway [7–10], and a pre-clinical model

faithfully replicating Ras-driven myeloma would be critical in

evaluating the therapeutic potential of these agents in myeloma.

Post-germinal center (GC) B-cells are strongly implicated as the

cell of origin in MM by demonstration of stable immunoglobulin

(Ig) switch clonotypes over the course of disease [11,12]. To test if

expression of oncogenic Ras in GC B-cells was sufficient to induce

myeloma, we utilized transgenic mice harboring a constitutively

active Kras (G12D mutation) knocked-in to the endogenous Kras

locus and flanked by a Lox-Stop-Lox cassette [13]. The Kras

mouse model has been successfully used in several labs in

developing cancer models [14,15] [13,16]. These mice were

crossed with two different mature B cell-specific Cre recombinase

(Cre) mouse strains (Cc1-Cre and AID-Cre) to definitively test the

effects of Ras activation in post-GC B-cells, including downstream

memory B and plasma cells [17,18]. As Ras activation can induce

cellular senescence [19] and often requires cooperating mutations

to induce transformation, so we also generated a strain of triple

transgenic mice by crossing KrasG12D mice with mice null for the

P19ARF tumor-suppressor gene (Arf 2/2) [20]. Arf (P14ARF in

humans) is a potent tumor suppressor gene that cooperates with

Ras activation in cellular transformation and carcinogenesis

[21,22]. In patients with myeloma, the P14/P16 locus is

methylated in 42% [23], although the biological significance of

this epigenetic modification is contested [24].
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Surprisingly, in these settings we found B-cell development to be

only subtly perturbed, even in the setting of Arf deficiency.

Conversely, mice frequently developed tumors harboring Cre-

recombined Ras alleles in non-B-cell tissues due to small amounts

of off-target Cre expression. These data demonstrate that post-GC

B-cells are resistant to transformation by mutations that are

strongly oncogenic in other cellular contexts and that Ras

activation must likely cooperate with tissue-specific mutations or

epigenetic events to induce myeloma.

Results

Cc1-Cre KrasG12D Mice Develop Thymic Lymphomas and
Lung Adenomas but not Myeloma

To examine the effect of Kras in plasma cells, we generated

double transgenic mice. In KrasG12D mice, the G12D mutation is

knocked-in to the endogenous Kras locus, upstream of the Lox-

Stop-Lox cassette (Figure 1A,B). KrasG12D mice were crossed with

mice expressing Cre recombinase (Cre) under control of the Ig

heavy chain locus (Cc1-Cre) reported to express Cre selectively in a

subset of germinal center B-cells (Figure 1C).

We first confirmed that wild type Kras is strongly expressed in

murine B-lineage cells; naı̈ve splenic B-cells, germinal center B-

cells, memory B-cells and plasma cells from C57BL/6 mice

(Figure 2A) [25]. As expected, Cre-mediated excision of the Kras

allele stop cassette was robust and specific to B-lineage cells

undergoing class-switch recombination in vitro (Figure 2B and
Figure S1). We also confirmed Cre-recombination in vivo in

mature B-cell populations isolated from Cc1-Cre KrasG12D mice by

fluorescence associated cell sorting (FACS). Splenic germinal

center B-cells (B220+/IgM2/GL7+) and class switched memory/

plasma cells (IgG1+) demonstrated clear, albeit low-level recom-

bination, as did bone marrow plasma cells (B220lo/CD138+,

Figure 2C).

We aged Cc1-Cre KrasG12D mice, both naı̈ve and immunized

with chicken gamma globulin to expand plasma cells, to

monitor the development of disease. After 100 days, 58%

(n = 12) of naı̈ve mice developed weight loss, ruffled fur and

shortness of breath and were found on necropsy to have

thoracic cavity tumors. Unexpectedly, these tumors were T-

lymphoblastic in phenotype (CD4+CD8+) by flow cytometry

(Figure S2A). Additionally, 42% (n = 12) of naı̈ve Cc1-Cre
KrasG12D mice and 66% (n = 7) CGG-immunized Cc1-Cre
KrasG12D mice were found to have lung nodules at autopsy

(300 day endpoint). Sections of lung from immunized Cc1-Cre
KrasG12D show well-demarcated nodules composed mostly of

sheets of bronchial epithelial cells and some ‘‘signet ring’’ cells

with bland nuclear features and absence of mitotic figures

consistent with adenomas or low-grade adenocarcinomas (Fig-
ure S2B–E). Tissue from lung tumors in two independent Cc1-
Cre KrasG12D mice shows partial recombination of the Kras allele

(Figure S2F). The immunized and unimmunized negative

control Cc1-Cre mice showed no evidence of disease

(Figure 3A). Tissue from T-cell lymphomas found in two

separate unimmunized Cc1-Cre KrasG12D mice showed complete

Kras allele recombination, suggestive of loss of the wild-type

allele, whereas spleen showed a partial recombination pattern

consistent with infiltration of the spleen with these same cells

(Figure 3B). Despite extensive analysis, no B-lineage oncogenic

transformation was observed in any Cc1-Cre KrasG12D mice. B-

cell subsets in spleen and bone marrow and serum immuno-

globulin levels were all normal (data not shown). Taken

together, these data suggest that KrasG12D allele activation in

germinal center B-cells failed to perturb B-cell homeostasis in

Cc1-Cre KrasG12D mice.

AID-Cre-YFP KrasG12D Mice Develop Focal Epidermal
Papillomas

Noting the low level of in vivo recombination in Cc1-Cre
KrasG12D mice (Figure 2C), and the lack of appreciable B- or

plasma cell phenotype, we generated a second strain of mice

using an independent tissue specific Cre allele. We crossed the

KrasG12D mice with mice expressing Cre recombinase under the

control of the activation-induced cytosine deaminase (AID) gene

(Figure 1D). AID is expressed with exquisite specificity in B-

cells undergoing the germinal center reaction where it mediates

class switch recombination and somatic hypermutation. To

facilitate our analysis, this strain of mice also included the

Rosa26-EYFP reporter allele, which allowed us to effectively

track B-cells where recombination had occurred (AID-Cre-YFP

KrasG12D). Upon cre-mediated recombination, YFP marks cells

where KrasG12D is also expressed. In an attempt to stimulate

malignant B-cell transformation in AID-Cre-YFP KrasG12D mice,

vitamin D deficient chow and/or sub-lethal radiation was given

to cohorts of mice after immunization.

Robust KrasG12D allele recombination was induced in AID-Cre-

YFP KrasG12D splenic B-cells undergoing plasmacytic differentia-

tion and class switch recombination ex vivo (Figure 4A). In

contrast to the weak levels of in vivo recombination observed in

Cc1-Cre KrasG12D mice, germinal center splenocyte populations and

post germinal center cells isolated from AID-Cre-YFP KrasG12D mice

showed robust Cre-mediated recombination at both the KrasG12D

locus (Figure 4B) and the YFP reporter in the spleen and to lesser

extent in the bone marrow (Figure 4C).

At 3 weeks of age, 100% (n = 20) AID-Cre-YFP KrasG12D mice

lacked fur on the ventral neck and developed small growths,

compared to control mice (Figure 5A,B). Radiation and

Vitamin D deficient chow (RV) treatments increased the

number and size of growths on AID-Cre-YFP KrasG12D mice as

early as 17 weeks, compared to AID-Cre-YFP KrasG12D given

neither (Figure 5C,D). By 26 weeks of age, all AID-Cre-YFP

KrasG12D mice receiving both irradiation and vitamin D deficient

chow (100%, n = 5) were hunched with ruffled fur and had

infected lesions over the cutaneous growths with a median

Figure 1. Schematic of alleles used in generating transgenic
mice. A) Floxed Kras allele with exons 0, 1, and 2, under the
endogenous Kras locus. Asterisk represents G12D mutation in exon 1.
B) Excision of the stop cassette of the Kras allele by Cre recombinase
allows the G12D mutation to activate. C) The Cre-coding sequence is
knocked in downstream of the last coding exon of the Cc1 locus.
Expression of Cre recombinase is induced by transcription of the Ig c1
constant region. D) After the floxed neomycin gene is deleted by Cre-
mediation, the YFP is expressed alongside AID-expressing B cells.
doi:10.1371/journal.pone.0067941.g001
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survival of 196 days (Figure 5E, F). AID-Cre-YFP KrasG12D

mice with no treatment (besides immunization) at 26 weeks had

an increase in the number of growths similar in appearance to

that at 17 weeks. At 17 weeks, KrasG12D mice given both

irradiation and vitamin D deficient chow appeared healthy

without growths, similar to the 26 week timepoint (data not

shown). All AID-Cre-YFP KrasG12D mice regardless of irradiation

or vitamin deficient chow subsequently died or were sacrificed

due to persistent skin infections associated with fungating skin

lesions (Figure 6A). The cutaneous lesions were identified by

histological examination to be benign papillomas (data not

shown). Papillomas from 3 separate AID-Cre-YFP KrasG12D mice

showed strong Cre-mediated recombination by PCR

(Figure 6B). A small increase in total serum gamma region

protein level achieved statistical significance in AID-Cre-YFP

KrasG12D mice fed vitamin deficient chow (Figure S3A, middle

panel), however the increase was not maintained over time, and

mice treated with radiation, or no treatment at all had no

significant changes in total serum gamma protein levels at any

time point (Figure S3A). Serum ELISA showed small changes

among the antibody subtypes in AID-Cre-YFP KrasG12D mice, but

no evidence of plasma cell transformation or any B-cell

malignancy was found (Figure S3B and data not shown).

Figure 2. Kras expression in B-cell subsets and tissue-specific recombination in Cc1-Cre KrasG12D mice. A) Expression of Ras genes by
microarray in primary mature B-cell subsets; naı̈ve splenic B-cells, germinal center B-cells, memory B-cells, and plasma cells. B) Successful Lox-Stop-
Lox excision from Kras locus in B cells of Cc1-Cre KrasG12D mice following class switch recombination. PCR of KrasG12D allele in B-cells of Cc1-Cre
KrasG12D mice stimulated to undergo class switch recombination ex vivo. Naı̈ve splenic B-cells were stimulated to undergo class switch recombination
with lipopolysaccharide (LPS) alone or LPS plus interleukin-4 (IL-4). Successful recombination was observed upon switch to IgG1 induced by LPS plus
IL-4. C) Fluorescence activated cell sorting (FACS) isolation of mature B-cell subsets directly from Cc1-Cre KrasG12D mice. In the first panel, bone
marrow mononuclear cells; second and third panels, splenic mononuclear cells, both panels gated for B220+. Red arrows indicate lanes with
detectable recombination. Recombination was low but detectable in bone marrow plasma cells (CD138+/B220low, lane 1); germinal center B-cells
(B220+/GL7+/IgMlow, lane 5) and IgG1 class switched splenic B-cells (B220+/IgM2/IgG1+, lane 9).
doi:10.1371/journal.pone.0067941.g002
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AID-Cre-YFP KrasG12D Arf2/2 Mice Develop Fatal
Epidermal Papillomas and Derivative Carcinomas

We reasoned that a lack of a detectable B-cell phenotype in Cc1-
Cre KrasG12D and AID-Cre-YFP KrasG12D mice was most likely due to

a requirement for a cooperating ‘‘second hit’’ to induce cellular

transformation. Therefore, to test the effects of a second mutation

known to cooperate with KrasG12D, we crossed AID-Cre-YFP

KrasG12D mice into a tumor-prone Arf-null background (Arf 2/2)

(Figure 1). All AID-Cre-YFP KrasG12D Arf 2/2 mice developed

rapidly progressive papillomas and by 13 wks, 66% of AID-Cre-

YFP KrasG12D Arf 2/2 mice (n = 3) developed cutaneous sarcomas

(Figure 7A), while AID-Cre-YFP Arf 2/2 control mice remained

disease-free (Figure 7B). Histopathological sections of spleen

from control mice show typical red pulp, white pulp and germinal

center structures (Figure 7D); whereas AID-Cre-YFP KrasG12D Arf
2/2 spleen showed defacement of splenic architecture with loss of

distinction between red and white pulp and a paucity of germinal

centers (Figure 7C). Sections of sarcomas from AID-Cre-YFP

KrasG12D Arf 2/2 showed characteristic undifferentiated spindle

cells (Figure 7E), consistent with tumors previously described in

Arf-deficient mice (10). The only abnormalities attributable to B-

cells that we identified were small but significant increases in

polyclonal antibody responses over time. The gamma protein

fraction by SPEP was higher in AID-Cre-YFP KrasG12D Arf 2/2 at

12 weeks compared to AID-Cre-YFP Arf 2/2 controls (Figure
S4C), but none of the mice developed multiple myeloma or

monoclonal gammopathy. AID-Cre-YFP KrasG12D Arf 2/2 and AID-

Cre-YFP KrasG12D Arf +/2 mice also showed significant differences

in total serum gamma region protein levels between baseline and

12 weeks (Figure S4A). Serum ELISA of antibody subtypes from

AID-Cre-YFP KrasG12D Arf 2/2, AID-Cre-YFP KrasG12D Arf +/2, and

control AID-Cre-YFP Arf 2/2 also showed small but significant

changes between baseline and 12 weeks in IgM and IgG

isosubtypes (Figure S4B), perhaps related to infected, fungating

papillomas in these mice. Flow cytometric immunophenotyping of

bone marrow and splenic mononuclear cells failed to detect the

abnormal growth in any B-cell populations in AID-Cre-YFP

KrasG12D Arf 2/2 mice.

Discussion

Kras is the oncogene most frequently mutated in MM, yet its role

in the pathogenesis of the disease has yet to be elucidated. Here,

we used a mouse model of activated Kras to directly test the effect

of activated Kras in post-germinal center B-cells using two

different Cre recombinases reported to be specific to germinal

center B-cells. These mice developed T-cell lymphomas, lung

Figure 3. Development of T-cell lymphomas in Cc1-Cre KrasG12D mice. A) Kaplan-Meier survival curves of aged Cc1-Cre KrasG12D mice and Cc1-
Cre control mice cohorts. Naı̈ve (unimmunized) Cc1-Cre KrasG12D mice (n = 12) developed fatal T-cell lymphomas with a median latency of 125 days.
Lung tumors were found incidentally at autopsy in both immunized Cc1-Cre KrasG12D (n = 7) and naı̈ve Cc1-Cre KrasG12D mice, while naı̈ve and
immunized Cc1-Cre were healthy for the duration and had no lung adenomas at autopsy. B) PCR detection of KrasG12D allele recombination in naı̈ve
Cc1-Cre KrasG12D mice with T-cell lymphomas. Recombination is detectable in unfractionated mononuclear splenic cells, consistent with infiltration of
spleen by lymphoma cells. Recombination with loss of wild-type allele observed in unfractionated cells isolated from thymic tumor tissue. Results
from two affected mice are shown.
doi:10.1371/journal.pone.0067941.g003
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adenomas, and sarcomas but no plasma cell tumors despite

evidence of activated Kras in vivo B-lineage cells. The Kras allele

was recombined in T-cell lymphomas and lung tumors, suggesting

these tumors developed as a consequence of off-target Cre

expression. In fact, T-cell lymphomas and lung adenomas have

been described in KrasG12D mice with Cre expressed via adenovirus

and Mx-1 respectively [14,15,26].

For malignant transformation in many contexts, activated Ras

requires cooperation with additional mutations [27] and we tried

several strategies to accelerate disease in AID-Cre-YFP KrasG12D

mice. Cohorts of AID-Cre-YFP KrasG12D mice were subjected to

vitamin D deficient chow or sub-lethal radiation or both in an

attempt to generate additional mutations and increase the

proliferation of pre-malignant B-cells. The combination of vitamin

D deficiency and radiation significantly accelerated and worsened

the development of skin tumors in AID-Cre-YFP KrasG12D mice, but

we observed no B-cell phenotype in any of these mice, despite

extensive analysis.

Lastly, we engineered mice with a specific cooperating

mutation, germinal center expression of KrasG12D in an Arf-null

background. The Ink4a gene locus encoding both Ink4a and Arf is

frequently silenced by hypermethylation in MM [28–30] and

mutated in some cases of MM ([31] and COSMIC database).

Germline mutations in INK4a affect predisposition to plasmacy-

tomas in mice [32] and to MM in people [33].

We observed significant acceleration of skin tumors and

progression to invasive carcinomas, demonstrating the successful

cooperation between the Kras and Arf pathways, but again, these

mice failed to demonstrate a significant B-cell phenotype. The

development of non-overlapping off-target tumors demonstrates

that KrasG12D can mediate oncogenicity, but germinal center B-

cells seem to possess an inherent resistance to its oncogenic effects.

Figure 4. Efficient tissue specific recombination of Kras in class switched B cells of AID-Cre-YFP KrasG12D mice. A) PCR of KrasG12D allele in
B-cells of AID-Cre-YFP KrasG12D mice stimulated to undergo class switch recombination ex vivo. Splenic B-cells were stimulated to undergo class switch
recombination with lipopolysaccharide (LPS) alone or LPS plus interleukin-4 (IL-4). In contrast to Cc1-Cre KrasG12D mice in Figure 2B, recombination
was seen following stimulation with LPS+IL-4 or with LPS alone. B) FACS-purification of mature B-cell subsets from AID-Cre-YFP KrasG12D mice and
detection of recombination by PCR. High-levels of Cre-mediated recombination in B220lo/CD138+ bone marrow plasma cells (lane 1), B220+/IgM2/
GL7+ splenic germinal center B-cells (lane 5) and B220+/IgM2/IgG1+ class switched memory B-cell populations (lane 9) in AID-Cre-YFP KrasG12D mice.
C) Detection of Cre-activated YFP reporter in cells isolated from spleen and bone marrow of AID-Cre-YFP KrasG12D mice given radiation and vitamin D
deficient chow. Recombined, YFP-positive cells are plentiful in spleen (6.4%) but rare in the bone marrow (0.20%). Experiment was repeated with
three mice and a representative example is shown.
doi:10.1371/journal.pone.0067941.g004
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We conclude that activation of Kras alone or in the context of Arf

pathway inactivation is insufficient to disrupt B-cell homeostasis.

These negative data demonstrate that GC B-cells are refractory to

mutations which are sufficient to transform other murine tissues,

and suggest that distinct tumor suppressor pathways may be active

in post-GC B-cells.

The temporal order of acquisition of mutations is likely to be

important in the development of some cancers. Observational

Figure 5. Gross appearance of cutaneous papillomas in AID-Cre-YFP KrasG12D mice is enhanced by tumor-promoting treatments. A) By
3 weeks of age, AID-Cre-YFP KrasG12D mice uniformly have hair loss and a single papilloma localized to the ventral neck; B) control KrasG12D mouse
shows normal hair pattern and no papilloma; C) By 17 weeks, AID-Cre-YFP KrasG12D mice given radiation and vitamin D deficient chow (RV) had
numerous fungating papillomas and more hair loss at the same site on the ventral neck; D) AID-Cre-YFP KrasG12D mice without tumor-promoting
treatments also had progressive papillomas but much fewer and with less hair loss associated; E) AID-Cre-YFP KrasG12D+RV mice aged to 26 weeks
showed confluent fungating and ulcerated masses at the ventral neck with spread to paws; F) age-matched control KrasG12D+RV mouse shows no
similar signs.
doi:10.1371/journal.pone.0067941.g005
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studies have suggested that Ras activation is a ‘‘late event’’ in

myeloma pathogenesis [34]. Ras mutations are significantly less

common in patients with monoclonal gammopathy of uncertain

significance (MGUS), and are not found in the memory B-cell

population of patients with MM, [34] and our data directly

supports the model that the temporal order of these events is

important to the development of myeloma disease. The lack of a

significant B-cell phenotype in our mice is reminiscent of the

intrinsic resistance to the effects of KrasG12D displayed by

intestinal cells. Intestinal homeostasis is unperturbed in mice by

expression of KrasG12D alone [35], but carcinogenesis occurs with

concurrent inactivation of the adenomatous polyposis coli (APC)

tumor suppressor gene [36]. Mutations in APC do not occur with

significant frequency in MM, and it remains unclear what specific

mutations cooperate with Ras in myeloma development. In on

going work, it will be important to determine the pathways that

cooperate with Ras activation to transform germinal center B-cells.

Methods

Mouse Strains
KrasG12D mice [13] (on C57BL/6 background) were crossed to

Cc1-Cre knock-in mice [17] (on C57BL/6 background) or AID-Cre-

YFP transgenic mice [18] (on 129/SvJ 6C57BL/6 backgrounds)

to obtain double transgenic mice. Triple transgenic mice were

created by crossing KrasG12D mice to AID-Cre-YFP and Arf 2/2 or

Arf +/2 mice [20] (on 129/SvJ 6 C57BL/6 background)

(Figure 1). All mice were routinely observed up to 1 year after

birth in a specific pathogen-free facility.

Ethics Statement
This study was performed in strict accordance with animal use

protocols approved by the Washington University Institutional

Animal Care and Use Committee (IACUC, protocol number

20120152). Mice were euthanized if they met any early removal

Figure 6. Cutaneous papillomas in AID-Cre-YFP KrasG12D mice and acceleration of lethality by tumor-promoting treatments. A) Kaplan-
Meier survival curves of AID-Cre-YFP KrasG12D mice and control KrasG12D mice. Cohorts of AID-Cre-YFP KrasG12D and KrasG12D mice were subjected to
vitamin D deficient chow continuously from 8.5 weeks of age or a single dose of sub-lethal gamma irradiation or given both. All AID-Cre-YFP KrasG12D

mice developed progressive cutaneous papillomas that were made more extensive/aggressive with radiation or vitamin D deficiency. Mice were
sacrificed when morbidity developed, defined by weight loss, unkempt coat, hunched posture, and lethargy. Each AID-Cre-YFP KrasG12D group had
(n = 5) and developed papillomas, leading to infection, whereas every KrasG12D (n = 5) survived to day 352 endpoint. No B-cell phenotype was
observed in any cohort. B) Cre-mediated recombination of Kras locus in DNA from papillomas was detected by PCR in three separate papilloma
samples from AID-Cre-YFP KrasG12D mice. WT, wild-type control.
doi:10.1371/journal.pone.0067941.g006
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criteria (weight loss, lethargy, hunched posture, and/or ruffled

coat) to limit suffering, in accordance with NIH-approved

institutional animal care guidelines.

Kras Expression
Raw dataset files of Kras, Hras, and Nras expression in murine

B cells was accessible through www.ncbi.nlm.nih.gov/geo (acces-

sion GSE4142).

Stimulation of Germinal Centers
1 mg of (4-hydroxy-3-nitrophenyl) acetyl conjugated chicken

gamma globulin (NP-CGG; Biosearch Technologies, Novato,

California) was mixed with Freud’s Adjuvant, Complete (Sigma-

Aldrich, St. Louis, Missouri) for primary immunization or Freud’s

Adjuvant, Incomplete (Sigma-Aldrich) for boosting immunization

in 100 ul to inject intraperitoneally at specific time points (Figure
S5). Where indicated, AID-Cre-YFP KrasG12D mice were given a

Vitamin D deficient diet (Harlan, Madison, Wisconsin) beginning

at 8.5 weeks of age and/or 4 Gy of sub-lethal ionizing radiation at

12 weeks of age.

Molecular Genotyping of Mouse Strains
For genotyping by PCR, genomic DNA was extracted from tail

tissue using Extract-N-Amp Tissue Kit (Sigma-Aldrich). All primer

sequences used for genotyping are available upon request. To

detect Cre-mediated somatic recombination in bone marrow,

spleen, and tumors, genomic DNA was extracted using DNeasy

Blood and Tissue Kit (Qiagen, Germantown, Maryland), then

amplified using PCR to yield expected 622-bp WT and 650-bp

loxP, signifying recombination of the KrasG12D allele. Mature B cell

populations sorted from spleen and bone marrow DNA was

extracted using prepGEM Tissue Kit (ZyGEM, New Zealand).

Ex vivo Class Switch Recombination Assay
Splenocytes from 8–12 week old mice were purified by

immunomagnetic depletion of CD43 positive cells (Miltenyi,

Auburn, California). CD43 negative splenic naı̈ve B cells were

cultured with 15 ng/ml of IL-4 (R&D systems, Minneapolis,

Minnesota) and 20 ug/ml of LPS or LPS alone (Sigma-Aldrich) in

B cell medium (RPMI-1640 with L-Glutamine (Cellgro, Manassas,

Virginia), 1% HEPES, 1% penicillin/streptomycin/amphotericin

B, 10% FBS (Hyclone, South Logan, Utah)) at 8610̂5 cells/well of

a 6-well plate. Cells were removed from culture at days 0, 3, 5, and

7 for flow cytometric analysis and DNA extraction (Qiagen). On

day 5 and 7, cells were split and given 15 ng/ml of IL-4 and

20 ug/ml of LPS or LPS alone.

Histopathology
Mouse tissues were fixed in 10% neutral buffered formalin for at

least 48 hours, dehydrated in an alcohol gradient, cleared in

Figure 7. Aggressive papillomas and soft tissue sarcomas in AID-Cre-YFP KrasG12D Arf2/2 mice. A) Gross appearance of progressive tumors
affecting an AID-Cre-YFP KrasG12D Arf 2/2 mouse at 13 weeks of age. Tumors progressed rapidly from smaller papillomas on the ventral neck. B)
Control AID-Cre-YFP Arf 2/2 control mouse at 13 weeks appears normal. Hematoxalin & eosin stains of C) spleen section from AID-Cre-YFP KrasG12D Arf
2/2 shows disruption of splenic architecture by inflammatory cells; D) spleen section from AID-Cre-YFP Arf 2/2 control appears normal; and E) section
of subcutaneous sarcoma from AID-Cre-YFP KrasG12D Arf 2/2 at 13 weeks shows spindle shaped cells consistent with soft tissue sarcoma. Original
magnification, x10 (spleen); x40 (sarcoma). Scale bar: 200 um (spleen); 50 um (sarcoma). Tumor development was uniform in AID-Cre-YFP KrasG12D Arf
2/2 mice and did not require any tumor-promoting treatment. Representative images are shown.
doi:10.1371/journal.pone.0067941.g007
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xylene, and infiltrated and embedded in paraffin. Sections were

stained for hematoxylin/eosin (H&E).

Flow Cytometric Analysis
Single cell suspensions of bone marrow and spleen briefly

underwent red blood cell lysis.

1610‘6 cells were pre-incubated for 3 minutes on ice with Fc

block (CD16/CD32; BD Pharmingen, Franklin Lakes, New

Jersey), stained for 25 min on ice with specific antibodies and

washed twice in PBS/0.5 M EDTA/0.5 g BSA. The following

antibodies used were obtained from BD Pharmingen, unless noted

otherwise: FITC-B220 (RA3-6B2), PE-IgM (II/41; eBioscience),

APC-IgG1 (X56), AlexaFluor-647 GL7 (eBioscience), PE-CD138

(281-2), PECy7-B220 (RA3-6B2), PE-CD4 (GK1.5), and FITC-

CD8. Flow cytometric analysis was performed using FACScan

(Becton Dickinson, Franklin Lakes, New Jersey), modified with

additional lasers (Cytek Development). FlowJo software (Tree Star,

Ashland, Oregon) was used to analyze a minimum of 10,000

events acquired during collection.

MoFlo
Two 8-week-old Cc1-Cre KrasG12D or Kras AID-Cre mice were

stimulated with 100 ug CGG intraperitoneally and sacrificed 14

days later. Preparation of spleen and bone marrow was previously

described. Flow cytometric analysis was performed with the MoFlo

single-cell sorter (Becton-Coulter, Brea, California).

ELISA and SPEP
Total IgA, IgM, IgG, IgG1, IgG2a, IgG2b, and IgG3 levels in

serum were measured by enzyme-linked immunosorbent assay

(ELISA, Bethyl Laboratories, Inc, Montgomery, TX). Serum

protein electrophoresis (SPEP) quantified albumin and globulin

proteins from serum using the spife3000 (Helena Laboratories,

Beaumont, Texas). Gels were scanned and analyzed using

Quickscan2000 software (Helena Laboratories).

Supporting Information

Figure S1 Flow cytometry of Cc1-Cre KrasG12D mouse
splenocytes undergoing class switch recombination ex
vivo. Cc1-Cre KrasG12D mouse splenocytes negatively selected for

CD43 and plated in media supplemented with LPS+IL-4. Flow

cytometry shows increase of B220+ IgM+ IgG1+ splenocytes at

day 3 with LPS+IL-4, compared to day 0.

(TIF)

Figure S2 Analysis of T-cell lymphomas and lung
tumors arising in Cc1-Cre KrasG12D mice. A) Flow

cytometry of single cell suspension of naı̈ve Cc1-Cre KrasG12D

mouse that developed fatal thymus tumor. Lymphoma cells appear

to be heterogeneous and composed of CD4+ and double positive

CD4/CD8 populations present in both tumor and spleen. Similar

results were obtained in 2 additional naı̈ve Cc1-Cre KrasG12D mice

that developed thymus tumors. B–E) Hematoxalin & eosin stains

of lung sections from immunized Cc1-Cre KrasG12D (B,C) and

control naı̈ve Cc1-Cre mice (D,E) showing incidentally discovered

lung tumors. Original magnification, x4 and x40. Scale bar:

500 um and 50 um. F) PCR of two lung nodule samples from 2

different Cc1-Cre KrasG12D mice show recombination of KrasG12D

locus.

(TIF)

Figure S3 Subtle changes in immunoglobulin isotype
responses in AID-Cre-YFP KrasG12D mice detected by
enzyme linked immunosorbant assay (ELISA). A) Total

serum gamma region protein levels from AID-Cre-YFP KrasG12D

and control KrasG12D mice calculated from total serum protein

multiplied by the percentage of protein in the gamma region of

serum protein electrophoresis (SPEP) divided by 100. Results are

shown from untreated AID-Cre-YFP KrasG12D vs KrasG12D mouse

cohorts (immunization protocol only; left panel), AID-Cre-YFP

KrasG12D vs KrasG12D cohorts fed vitamin D deficient chow (middle

panel) and AID-Cre-YFP KrasG12D vs KrasG12D cohorts given

radiation (right panel). B) Serum ELISA of indicated immuno-

globulin isotypes of untreated KrasG12D and AID-Cre-YFP KrasG12D

mice. All changes were small in magnitude, but statistically

significant differences were noted at baseline in IgM, IgA and

IgG3 isotypes, at 9 month IgG2b timepoint and total IgG at

endpoint. Serum samples were taken at baseline, prior to

immunization with NP-CGG; PPI, post-primary immunization;

PBI, post-boosting immunization; 9 mo, 9 month time point;

Endpt, endpoint prior to sacrifice. Student’s T-test, *, p,0.05, **,

p,0.01, *** p,0.001

(TIF)

Figure S4 AID-Cre-YFP KrasG12D Arf 2/2 shows minimal
changes in ELISA and serum protein electrophoresis
(SPEP). A) Total gamma region protein levels from serum of

AID-Cre-YFP KrasG12D Arf 2/2 (DKA, n = 3), AID-Cre-YFP KrasG12D

Arf +/2 (DKA+/2, n = 2), and control AID-Cre-YFP Arf 2/2 (DA,

n = 1) at baseline and 12 weeks, with no immunization. B) Serum

ELISA of IgM and IgG isotypes of AID-Cre-YFP KrasG12D Arf 2/2

(DKA, n = 3), AID-Cre-YFP KrasG12D Arf +/2 (DKA+/2, n = 2), and

control AID-Cre-YFP Arf 2/2 (DA, n = 1), with statistical

significance of IgM isotype of DKA and IgG isotype of DKA+/2.

Student’s T-test, *, p,0.05, **, p,0.01, *** p,0.001 C) SPEP gel

and representative graph showing a low gamma protein of control

AID-Cre-YFP Arf 2/2 at 12 weeks, compared to AID-Cre-YFP

KrasG12D Arf 2/2.

(TIF)

Figure S5 Protocol of immunization used in this study.
Mice were injected intraperitoneally with NP-CGG in Freund’s

complete adjuvant for primary immunization, followed 4 weeks

later by boosting immunization with NP-CGG in Freund’s

incomplete adjuvant (arrows). Serum was sampled (arrow heads)

at baseline prior to PI, four weeks after primary immunization

(post-primary immunization; PPI), four weeks after boosting

immunization (post-boosting immunization; PBI), at nine months

and prior to sacrifice.

(TIF)
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