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Some selective estrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation
in several experimental models of neurodegeneration. In addition, raloxifene and tamoxifen counteract cognitive deficits caused
by gonadal hormone deprivation in male rats. In this study, we have explored whether raloxifene and tamoxifen may regulate the
number and geometry of dendritic spines in CA1 pyramidal neurons of the rat hippocampus. Young adult male rats were injected
with raloxifene (1 mg/kg), tamoxifen (1 mg/kg), or vehicle and killed 24 h after the injection. Animals treated with raloxifene or
tamoxifen showed an increased numerical density of dendritic spines in CA1 pyramidal neurons compared to animals treated with
vehicle. Raloxifene and tamoxifen had also specific effects in the morphology of spines. These findings suggest that raloxifene and
tamoxifen may influence the processing of information by hippocampal pyramidal neurons by affecting the number and shape of
dendritic spines.

1. Introduction

Selective estrogen receptor modulators (SERMs) either syn-
thetic or natural, such as phytoestrogens, are candidates for
the treatment or the prevention of cognitive and affective dis-
orders in men and women [1–5]. Several studies have shown
that some synthetic SERMs, such as tamoxifen, raloxifene,
or bazedoxifene [6–29], some nonfeminizing estrogens [30–
34], and some natural SERMs, such as genistein [35, 36],
are neuroprotective in vitro and in vivo. The neuroprotective
effects of SERMs are associated with a decrease in the
activation of microglia and astroglia and a reduction in brain
inflammation [37–43]. In addition, some SERMs have shown
to induce neuritic outgrowth in vitro [44, 45], suggesting
that these molecules may also affect synaptic connectivity in
vivo. Indeed, ERs are involved in the regulation of dendritic
spines in the hippocampus of female animals in vivo [46–51],
where tamoxifen regulates synaptophysin expression [52].
SERMs are also able to regulate cholinergic, serotonergic, and
dopaminergic neurotransmission in female animals [53–56].

However, the effects of SERMs on synaptic connectivity in
males have not been adequately explored. Nevertheless, pre-
vious studies have shown that SERMs such as raloxifene and
tamoxifen are able to counteract hippocampus-dependent
cognitive deficits caused by androgen deprivation in male
rats [57]. In addition, raloxifene reduces working memory
deficits in male rats after traumatic brain injury [20].

To further characterize the mechanisms of action of
SERMs in the male brain, we have assessed in this study
the effects of tamoxifen and raloxifene on the number and
geometry of dendritic spines in CA1 pyramidal neurons of
the rat hippocampus.

2. Material and Methods

2.1. Animals and Treatments. Sprague-Dawley adult male rats
were maintained under regular 12 h light-dark cycles (lights
on: 07:00–19:00 h) and controlled environmental humidity
(45–50%) and temperature (22 ± 2◦C). Animals had free
access to food and water. All the experimental procedures
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Figure 1: Examples of dendritic spines stained with the Golgi method. Left panel: photomicrograph of a CA1 pyramidal neuron impregnated
with a modification of the Golgi method. Spines studied in the present work were counted in a segment 50 μm in length of a secondary
dendrite (arrow) protruding from its parent apical dendrite. SO: stratum oriens; SP: stratum pyramidale; SR: stratum radiatum. Scale bar =
100 μm. In the right panels, photomicrographs show representative examples of thin (a), mushroom (b), stubby (c), wide (d), branched (e),
and double (f) spines (arrows). Scale bar = 5 μm.

were conducted to minimize pain or discomfort in the
animals and performed in accordance with the NIH guide
for Care and Use of Laboratory Animals (NIH Publications
no. 80-23, 1996 revised). Protocols were approved by our
institutional animal care committee.

At the age of three months, animals were injected with
raloxifene (1 mg/kg; n = 6), tamoxifen (1 mg/kg; n = 6),
or vehicle (20 mg/mL DMSO diluted 3% in saline solution;
n = 6). Animals were killed 24 h after the injection.

2.2. Golgi Studies. Animals were anesthetized with 30 mg/kg
intramuscular ketamine and 50 mg/kg i.p. sodium pento-
barbital. Then, animals were perfused intracardially with
100 mL of a washing phosphate-buffered solution (pH 7.4;
0.01 M) containing 1000 IU/L of sodium heparin and 1 g/L of
procaine hydrochloride. Then, 200 mL of a fixing phosphate-
buffered 4% formaldehyde solution was perfused. Both
solutions flowed at a rate of 11.5 mL/min. Each brain
remained for at least 48 h in 100 mL of a fresh fixing solution.

The bilateral dorsal hippocampi were dissected out and
impregnated using a modification of the Golgi method [58].
Several coronal slices 100 μm thick were mounted on one
slide per animal. Spine numerical density and the proportion

of thin, mushroom, stubby, wide, branched, and double
spines [59–61] were assessed in CA1 pyramidal neurons.
Spines were counted in one 50 μm segment per cell, located
in the middle of one of the secondary dendrites that protrude
from the apical dendrite (Figure 1). Six CA1 pyramidal
neurons were studied per animal. The total number of spines
counted was 5,796 in the animals treated with vehicle: 9,295
in the animals treated with raloxifene and 9,180 in the
animals treated with tamoxifen.

2.3. Statistical Analysis. The one-way ANOVA and Tukey post
hoc test were used for statistical comparisons of data from
spine numerical density. In addition, one-way ANOVA and
Bonferroni correction post hoc test were used for statistical
comparisons of the proportion of the different types of
spines. The n used for statistical analysis was the number of
animals (n = 6, per experimental group).

3. Results

Raloxifene and tamoxifen increased significantly the total
numerical density of dendritic spines compared to control
animals (Table 1). Both SERMs increased the numerical
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Table 1: Numerical density of dendritic spines in hippocampal CA1
pyramidal neurons of male rats 24 hours after the treatment with
vehicle, raloxifene, or tamoxifen.

Vehicle Raloxifene Tamoxifen

Total spines 161.0 ± 5.0 258.2 ± 3.0a 255.0 ± 4.0b

Thin 74.8 ± 2.8 89.6 ± 3.8a 78.0 ± 3.6c

Mushroom 50.4 ± 1.8 84.6 ± 3.2a 92.8 ± 1.6bc

Stubby 28.6 ± 1.4 65.8 ± 1.8a 71.0 ± 2.2b

Wide 6.2 ± 0.6 15.6 ± 1.0a 11.8 ± 1.2bc

Branched 0.4 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

Double 0.1 ± 0.04 0.04 ± 0.04 0.4 ± 0.1

Data represent mean ± SEM of the number of dendritic spines per
100 μm dendritic segment from 6 animals in each experimental group.
a–cSignificant differences, P < 0.05; araloxifene versus Vehicle; btamoxifen
versus. Vehicle; ctamoxifen versus Raloxifene.

Table 2: Proportion (%) of the different types of dendritic spines in
hippocampal CA1 pyramidal neurons 24 hours after the treatment
with vehicle, raloxifene, or tamoxifen.

Vehicle Raloxifene Tamoxifen

Thin 46.4 34.7a 30.5b

Mushroom 31.3 32.7 36.3bc

Stubby 17.7 25.4a 27.8b

Wide 3.8 6.0a 4.6

Branched 0.2 0.2 0.2

Double 0.07 0.01 0.1

Data represent means from 6 animals in each experimental group.
a–cSignificant differences, P < 0.05; araloxifene versus Vehicle; btamoxifen
versus Vehicle; ctamoxifen versus raloxifene.

density of mushroom, stubby, and wide spines (Table 1).
In addition, raloxifene increased the numerical density of
thin spines (Table 1). Numerical density of mushroom spines
was greater in tamoxifen-treated rats than in raloxifene-
treated animals. In contrast, thin and wide spines were less
numerous in the tamoxifen group than in raloxifene-treated
animals (Table 1).

The experimental treatments also resulted in changes
in the proportion of different spine morphologies. The
proportion of thin spines was reduced in the animals
treated with raloxifene. Furthermore, raloxifene increased
the proportion of stubby and wide spines and did not
significantly affect the proportion of mushroom, branched
and double spines (Table 2).

As observed for raloxifene, the proportion of thin spines
was also reduced in the animals treated with tamoxifen. In
contrast, mushroom and stubby spines were seen in greater
proportion in animals treated with tamoxifen than in control
animals. Tamoxifen had no significant effects in the propor-
tion of wide, branched, and double spines (Table 2). The
animals treated with tamoxifen showed a higher proportion
of mushroom spines than those treated with raloxifene
(Table 2).

4. Discussion

Our present findings indicate that some SERMs, such as
raloxifene and tamoxifen, affect the number of dendritic
spines in male rats. This action of SERMs may affect the
processing of novel information used in memory formation
[62].

In addition to increase the numerical density of spines,
raloxifene and tamoxifen also affected spine geometry. Both
SERMs increased the numerical density of stubby, mush-
room, and wide spines. In addition, raloxifene increased
the number of thin spines. However, both SERMs reduced
the proportion of thin dendritic spines. Dendritic spine
morphology affects the diffusion and compartmentalization
of membrane-associated proteins [63] and the expression
of AMPA receptors [64–67]. In particular, the length of
the spine neck seems to be a key regulator of spinoden-
dritic Ca2+ signaling [68–72] and of the transmission of
membrane potentials [73]. In consequence, the geometry of
dendritic spines may influence the processing of synaptic
impulses [74–79]. Our findings suggest, therefore, that
raloxifene and tamoxifen, decreasing the proportion of thin
dendritic spines, may influence the processing of informa-
tion by hippocampal pyramidal neurons. In addition, the
action of raloxifene and tamoxifen presents some differences
that may have functional significance. Tamoxifen, but not
raloxifene, increased the proportion of mushroom spines.
Thus, the animals treated with tamoxifen had an increased
numerical density and proportion of mushroom spines
compared to animals treated with raloxifene. Mushroom
spines may be involved in the management of previously
acquired information since they have larger postsynaptic
densities [80] and express higher levels of AMPA receptors
[64–67]. Therefore, the synapses on mushroom spines are
functionally stronger [78] and it has been suggested that
these spines would sustain memory storage [78, 81, 82].

The induction of plastic changes in dendritic spines by
raloxifene and tamoxifen may be linked with the precognitive
effects of these molecules in male rats [20, 57]. However,
the possible impact of raloxifene and tamoxifen on cognitive
decline in men remains to be adequately explored, in
particular in association with neurodegenerative diseases.
For instance, both SERMs increase the levels of luteinizing
hormone (LH) in men [83] and it has been proposed
that elevated levels of LH may contribute to Alzheimer’s
disease pathogenesis [84]. Indeed, leuprolide acetate, a
GnRH agonist that lower serum levels of LH, has been shown
to improve cognitive performance and decrease amyloid-
β deposition in a mouse transgenic model of Alzheimer’s
disease [85].

5. Conclusions

The findings of this study indicate that raloxifene and
tamoxifen, two SERMs currently used in clinical treatments,
promote an increase in the numerical density of dendritic
spines and changes in spine geometry in the hippocampus
of male rats. These findings, together with the regulation
exerted by tamoxifen and raloxifene on hippocampus-
dependent cognitive function in male rats [57], suggest that
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SERMs may influence the processing of information by male
hippocampal pyramidal neurons by affecting the number
and shape of dendritic spines.
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