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Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and

sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across indi-

viduals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is,

interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research

areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural

asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals

from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in

the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems

from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An

internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgam-

ation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a

clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
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Introduction
Current clinical practice aims to preserve bilateral sound
input, which has resulted in a growing number of patients
who receive bilateral cochlear implants (BiCIs; Gifford &
Dorman, 2018; Turton et al., 2020). Bilateral implantation
is recommended because it can lead to improved sound
source localization and speech understanding in noise rela-
tive to unilateral implantation (e.g., Litovsky et al., 2006;
Loizou et al., 2009; van Hoesel & Tyler, 2003). Much
research on BiCIs implicitly assumes interaural symmetry
but does not explicitly consider the effects of a weaker ear
contributing to bilateral perception. However, due to
factors associated with hearing loss (e.g., deterioration of
the auditory periphery; Shepherd & Hardie, 2001) and surgi-
cal implantation (e.g., electrode placement; Goupell et al.,
2022), interaural asymmetry is pervasive and its causes are
varied. Recent research has shown that interaural asymmetry
limits the benefits of BiCIs (e.g., Bakal et al., 2021; Burg

et al., 2022; Ihlefeld et al., 2015; Mosnier et al., 2009;
Yoon et al., 2011) and contributes to difficulty navigating
complex sound environments (e.g., Bakal et al., 2021;
Bernstein et al., 2016; Goupell et al., 2016, 2018a). As
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discussed in greater detail below, most studies aiming to
understand the impact of interaural asymmetry on perfor-
mance in patients have focused on identifying the sources
of asymmetry, particularly on how to counteract said
sources. However, the terminology and point of view in dif-
ferent topic areas can vary widely, making it difficult to reach
a consensus about how to optimize patient outcomes.

The binaural hearing literature has also historically
assumed that binaural processing of inputs from the two
ears is independent, and that binaural hearing involves an
optimal selection of binaural and monaural sources of infor-
mation (Durlach, 1963). In other words, this assumption sug-
gests that information from one ear can be ignored at will
because each ear is treated like a separate “channel” by the
auditory system.

Experimental paradigms using binaural stimulation
demonstrate that information from both ears is inextricably
linked by the auditory system, such that processing of infor-
mation from the two ears often does not occur in two inde-
pendent channels. For example, listening with two ears
rather than one in conditions when both ears are spectro-
temporally degraded impairs task performance in listeners
with normal-hearing (NH) (DeRoy Milvae et al., 2021;
Gallun et al., 2007; Goupell et al., 2021) and hearing loss
(Bakal et al., 2021; Bernstein et al., 2016, 2020; Goupell
et al., 2016; Oh et al., 2019). There are several other exam-
ples of how contralateral stimulation changes perception in
the ipsilateral ear that are not necessarily connected in the lit-
erature. Contralateral stimulation disrupts the ability to detect
sounds in listeners with NH (Zwislocki, 1971) and BiCIs
(Lin et al., 2013), a phenomenon called “central masking,”
though physiological manifestations or causes may differ
between groups. Central masking occurs most often for
stimuli with a common onset time and similar
place-of-stimulation in each ear (Lin et al., 2013;
Zwislocki, 1971). Sensitivity to monaural temporal cues
can decrease due to the presence of confounding binaural
cues in listeners with NH (Piechowiak et al., 2007;
Schimmel et al., 2008). Speech information can be disrup-
tively fused together, resulting in changes in vowel percep-
tion for listeners with hearing loss (Reiss et al., 2016; Reiss
& Molis, 2021).

Understanding that bilateral auditory processing arises
from two interdependent pathways and recognizing the per-
vasiveness of interaural asymmetry are both essential for
devising strategies to improve patient outcomes. The goal
of the present manuscript is to review the literature concern-
ing interaural asymmetry for listeners with BiCIs and present
a conceptual framework that integrates the findings from a
wide variety of studies and methodologies, including human
psychophysics and animal electrophysiology. Because the lit-
erature concerning interaural asymmetry has focused on its
specific causes (e.g., unilateral stimulation during develop-
ment) or manifestations (i.e., interaural mismatch in electrode
placement), we group results into categories of bottom-up or

top-down processing. First, we review the findings on
bottom-up and top-down binaural processing using psycho-
physics or physiology. Then, we summarize the findings
and propose evidence-based best practices for researchers
and clinicians assessing the outcomes of patients with
BiCIs. Finally, we suggest important directions for future
research.

Definitions and Conceptual Framework
Before proceeding further, it is important to provide several
operational definitions. The phrase “interaural asymmetry”
is used here to refer to any difference in the representation
or perception of identical sounds presented to the left and
right ear. Interaural asymmetry includes differences in
hearing thresholds, loudness growth, speech understanding
scores, place-of-stimulation of each auditory nerve, and
spectro-temporal patterns conveyed by each auditory nerve.
While this review focuses primarily on listeners with
BiCIs, individuals with hearing loss who use other hearing
assistive technologies such as bilateral hearing aids, hybrid
CIs, or a unilateral CI and hearing aid are also likely to be
impacted by these kinds of asymmetries. Thus, this review
aims to characterize the impacts of many different kinds of
interaural asymmetry, such that they can be generalized to
numerous clinical populations.

Binaural benefits are perceptual advantages that can occur
when listeners have access to sound from two ears instead of
one. These are usually encapsulated under conditions in
which sound sources are on the horizontal plane, whereby
measurements focus on sound source localization and
improvement in speech understanding in noise when there
is a spatial separation between target and masking sounds
compared to when they are co-located (i.e., spatial release
from masking). There are some monaural components
involved with sound source localization (loudness cues and
spectral cues) and improvements associated with speech
understanding in noise (head shadow). Binaural benefits
include binaural redundancy or summation, which results
from having access to the auditory signal through both ears
(Carhart, 1965), and binaural squelch, which requires a com-
parison of the signal in the left and right ear (Harris, 1965;
e.g., resulting from a difference in signal phase or a spatial
separation of target and masker). Benefits of bilateral
hearing include those driven by binaural cues (e.g.,
Middlebrooks & Green, 1991; Swaminathan et al., 2016),
the two primary binaural cues being interaural level and
time differences (ILDs and ITDs, respectively). These cues
result from differences in a sound’s amplitude (temporal
envelope) and phase (temporal fine-structure) as they reach
the ears according to their horizontal locations on either
side of the head.

Binaural cues (i.e., ITDs and ILDs) help to disambiguate
and localize independent sound sources in complex auditory
environments. Throughout this manuscript, “cues” refer to
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acoustical qualities present in a sound that may or may not be
well-represented by the auditory system, but are suspected to
be useful for distinguishing sound sources. In contrast, we
will also discuss features, which refer to the internal represen-
tation or perception of sounds that can be used to distinguish
between sound sources. Examples of sound features related
to spatial cues are perceived location and perceived width
of a sound image. Thus, cues refer to aspects of a signal
(i.e., external to the listener) and features refer to perceptual
qualities (i.e., internal perceptions), both of which are inti-
mately related and involved with segregation of sound
sources in complex environments. The next two sections of
this review will elaborate on these ideas in the context of
completed research.

Bottom-Up Processing: The Superior Olive

Overview of the Lateral Superior Olive
Binaural cues must be represented by the auditory system in
order to be useful. The circuits thought to encode binaural
cues in the NH system are well-characterized (for review,
see Yin et al., 2019). However, there are differences
between listeners with BiCIs and those with NH that
warrant distinct consideration of their bottom-up processing.
Firstly, most commercially available CI processing strategies
discard temporal fine-structure (Loizou, 2006), rendering
these cues inaccessible to listeners with CIs. Recent measure-
ments evaluating the output of CI processors confirm that
only ILDs and ITDs in the temporal envelope are preserved
(Gray et al., 2021). Secondly, even when temporal
fine-structure is available using research devices and process-
ing strategies, listeners with BiCIs do not seem to benefit
from fine-structure ITDs during localization and related
tasks (Ausili et al., 2020; Dennison et al., 2022; Fischer
et al., 2021). Listeners with BiCIs show sensitivity to ITDs
in the envelope as well as the fine structure during discrimi-
nation tasks (e.g., Anderson et al., 2019a; van Hoesel &
Tyler, 2003). Thus, localization instead seems to be facili-
tated primarily by ILDs for listeners with BiCIs (Aronoff
et al., 2010; Grantham et al., 2008; Seeber & Fastl, 2008).
Thirdly, most CI arrays do not extend to the most apical
portion of the cochlea. If fine-structure processing in the
spiral ganglion is indeed place-specific (for review, see
Moore, 2008), the depth to which the electrode array is
inserted may be insufficient (Goupell et al., 2022).
Fourthly, stimulation provided by CIs is made up of transient
electrical pulses, which are amplitude-modulated by the
envelope of the sound being represented (Loizou, 2006).
They also show reliable evidence of “rate limitations,”
meaning that there is a decline in envelope ITD sensitivity
with pulse rates (i.e., fine-structure) or amplitude modulation
(AM) rates above 300 Hz (Anderson et al., 2019a; Kan &
Litovsky, 2015; Laback et al., 2015).

One circuit in the auditory brainstem, the lateral superior
olive (LSO; Figure 1), seems particularly equipped to repre-
sent binaural cues for listeners with BiCIs. The LSO corre-
sponds to the second and third synapse from the ipsilateral
and contralateral sides of the brainstem, respectively, indicat-
ing that binaural cues are encoded early in auditory process-
ing. The LSO is thought to have evolved to encode for
processing of ITDs in transient sounds and perform prepro-
cessing for ILD coding in the inferior colliculus (Brown &
Tollin, 2016; Joris & Trussell, 2018). Accordingly, it
shows sensitivity to ITDs conveyed by broadband transients
(Beiderbeck et al., 2018; Franken et al., 2021) and temporal
envelopes (Brown & Tollin, 2016; Joris & Yin, 1995). The
LSO receives excitatory and inhibitory input from the ipsilat-
eral and contralateral ear, respectively (Boudreau &
Tsuchitani, 1968), and acts as an anticoincidence detector,
responding with the lowest spike rates around 0-µs ITDs,
and showing ITD-dependent rates of firing (Beiderbeck
et al., 2018). Time-constants in the LSO circuit are among
the fastest in the central nervous system (Brown & Tollin,
2016; Franken et al., 2018), as are those in the medial supe-
rior olive that is suspected to code for fine-structure ITDs
(Golding & Oertel, 2012). Most cells in the LSO have high

Figure 1. (A) Bottom-up binaural processing via the LSO.

Stimulation arrives at the auditory nerve via electrical pulses and

travels through action potentials to the LSO. (B) LSO output for

accurately encoded binaural cues. The x-axis corresponds to ILD

in dB or ITD in µs. The y-axis corresponds to the spike rate

measured by single unit recording. Spike rates are modulated by

binaural cue, showing distinct responses for different ILD or ITD

magnitudes. (C) LSO output for poorly encoded binaural cues.

The x-axis corresponds to ILD in dB or ITD in µs. The y-axis
corresponds to the spike rate measured by single unit recording.

Spike rates are weakly modulated by binaural cue, showing

indistinct responses for different ILD or ITD magnitudes.

ILD=interaural level difference; ITD=interaural time difference;

LSO=lateral superior olive.
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characteristic frequencies (Guinan et al., 1972; Sanes et al.,
1989; Tsuchitani, 1977, 1997). High-frequency cells in the
LSO show a low-pass characteristic (Joris, 1996; Joris &
Yin, 1998; Remme et al., 2014) for envelope ITD sensitivity,
consistent with the rate limitations observed in listeners with
BiCIs, as well as those observed in listeners with NH listen-
ing to high-frequency transients (Anderson et al., 2019a;
Bernstein & Trahiotis, 2014; Monaghan et al., 2015).
These perceptual rate limitations are also present for monau-
ral temporal discrimination for listeners with CIs (Ihlefeld
et al., 2015; Kong et al., 2009; Kong & Carlyon, 2010).
Monaural temporal sensitivity is predictive of binaural sensi-
tivity at the same rates (Ihlefeld et al., 2015) suggesting a
common mechanism that may limit binaural sensitivity that
parallels processing in the LSO. The LSO is also sensitive
to changes in ILDs, with ILDs favoring the ipsilateral and
contralateral ear resulting in greater and lesser spike rates,
respectively (Boudreau & Tsuchitani, 1968; Tollin & Yin,
2002). Thus, deafness or CI stimulation, which affect LSO
processing, also likely result in changes to the encoding of
ITDs conveyed by transients, ITDs in the temporal envelope,
and ILDs. Finally, LSO responses adapt to preceding ITDs
and ILDs over time, indicating a mechanism that could com-
pensate for consistently biased input (Beiderbeck et al., 2018;
Gleiss et al., 2019).

It is important to mention the other major contributor to
localization in humans: the medial superior olive (MSO).
The MSO is an anatomical neighbor to the LSO and receives
its input at a similar stage in the auditory pathway. The MSO
is tuned primarily to low frequencies (Guinan et al., 1972;
Pecka et al., 2008) and demonstrates sensitivity to low-
frequency ITDs in the fine-structure of sounds for animals
with NH (Goldberg & Brown, 1969; Yin & Chan, 1990).
Listeners with NH show sensitivity to fine-structure ITDs
up to about 1500 Hz (e.g., Brughera et al., 2013). Changes
in biophysically modeled MSO responses to ITDs become
less distinct for high rates of stimulation (∼1500 Hz; e.g.,
Brughera et al., 2013), exceeding the rate-limitations of the
LSO. Because most CI electrode arrays only stimulate mid-
to higher-frequency neurons (Goupell et al., 2022), it is
unlikely that they stimulate the MSO. In animals, the MSO
also shows poorer sensitivity to ITDs of transients compared
to the LSO (Franken et al., 2021), suggesting that its role in
ITD processing with BiCIs may be limited. Despite this,
studies of ITD processing among listeners with BiCIs often
include data from “star” listeners, most notably those who
can discriminate temporal pitch or ITDs at very high pulse
rates (e.g., Goupell, 2015; Kong & Carlyon, 2010; Laback
et al., 2015). Because these “star” performers’ results on
spatial tasks may be more consistent with MSO processing
than LSO processing, we considered it crucial to recognize
the possible role of the MSO for localization in listeners
with BiCIs. Throughout this manuscript we focus primarily
upon the LSO because its properties correspond more
closely with the performance of a typical listener with BiCIs.

Figure 1 shows an illustration of the LSO circuit. The
cells in the cochlear nucleus that provide excitatory ipsilateral
input to the LSO are still debated (Cant & Casseday, 1986;
Doucet & Ryugo, 2003). One candidate is spherical bushy
cells. The contralateral input arrives through the medial
nucleus of the trapezoid body (MNTB), and is conveyed
first by globular bushy cells (Smith et al., 1991, 1998).
Compared to the auditory nerve, both spherical and globular
bushy cells show improved phase locking to the temporal
fine-structure (Joris et al., 1994; Joris & Smith, 2008; Joris
& Yin, 1998) and envelope (Rhode & Greenberg, 1994) of
stimuli. These cells act as monaural coincidence detectors,
firing when inputs are temporally coincident within some
window of sensitivity. Monaural and binaural coincidence
detectors have characteristically low input resistances that
result from low-voltage-gated potassium channels, resulting
in very short time constants (Golding & Oertel, 2012). For
spherical bushy cells, it is thought that precisely timed inhi-
bition facilitates spiking, as inputs capitalize on the repolari-
zation channels that are already open (Keine & Rübsamen,
2015). This same sort of early, faciliatory inhibition is
present in LSO cells and gives rise to their response proper-
ties to ITDs (Beiderbeck et al., 2018). For globular bushy
cells, high temporal precision is achieved by combining
inputs from many auditory nerve fibers (Rothman et al.,
1993; Spirou et al., 2005). The role of inhibition in globular
bushy cells is less clear, but blocking inhibition increases
overall spike rate in globular bushy cells (e.g., Caspary
et al., 1994). Excitatory signals from globular bushy cells
become inhibitory upon reaching the MNTB, and the
MNTB shares extremely similar temporal characteristics
with globular bushy cells (Banks & Smith, 1992). Thus,
shifts in the number of auditory nerve fibers or the balance
between excitation and inhibition in the circuitry would
likely result in poorer phase locking of bushy cells, and there-
fore less temporal precision among inputs to the LSO. The
balance of excitation and inhibition is also clearly important
for the LSO.

Figure 1B and C show illustrations of the types of
changes in output that one would expect with deterioration
of the LSO circuit, or more generally the encoding system.
Of particular concern is the distinctness between varying
magnitudes of ITD or ILD and the output of the encoder.
In recordings that measure the firing rate of neurons, the dis-
tinctness between neural responses associated with different
spatial cues is usually measured via neural d’ (Smith &
Delgutte, 2007) or mutual information (Buck et al., 2021;
Thornton et al., 2021). Neural d’ is computed as a ratio of
the difference in means between distributions of firing rates
relative to their standard deviation. This is based on the ubiq-
uitous d’ statistic from the psychophysics literature (Green &
Swets, 1966). Mutual information is an information theoretic
approach that computes from the output of the encoder the
information (in bits) about the binaural cue. In other words,
mutual information tells the researcher how much is known
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about the binaural cue being presented based upon the output
of the encoder.

No published studies have directly investigated the effects
of different sources of interaural asymmetry in the auditory
periphery on LSO responses. This probably has to do with
the technical challenges associated with making recordings
in the superior olivary complex, where the LSO is housed.
However, our understanding of its circuitry can be leveraged
to make reasonable predictions about how LSO output would
change based upon deterioration of its inputs. The LSO and
any neurons sensitive to microsecond ITDs have such spe-
cialized mechanisms that any decrement to structures
earlier in the auditory pathway is suspected to lead to
poorer binaural processing. Various studies have been con-
ducted concerning sources of interaural asymmetry that are
directly relevant for LSO processing. The rest of this
section on bottom-up processing is dedicated to a discussion
of these sources.

Auditory Deprivation
Auditory deprivation for patients with BiCIs has received
considerable attention in the literature. This section is
divided into two parts because auditory deprivation early
versus late in life is suspected to have unique impacts on
the auditory periphery and brainstem. Most listeners with
early onset of deafness and BiCIs are either children or
young adults because pediatric implantation at a young age
is a fairly new phenomenon within the past 10 to 20 years,
where decision making regarding age at implantation has
been influenced heavily by factors such as financial con-
straints and indications of approval by the Food and Drug
Administration for patients in the United States. In contrast,
listeners who receive CIs in adulthood may have experienced
either short or long periods of auditory deprivation. This indi-
cates at least three clinical subpopulations. Further, many lis-
teners with BiCIs undergo sequential implantation (Holder
et al., 2018; Peters et al., 2010), meaning that each ear expe-
riences a different period of auditory deprivation. As a
guiding principle, we will distinguish between bilateral and
unilateral auditory deprivation throughout the text.

Early in Development: Central Auditory Changes. The auditory
brainstem is thought to undergo activity-dependent reorgani-
zation during a critical window of early development (Sanes
& Bao, 2009; Takesian et al., 2009). This re-organization
coincides with increasing head size during a child’s develop-
ment, which changes the relationship between binaural cues
and physical locations in space, requiring the auditory system
to remain plastic and re-map cues to spatial locations
(Anbuhl et al., 2016; Clifton et al., 1988; Litovsky &
Ashmead, 1997). Accordingly, ITD discrimination thresh-
olds in listeners with NH are elevated during periods of
head growth (Litovsky & Ashmead, 1997) and later decrease
once the head stops growing.

Early exposure to coherent ITDs in the temporal fine
structure of a signal is likely important for development of
brainstem circuits that are sensitive to ITDs (Seidl &
Grothe, 2005). For listeners with BiCIs, an early, bilateral
onset of deafness is associated with greater errors in sound
source localization (Anderson et al., 2022a; Asp et al.,
2015; Grieco-Calub & Litovsky, 2010; Killan et al., 2019;
Litovsky et al., 2010; Steffens et al., 2008; Strøm-Roum
et al., 2012; Van Deun et al., 2010) and poorer sensitivity
to ITDs (Ehlers et al., 2017; Litovsky et al., 2010).
However, these listeners retain or develop sensitivity to
ILDs, which do not require the same temporal precision as
ITDs (Brown & Tollin, 2016). One challenge in these
types of correlational studies is that many factors predictive
of binaural performance in children are interrelated (e.g.,
experience with BiCIs, age at onset of deafness, duration
without CI stimulation), making it difficult to disentangle
which factors result in worse performance. Animal models
help to illuminate specific mechanisms.

These issues have also been addressed in part by animal
models of early, bilateral onset of deafness. In rabbits stimu-
lated with BiCIs, early bilateral deafness is associated with
poorer tuning to ITDs in neurons recorded from the inferior
colliculus (Chung et al., 2019; Hancock et al., 2013). The
inferior colliculus receives direct projections from the LSO
and MSO (Schofield, 2005) and shows similar ILD and
ITD tuning characteristics (Brown & Tollin, 2016), suggest-
ing that it is reflective of earlier stages of binaural processing.
Evidence for the importance of providing coherent ITDs via
BiCI stimulation early in development has emerged from
studies in rabbits and rats who are congenitally deaf; it
appears that sensitivity to ITDs is preserved or recovered in
these animals with sufficient sensory experience or training
(Buck et al., 2021; Rosskothen-Kuhl et al., 2021; Sunwoo
et al., 2021).

Humans and other animals who experienced intermittent
or prolonged periods of asymmetric hearing loss early in
life also show evidence of compromised binaural processing.
Human listeners with congenital, unilateral hearing loss, who
did not receive coherent ITDs during childhood even after
unilateral hearing loss is corrected, show reduced sensitivity
to binaural masking level differences up to 2 years after
surgery (Wilmington et al., 1994). Guinea pigs and ferrets
with intermittent, asymmetric hearing loss induced by ear-
plugs showed poorer localization after ear plugs were
removed (Anbuhl, 2017; Clements & Kelly, 1978; Moore
et al., 1999). Using the same paradigm, chinchillas showed
poorer correspondence between ILD and spike rate in the
inferior colliculus when the earplug was removed (Thornton
et al., 2021). Critically, these prolonged periods of poor sen-
sitivity to spatial cues do not correspond with the millisecond
to second long periods of neural adaptation to stimuli
observed in the LSO (Beiderbeck et al., 2018; Gleiss et al.,
2019), MSO (Lingner et al., 2018; Stange et al., 2013), and
inferior colliculus (Dahmen et al., 2010), suggesting that
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these changes are pathophysiological. Results from studies
concerning early deafness on responses in the inferior collicu-
lus suggest a shift in the balance of excitation and inhibition.
Inhibition in the inferior colliculus appears to increase (i.e.,
ratio between excitation and inhibition or “suppression”;
Chung et al., 2019). Moreover, the proportion of cells
showing sensitivity to binaural stimulation decreases drasti-
cally, and is accompanied by a proportional increase in sensi-
tivity to monaural stimulation (Thornton et al., 2021).
Children who grow up with bilateral deafness and receive a
unilateral CI show a similar bias in their auditory brainstem
responses (Gordon et al., 2014; Polonenko et al., 2015).
This last result will be discussed in more detail when consid-
ering hemispheric lateralization.

Throughout the Lifespan: Peripheral Deterioration. Recent evi-
dence from adults with BiCIs demonstrated that ITD sensitiv-
ity is predicted by the interaction between duration of bilateral
hearing impairment (i.e., period of time between hearing loss
onset and age at second implant) and period of time with at
least one CI (Thakkar et al., 2020). In other words, the decre-
ment in performance associated with prolonged bilateral
hearing impairment was mitigated by a longer period of time
with at least one CI, and vice versa. This suggests auditory
input, and especially bilateral auditory input, is important to
preserve binaural circuitry even after development.

In cases where deafness occurs early in life, proper
binaural connectivity may never form. In contrast, when
deafness occurs later in life, there is a risk for deterioration
to the existing circuitry. Particular attention has been paid
to changes in monaural processing that might contribute to
poorer binaural sensitivity. Long periods of auditory depriva-
tion in humans and other animals are associated with dete-
rioration of dendritic processes and cell death (Leake &
Hradek, 1988; Nadol et al., 1989; Nadol, 1997; Shepherd
& Javel, 1997; Spoendlin & Schrott, 1989). This cell death
can occur somewhat uniformly across the auditory nerve or
in large subpopulations called “dead regions” (Moore,
2004). Prolonged auditory deprivation also leads to demyeli-
nation of auditory nerve axons (Shepherd & Hardie, 2001;
Spoendlin & Schrott, 1989). Studies of human temporal
bones harvested postmortem suggest that the etiology and
onset of loss is associated with differing amounts of auditory
nerve fiber survival, with listeners who experienced early
deafness demonstrating the least amount of auditory nerve
fiber survival (Nadol et al., 1989). However, this may be con-
founded with development or prolonged auditory depriva-
tion. Noise-induced hearing loss has been associated with
demyelination of auditory nerve fibers (Tagoe et al., 2014;
Wan & Corfas, 2017). Thus, demyelination of auditory
nerve fibers, deterioration of dendrites, and death of
neurons may represent the pathophysiological changes that
occur in response to hearing loss and auditory deprivation.

The aforementioned structural changes are associated with
temporal response changes in the auditory nerve. Loss of

peripheral dendrites is correlated with shifts in the latency
of action potential initiation in models of auditory nerve
fibers with CI stimulation (Goldwyn et al., 2010). Loss and
demyelination of peripheral dendrites is also associated
with poorer refractory properties of the auditory nerves of
mice and rats (Shepherd et al., 2004; Zhou et al., 1995).
Since bushy cells refine the temporal precision of auditory
nerve fibers, it seems likely that the temporal fidelity of
their output would decrease as the temporal fidelity of the
input also decreases. In particular, loss of auditory nerve
fibers has been related to poorer temporal response properties
of models of globular bushy cells (Ashida et al., 2019). Shifts
in excitation and inhibition may be more likely to impact the
responses of spherical bushy cells, and loss of auditory nerve
fibers may be more likely to affect globular bushy cells.
Because bushy cells refine tuning before providing input to
binaural neurons (Joris et al., 1994), poorer temporal
response properties of bushy cells on one or both sides are
suspected to degrade binaural processing.

Most of the changes discussed so far have involved the
peripheral auditory system, but some changes above the
level of the auditory nerve likely occur in listeners who expe-
rience a later onset of deafness. The amount of myelin on
MNTB axons is regulated by activity during development
and into adulthood (Sinclair et al., 2017). Axon diameter
also increases in an activity-dependent fashion, but only
during development (Sinclair et al., 2017). Axon diameter
and myelination both affect the conduction velocity of
action potentials, where more heavily myelinated and wider
axons convey action potentials more quickly (e.g., Gillespie
& Stein, 1983). Both of these factors were also associated
with decreased maximum firing rate of MNTB cells in a com-
putational model (Sinclair et al., 2017). Demyelination of
axons in a computational model of the MSO have been asso-
ciated with poorer response properties to ITDs (Li et al., 2022),
suggesting that myelination may be a key factor to maintaining
the exquisite timing properties required of binaural circuitry.
Peripheral degradation may therefore limit the encoding of
temporal information as it arrives to the nerve. Other factors
involving the CI array may act prior to and at the auditory
nerve to prevent this information from being accurately or
symmetrically represented in the first place. They are dis-
cussed in the rest of this section.

Intracochlear Implant Array Position and Interaural
Place Mismatch
The distance between the CI electrode array and auditory
nerve fibers varies depending upon the electrode type,
cochlear anatomy, and surgical outcomes (Chakravorti
et al., 2019; Goupell et al., 2022; Wanna et al., 2014).
Greater distance from the auditory nerve fibers and modiolus
results in higher detection thresholds (Schvartz-Leyzac et al.,
2020) and is also thought to lead to increased spatial spread
as the current travels from CI electrodes to auditory nerve
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fibers. Because the temporal fluctuations on neighboring
electrodes are not necessarily related, current spread also
results in temporal smearing. Therefore, multi-electrode
stimulation that is used in clinical processing strategies can
result in spectro-temporal smearing of the signal, referred
to as channel interaction. Reduced spectro-temporal fidelity
is associated with poorer speech understanding in listeners
with CIs (Croghan et al., 2017; Friesen et al., 2001). In sim-
ulations with listeners who have NH, reduced spectro-
temporal fidelity leads to decreased spatial unmasking of
speech whether it is interaurally symmetric (Gallun et al.,
2007) or asymmetric (Goupell et al., 2021).

Electrode arrays are surgically placed in the scala tympani
of the cochlea, a location in close proximity to the auditory
nerve with minimal physical obstructions between the
current source and auditory nerve fibers. Of particular
concern are translocations of CI electrode arrays into other
cochlear scalae. Scalar translocations are one of the strongest
predictors of poor monaural speech intelligibility (Chakravorti
et al., 2019; Wanna et al., 2014). Scalar translocations result in
substantially further distance between the electrode array and
auditory nerve fibers, requiring that current travel through
additional tissue, which increases electrical resistance (Dong
et al., 2021). One study evaluating the prevalence of unilateral
translocations found them for at least one electrode in one ear
in 50% of listeners (Goupell et al., 2022). Critically, because
translocations are strongly associated with speech understand-
ing, these differences in the placement of the electrodes within
the cochlea can result in differences of the fidelity of speech
information that impair bilateral benefits and even lead to
interference. They can also smear or alter the spectro-temporal
relationship between ears, limiting the LSO’s ability to
compute binaural cues.

Previous studies attempting to optimize ITD sensitivity
for patients with BiCIs have strived to match interaural
place-of-stimulation (Bernstein et al., 2021; Hu & Dietz,
2015; Kan et al., 2013; Long et al., 2003; van Hoesel,
2008; van Hoesel & Tyler, 2003). If not stated explicitly in
these studies, attempting to match place-of-stimulation was
most likely motivated by physiological findings supporting
the axiom that the MSO processes ITDs and relies on
frequency-matched inputs (Day & Semple, 2011; Goldberg
& Brown, 1969), and by classical cross-correlation based
models of binaural processing (Jeffress, 1948; Yin & Chan,
1990). The LSO also relies on frequency-matched input
from the two ears (Boudreau & Tsuchitani, 1968). A recent
study investigating the binaural interaction component of
the auditory brainstem response (thought to reflect activity
in the LSO; Benichoux et al., 2018; Laumen et al., 2016)
in chinchillas (Brown et al., 2019) and humans (Sammeth
et al., 2023) found that it was modulated by ITD and inter-
aural place-of-stimulation mismatch. The effect of ITD on
the binaural interaction component decreaed with increasing
interaural place-of-stimulation mismatch. Similar effects have
been documented in listeners with BiCIs (He et al., 2010; Hu

& Dietz, 2015). This finding corresponds strongly with
decreased ITD sensitivity and poorer intracranial lateralization
ranges in listeners with BiCIs (Goupell et al., 2022; Kan et al.,
2013, 2019). Increased interaural place-of-stimulation mis-
match can induce poorer sensitivity to interaural decorrelation
(Goupell, 2015), which is associated with less spatial fusion or
more frequent reports of multiple sound images (Kan et al.,
2013, 2019). Place-of-stimulation mismatch also results in
reduced spatial release frommasking in simulations with listen-
ers who have NH (Goupell et al., 2018b).

Unlike other sources of interaural asymmetry,
place-of-stimulation mismatch likely reflects the binaural
system having fewer “looks” (i.e., neurons processing
binaural cues) at the binaural cues conveyed in the stimulus.
Thus, it seems highly likely that spectro-temporal degrada-
tions would add a secondary, orthogonal effect, making it
extremely challenging for the LSO and other frequency-
matched binaural structures like the MSO to make accurate
binaural computations. Consistent with this hypothesis, a
recent study with simulations in listeners with NH showed
that reducing AM depth and increasing interaural
place-of-stimulation mismatch have additive effects on ITD
lateralization (Anderson, 2022). Other studies showed
reduced interaural decorrelation detection with increasing
interaural place-of-stimulation mismatch in listeners with
NH and BiCIs (Goupell, 2015). That is, image width,
thought to be the primary perceptual feature used in decorr-
elation detection (Whitmer et al., 2014), may be much
more difficult to distinguish when the sound image is
already quite diffuse. For listeners who receive interaurally
decorrelated inputs due to differences in loudness growth
between the ears, the sound with 100% interaural correlation
in the signal would have a correlation closer to zero in their
brainstems. Listeners with NH show poorer sensitivity in
decorrelation detection experiments with a reference condi-
tion of 0% interaural correlation compared to a reference con-
dition of 100% (Goupell, 2012, 2015; Goupell & Litovsky,
2013). Listeners with BiCIs show reduced sensitivity to inter-
aural decorrelation compared to listeners with NH, making it
difficult to assess whether there are different patterns between
reference conditions in either group (Goupell, 2015; Kan
et al., 2015).

System-Level Measures of Electrode–Neuron Interface
It is sometimes more efficient to consider the state of encod-
ing at the auditory nerve from the system level rather than try
to detect or diagnose specific causes, that is, as more or less
“healthy” or ideal when indexed using a perceptual task.
Loudness growth has been proposed as a measure of elec-
trode–neuron interface (Bierer & Nye, 2014). Loudness
growth differs depending upon the electrode being stimulated
within the same ear (Bierer & Nye, 2014). For some patients,
the levels resulting in a perceptually centered image during
bilateral stimulation closely match those measured
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monaurally (Fitzgerald et al., 2015). However, there are some
subjects for whom these levels do not result in a centered
image (Fitzgerald et al., 2015). Presumably, differences in
loudness growth would also be observed between the elec-
trodes in either ear, though this has not been tested systema-
tically by measuring bilateral loudness growth or unilateral
loudness growth in both ears of the same individual.
Studies showing decreased sensitivity to ITDs for high-rate,
amplitude-modulated compared to low-rate, constant-amplitude
pulse trains (Anderson et al., 2019a; van Hoesel & Tyler,
2003) provide indirect evidence of differences between loud-
ness growth on pairs of electrodes. This is because listeners
with BiCIs do not show improved sensitivity to sharp com-
pared to shallow or sloping temporal onsets in the envelope
for ITD discrimination (Laback et al., 2011), unlike listeners
with NH (Bernstein & Trahiotis, 2002). Balancing of bilat-
eral loudness at a comfortable level does not alter lateraliza-
tion of ITDs, but does improve lateralization of ILDs under
conditions of large interaural place-of-stimulation mismatch
(Goupell et al., 2013a). To our knowledge, no attempts
have ever been made to balance loudness growth between
ears for listeners with BiCIs. Instead, CI processing algo-
rithms may apply the same loudness growth function to
each electrode based upon their threshold and comfortable
loudness levels, which could contribute to spurious ILDs or
disruption of envelope ITD coding.

While loudness growth has not been evaluated, there are
known contributions of dynamic range, or the amount of
electrical current corresponding to a comfortably loud level
minus the amount of current required to detect a sound in
quiet for listeners with BiCIs. Smaller dynamic range has
been associated with poorer sensitivity to ITDs within the
same listener (Todd et al., 2017). That is, the ITD sensitivity
of a particular electrode pair can be predicted by the dynamic
range of both electrodes. Similarly, as the AM depth of a sti-
mulus decreases so does ITD sensitivity for listeners with
BiCIs (Ihlefeld et al., 2014; van Hoesel & Tyler, 2003).
Studies in listeners with NH have shown that interaurally
symmetric or asymmetric reductions in AM depth are associ-
ated with less sensitivity to interaural phase differences and
ITDs in the envelope (Anderson et al., 2019b; Anderson,
2022). It is well-documented that the dynamic range of CI
electrodes varies across the electrode array (e.g., Long
et al., 2014; Todd et al., 2017). This can be due to many
factors, including distance from the electrode to the modiolus
and the health of the auditory nerve (Schvartz-Leyzac et al.,
2020). Thresholds measured using “focused stimulation”
strategies, which employ negative currents on neighboring
electrodes to restrict the neural populations being excited,
have been proposed as an index of the quality of the interface
between CI electrodes and auditory nerve fibers (Bierer,
2010). This may be related to dynamic range of the electrodes
(Long et al., 2014).

Differences in loudness growth and dynamic range
between ears may be analogous to stimulus-independent,

time-varying differences in sound level in each ear for
stimuli with complex temporal envelopes like speech.
Random, time-varying amplitude fluctuations increase the
amount of interaural decorrelation, obscuring ITDs and
ILDs in the signal at any moment in time. The effect of inter-
aural decorrelation on binaural processing has been studied in
listeners with NH. These studies found that as the amount of
interaural decorrelation increases, ITD sensitivity declines
(Buchholz et al., 2018) and the ability to understand speech
in noise decreases (Swaminathan et al., 2016). Similarly, as
interaural decorrelation increases, the perceived width of a
sound image increases or the sound image becomes more
diffuse (Whitmer et al., 2014), which could contribute to
the limited binaural benefits observed under such conditions.

Summary
Binaural processing in the LSO shows excellent correspon-
dence with trends observed in listeners with BiCIs. This
section overviewed sources of interaural asymmetry, their
suspected impacts on the inputs to the LSO and its processing
of binaural cues, and effects on perception. It is unlikely that
these sources of interaural asymmetry occur in isolation and
only recently has evidence begun to accumulate suggesting
that they may interact with one another to produce especially
deleterious effects on patient outcomes (Anderson et al.,
2019b; Anderson, 2022).

Top-Down Processing: Predictive Coding

Overview of Predictive Coding
The goal of this section is to use a broad approach to encap-
sulate changes in top-down auditory processing associated
with interaural asymmetry. In contrast to the earlier section
where we proposed one circuit that is primarily responsible
for bottom-up encoding of binaural cues, in this section,
we discuss several bodies of literature that describe various
top-down contributions to bilateral auditory processing.
Perhaps the broadest framework useful for understanding
top-down processing is predictive coding, which consists
of a cascading series of circuits. Predictive coding supposes
that the brain generates predictions about the outside world
that are updated in light of new, aberrant sensory input
(Rao & Ballard, 1999). The network of circuits responsible
for predictive coding in the auditory domain likely include
at least the auditory cortex, inferior temporal cortex, intrapar-
ietal lobule, posterior dorsal field, and hippocampus evi-
denced in particular by neuroimaging studies on the
time-course of activation through the auditory system
(Bizley & Cohen, 2013). An extremely detailed model of
this network is not necessary to generate predictions about
the relationship between interaural asymmetry and
top-down processing. Models of predictive coding have
already been used to describe changes associated with
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hearing loss (e.g., Kral et al., 2017). Predictive coding frame-
works have also been applied to speech and language pro-
cessing (Lupyan & Clark, 2015) and language development
(Ylinen et al., 2017), suggesting that it may represent a
general scheme for information processing in the brain.

Predictive coding lends itself to other conceptual models
of auditory scene analysis. For example, Shinn-Cunningham
(2008) described auditory scene analysis in terms of auditory
objects that compete for attention. In that model, a listener
can attend to a source of interest using cues encoded during
earlier stages of processing (e.g., pitch and location cues). In
a predictive coding framework, an auditory object is repre-
sented by a unique collection of neurons, with receptive
fields corresponding to different acoustic cues, and whose
activity can be modulated with attention. However, as the rep-
resentations of those features become more or less distinct, so
too would the boundaries between different sound sources.
Mathematically, this can be represented using Bayesian
inference, where a prior prediction (i.e., the internal percep-
tual model) is updated according to the data (i.e., aberrant
sensory input; Rao & Ballard, 1999) in feedforward and feed-
backward directions. Groups of neurons further downstream
in auditory processing, then, represent hyperparameters of
other distributions or probabilistic processes (i.e., distribu-
tions of distributions).

Consider the following schematic example accompanying
Figure 2. A listener is walking through a dog park. Based on
the context, the auditory system will have a set of candidate
objects that becomes narrowed over time via upstream and
downstream predictions. When a dog barks, the group of
neurons that represent lower pitch are excited, refining the
upstream and downstream predictions. Activating similar
low pitch neurons over time excites the neurons that repre-
sent flat pitch contours downstream in the hierarchy. When
combined with other sensory information, the neurons that
represent “dog” are excited. Predictions are propagated

upstream and when sensory input conforms to these predic-
tions, it generates minimal neural responsiveness. This
process is ongoing such that predictions of the object as
well as the confidence of those predictions are being
updated in each group of neurons over time and in light of
additional incoming stimulation. A similar process would
unfold if the individual actively listens for or attends to a
“dog,” making refined predictions. This scheme of sensory
representation is highly efficient as it avoids redundancy at
different feature levels and sensory input simply needs to
be tested against predictions. Groups of neurons therefore
respond primarily to prediction errors. If the listener knows
a dog is present, the internal model of perception does not
need all of the features to determine that the sound source
was a dog. However, if a feature violates the expectation of
“dog,” and instead corresponds more closely to “bird,” the
system can update its internal model accordingly. Such
would be the case if a bird suddenly starts chirping. The inter-
nal representation will look more like the case on the left in
Figure 2 for a listener with good frequency resolution and
sensitivity to pitch while the dog is barking.

If instead the listener has CIs, which are known to have
lower resolution of frequency information and accordingly
limit the sensitivity to pitch of CI users (e.g., Reiss et al.,
2018), their internal representation will look more like the
example on the right. It will be more difficult to narrow
down candidate objects and the level of confidence in predic-
tions will be lower overall. Note that if the auditory system
were chronically stimulated as in the example on the right,
neurons may begin to deteriorate due to understimulation.
Overall excitation could increase to offset this problem
(e.g., an increase in “central gain”; Auerbach et al., 2014),
neurons could be repurposed for other sensory processing
(e.g., from the opposite hemisphere if asymmetric; Kral
et al., 2013a; Polonenko et al., 2018a), or a reweighting of
inputs to the representation of “dog” and “bird” could

Figure 2. Schematic representations of distinct and indistinct stimuli. Units representing sound features corresponding to the stimulus are

predicted, and units representing features different from the stimulus are not predicted. Distinctness corresponds to greater prediction

confidence. Lines between blocks are meant to represent feedforward and feedback connections, providing excitatory or inhibitory input.

Connections between blocks within a single layer (e.g., sideband inhibition) and connections between one block and itself are excluded to

avoid visually cluttering the figure.
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occur (e.g., greater reliance on visual cues; Moberly et al.,
2020). Poor object representation therefore results from
reduced distinctiveness between features and not low or
high overall excitation. These maps of auditory objects to sti-
mulus features may be distorted in children who have limited
access to high fidelity auditory cues, suggested by poor per-
formance in behavioral tasks for individuals who had limited
acoustic experience (Anderson et al., 2022a; Thakkar et al.,
2020). Similarly, the ability to rely on maps learned with
high-fidelity auditory cues may be compromised (e.g., after
sudden onset hearing loss during adulthood), suggested by
variable or poorer performance in comparison to listeners
with NH (e.g., Anderson et al., 2022a; Thakkar et al.,
2020). Obviously, there are a considerable number of fea-
tures that could be used to identify perceptual objects.
However, the sensory information pictured in Figure 2
could become particularly important in certain contexts
(e.g., if the sound source is out of the field of vision; in the
presence of background noise). Note that this very simple
example does not include effects of temporal cues at
varying durations (e.g., shape of the temporal envelope, F0
cues, call duration), which would very likely play a role.
The intention here was not to be comprehensive, but to
provide a simplified example of the interplay between
some perceptual cues within a predictive coding framework.
Moreover, the representation of the object (i.e., dog) is not
likely to “end” its representation at a neural locus represent-
ing all barking dogs, instead being distributed across many
different neural loci representing a rich set of information
about the object.

Rather than focusing on specific insults that lead to inter-
aural asymmetry, the rest of this section focuses on systems
or processes thought to be involved directly or indirectly in
auditory predictive coding. Some specific contributors to
interaural asymmetry (e.g., auditory deprivation) will be dis-
cussed within each subsection.

Auditory Object Formation and Fusion
Auditory object formation is the process by which various
features of a sound are combined into a singular, fundamental
unit of auditory perception (for review, see Griffiths &
Warren, 2004; Shinn-Cunningham, 2008; Shinn-Cunningham
et al., 2017). Auditory objects carry information that can be
derived or parsed. Auditory object formation is thought to
occur on two different time scales: short windows of time
when spectro-temporal components bind or “fuse” together
based on similar properties, and through the formation of
auditory “streams” that can be tracked over time. Common
onset time has been identified as particularly important for
grouping which spectro-temporal segments belong to the
same sound source (Darwin, 1997). Auditory streams are
updated over time according to the internal predictive
model. Both spectro-temporal fusion and auditory stream for-
mation are important for perception, though less work has

focused on auditory stream formation in the binaural
literature.

As mentioned previously, the ears represent interdepen-
dent channels, meaning that the signals in one interact with
the other both in the air before reaching the ears and through-
out binaural neurons in the central auditory system. Studies
using a wide variety of paradigms suggest that information
from each ear may be mandatorily integrated, even when
this is disadvantageous to performance in listeners with NH
(Gallun et al., 2007; Kidd et al., 2003; Piechowiak et al.,
2007; Schimmel et al., 2008; Zwislocki, 1971) and hearing
loss (Bernstein et al., 2016, 2020; Goupell et al., 2016,
2018a; Lin et al., 2013; Oh et al., 2019; Reiss et al., 2016;
Reiss & Molis, 2021). In headphone experiments, worsening
discrimination, identification, or speech understanding per-
formance in the presence of contralateral stimulation is
most widely referred to as contralateral interference,
meaning that information in one ear interferes with the
other. In listeners with BiCIs as well as those who use
hearing aids, it is difficult to distinguish between failures of
attention to one side of the head and failures of auditory
object formation.

Listeners with BiCIs may fuse the pitch of bilaterally pre-
sented stimuli over very disparate places-of-stimulation, cor-
responding to frequencies ranging greater than an octave
(Reiss et al., 2018). This same pattern is observed in listeners
who use hearing aids (Reiss et al., 2014a, 2017). Recent evi-
dence shows a negative linear relationship between the pitch
fusion range and the benefit attained from differences in fun-
damental frequency of target and interfering masker for lis-
teners who use hearing aids (Oh et al., 2019). In other
words, as the range of frequencies fused between ears
increases, the benefit of frequency differences between
speakers decreases. Additionally, there is a positive linear
relationship between the fusion of pitch and vowels with
interaural frequency disparities in listeners who use hearing
aids (Reiss & Molis, 2021), implying that listeners adversely
fuse different vowels. Fusing stimuli that represent different
words provides one perceptual mechanism that may contrib-
ute to contralateral interference and poor speech in noise per-
formance for listeners with hearing loss. These experiments
could not explicitly account for broader ranges of interaural
pitch and vowel fusion based upon unilateral pitch percep-
tion, suggesting a central auditory mechanism. Listeners
with hearing loss who use hearing aids and/or CIs also
show different psychometric functions associated with
vowel continua (e.g., nine step continuum of mixtures of
the vowels /IH/ and /EH/) between the ears (Reiss et al.,
2016). When presented with stimuli bilaterally, the psycho-
metric function does not always correspond to the psycho-
metric function of either ear. This implies that the
spectro-temporal profiles assigned to specific vowels differ
between ears and are decoded differently when listening uni-
laterally compared to listening bilaterally. This is consistent
with simulations of interaurally asymmetric temporal fidelity
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in listeners with NH, which showed that listeners were more
likely to perceive a single word when stimuli were tempo-
rally degraded and more likely to misunderstand the word
being presented (Anderson et al., 2023). Interestingly, very
short onset time differences also modulate the number of
vowels reported by listeners with hearing loss, but to a
lesser extent than differences in fundamental frequency
(Eddolls et al., 2022).

The literature concerning spatial fusion with listeners who
use BiCIs is not consistent. Adults with BiCIs demonstrate
slightly greater amounts of fusion over interaural
place-of-stimulation mismatch in ITD lateralization experi-
ments compared to NH (Kan et al., 2013, 2019; Long
et al., 2003; van Hoesel & Clark, 1995, 1997). They also
show fusion for very large ITDs (e.g., 4 ms; van Hoesel &
Clark, 1995) compared to listeners with NH. Similarly, for
listeners with BiCIs, very large ITDs (≥2000 µs) can be
used to lateralize stimuli further to the left and right than
smaller, more physiologically plausible ITDs that arrive
directly from sounds (≤800 µs) (Anderson et al., 2019a;
Baumgärtel et al., 2017; Litovsky et al., 2010). These ITDs
are also higher in magnitude than those for which listeners
with NH begin to report hearing two sounds (e.g., Sayers,
1964). This insensitivity to interaural frequency and temporal
cues might suggest that over-fusing sounds underlies poorer
sound source localization (Suneel et al., 2017) and spatial
release from masking (Goupell et al., 2018b). This is also sup-
ported by wider central masking functions compared to NH,
where electrodes from disparate places-of-stimulation in the
ear opposite the target result in higher detection thresholds
(Lin et al., 2013; van Hoesel & Clark, 1997). On the other
hand, adults with BiCIs show less fusion compared to listen-
ers with NH for time-delayed pairs of stimuli with opposite
ITDs (i.e., echo thresholds of lead-lag pairs) in precedence
effect experiments (Brown et al., 2015). Less fusion corre-
sponds with poorer lateralization of ITDs in adults when
interaural place-of-stimulation mismatch is present
(Goupell et al., 2013b; Kan et al., 2013, 2019). Moreover,
children with BiCIs, particularly those with the earliest
onset of deafness, tend not to fuse interaurally place-
matched stimuli even with 0-µs ITDs (Salloum et al.,
2010; Steel et al., 2015).

Assuming that place-based pitch is not a very salient cue
to distinguish sounds, and that ITDs are not very useful as
they are conveyed via clinical processors, both sets of find-
ings could be indicative of a similar underlying problem.
That is, because the ITDs conveyed cannot be used effec-
tively to segregate between sound sources, the auditory
system relies more heavily on other cues (e.g., ILDs) to
segregate between sounds and treats inputs from each ear
as always of the same or different source origin. The per-
ceptual categorization of “one” or “two” sounds when the
presented cues lack salience may be somewhat arbitrary,
which Figure 2 implies. This corresponds to the holding
open of multiple possible objects instead of the distinct

perception of a single auditory object when the features
are not salient.

Attention
Attentional shifting and modulation begins after auditory
object formation and eventually works in parallel with audi-
tory object formation for ongoing stimuli. Auditory streams
compete for attention, which is allocated using features of
auditory objects. Thorough reviews of object-based auditory
attention were published previously (Fritz et al., 2007;
Shinn-Cunningham et al., 2017), and some of their findings
are summarized here. Allocation of attention depends upon
accurate representation of cues. Thus, when features of dif-
ferent sounds are less distinct or attention is drawn elsewhere,
performance in difficult listening conditions becomes poorer.
Auditory attention can make use of auditory objects’ features
to sort them into the foreground or background. This atten-
tion may manifest as suppression of neural responses
related to objects in the background, as well as amplifying
and refining tuning of neural responses related to objects in
the foreground. It may be that when multiple sound sources
are present, the ability to listen for a desired sound source
using a predictive network similar to Figure 2 is compro-
mised for listeners with interaural asymmetry, making
poorer predictions or demonstrating bias toward the more
salient source.

Interaural asymmetry of attention in listeners with BiCIs
was only recently explored. Results suggest attentional dif-
ferences between the ears when there are sufficiently chal-
lenging task conditions. Many of these studies have used
binaural unmasking tasks, where a mixture of target and
masking speech is presented to one ear and compared
against conditions where the other ear is also presented
with a copy of the masker. Listeners with NH usually show
an improvement in the latter condition, presumably because
the masking speech is fused across ears (e.g., Gallun et al.,
2007; Goupell et al., 2021) resulting in a centered image
(ITD= 0 µs, ILD= 0 dB) and the target speech is perceived
toward the ear in which it is presented (ITD=±∞ µs,
ILD=±∞ dB). Listeners with BiCIs who experienced a pro-
longed period of deafness, on the other hand, frequently
show a decrement in performance when a copy of the
masker is added to the other ear (i.e., contralateral interfer-
ence; Goupell et al., 2018a). In this and related studies, the
result of adding a copy of the masker to the opposite ear is
dependent upon the ear to which the target is presented.
When target speech is presented to the better ear (defined
by speech recognition scores), some listeners show improve-
ments in speech perception, although these are typically
smaller than those observed in listeners with NH. When
target speech is presented to the poorer ear and there is sig-
nificant interaural asymmetry, contralateral interference
occurs for listeners with BiCIs (Bernstein et al., 2016;
Goupell et al., 2016, 2018a), simulations in NH (Goupell
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et al., 2021), and listeners with a CI in one ear and NH in the
other ear (Bernstein et al., 2020). Simulations in NH with
similar conditions show evidence of increased listening
effort via pupillometry (DeRoy Milvae et al., 2021). This is
consistent with the idea of a mandatory shift in attention
toward the more salient source.

Interestingly, patients who experienced stroke demon-
strate a similar difficulty allocating attention to the ear contra-
lateral to the lesion when there is stimulation in the ear
ipsilateral to the lesion. This is referred to as auditory extinc-
tion (Deouell & Soroker, 2000; Tanabe et al., 1986).
Auditory extinction is modulated by the relative onset time
of the stimulation of either ear (Witte et al., 2012), where
the ear presented first is more likely to be correct, especially
if it is ipsilateral to the lesion. Contralateral interference in
listeners with BiCIs may therefore be indicative of a failure
of the attentional network that presents as auditory extinc-
tion. That is, in order to detect the failure of attention for
these listeners, both ears must be stimulated and the worse
ear must contain the target. It may also be that certain infor-
mation in the signal(s) is prioritized. Unconscious shifting of
attention to particular information in sounds is supported by a
study showing that identification of whether or not a sound is
moving is poorer with stimuli that have temporal envelopes
from speech compared to stimuli that have the original tem-
poral envelopes from noise (i.e., an acoustic chimera) for CI
simulations in listeners with NH (Warnecke & Litovsky,
2021). This suggests that the speech processing and localiza-
tion pathways may compete for resources during behavioral
tasks.

An alternative explanation of contralateral interference to
that presented in the previous section is that when stimuli are
sufficiently spectro-temporally degraded, changes in auditory
object formation occur. This could be due to an over-fusion
of unrelated speech between the ears, resulting in an obscured
sound image, making it more difficult to parse for speech
information. This could also occur due to an under-fusion
of the masking speech in each ear, effectively introducing
an additional masker. One important intermediate step has
been to explore the fusion of speech stimuli for monosyllabic
words (Anderson et al., 2023) and vowels (Eddolls et al.,
2022; Reiss et al., 2016; Reiss & Molis, 2021). Results
from the former imply that over-fusion occurs when stimuli
are spectro-temporally degraded, that the worse ear is
ignored, and that the worse ear interferes with access to
speech information in the better ear.

In conclusion, it seems likely that both auditory object for-
mation and attention are affected by interaural asymmetry.
Particularly indicative of an attentional problem are studies
with listeners who have a CI in one ear and NH in the
other (Bernstein et al., 2020) and simulations in NH
(Goupell et al., 2021) showing contralateral interference. In
this case, the signals in each ear are so different that over-
fusion seems unlikely. Together these findings suggest that
changes in object formation and problems allocating

attention likely interact with one another to produce poorer
bilateral speech outcomes when listeners demonstrate inter-
aural asymmetry. They also suggest that it may be necessary
to tax the attentional system by introducing masking stimuli
in spatially distinct channels (e.g., the opposite ear) before
interaural asymmetry is apparent (Goupell et al., 2016,
2018a), like the special case of hemispheric neglect (auditory
extinction) observed in some patients who have experienced
stroke.

Cortical Lateralization and Specialization
In NH listeners, some specialization of speech and language
function is present. Reviews on this topic has been published
previously (Hiscock & Kinsbourne, 2011) and results are
summarized here. Auditory hemispheric lateralization in lis-
teners with NH is typically associated with a right ear advan-
tage in listening experiments (Hugdahl et al., 2008; Wood
et al., 2000) and greater activation identified in cortical
imaging (Tanaka et al., 2021). Classical studies have also
shown right ear advantage associated with simulated ablation
via anesthesia (the “WADA” test; Kimura, 1967). Right ear
advantage is slightly less prevalent in individuals who are
left-handed, but both groups tend to show right ear advantage
over left ear advantage (Hiscock et al., 2000). Interestingly,
this advantage can still be seen via ILDs favoring the left
ear (Hugdahl et al., 2008) and when stimuli have ITDs up
to ∼60 to 90 ms (Wood et al., 2000). The amount of advan-
tage depends highly upon the task used and is sometimes dif-
ficult to reproduce in the same groups of listeners (Hiscock
et al., 2000; Voyer & Flight, 2001; Voyer & Ingram,
2005). An interesting parallel in the binaural literature is “ear-
edness,” or the tendency for a listener to reliably perceive a
spatially ambiguous sound on one side of the head (Zhang
& Hartmann, 2008).

Many listeners with BiCIs have a perceptually indicated
“better ear” (e.g., Burg et al., 2022; Goupell et al., 2018a;
Ihlefeld et al., 2015; Litovsky et al., 2006; Mosnier et al.,
2009). This is one type of interaural asymmetry. Most
often, the better ear corresponds to the first-implanted ear.
Different factors predict speech understanding in either ear,
largely stemming from differences associated with the audi-
tory periphery. Thus, while we discussed asymmetries in
attention in the section above, this section will be dedicated
to the asymmetric representation of sounds in either side of
the cortical and subcortical auditory structures.

Two reviews have addressed the effects of unilateral audi-
tory deprivation during development (Gordon & Kral, 2019;
Kumpik & King, 2019) and are partially summarized here.
Children with BiCIs who have an extensive history of unilat-
eral stimulation show an extreme shift toward bilateral corti-
cal representations of stimuli from the first-implanted ear
(Gordon et al., 2015; Polonenko et al., 2018a; Yamazaki
et al., 2017). The same finding has been replicated in congen-
itally deaf cats (Gordon & Kral, 2019; Kral et al., 2013a).
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These studies show auditory deprivation during early stages
of development is associated with a repurposing of cells in
the contralateral cortical hemisphere to represent ipsilateral
input, and can only be mediated by early cochlear implanta-
tion (Kral et al., 2013a, 2013b). At lower levels of process-
ing, single units of the inferior colliculus in chinchillas
who experienced mild, intermittent hearing loss via earplug-
ging (Thornton et al., 2021) and asymmetries in brainstem
function observed in children who are congenitally deaf
and receive a unilateral CI (Polonenko et al., 2015) show
the same types of reorganization. Thus, hemispheric reorga-
nization during sensitive periods of development may repre-
sent one pathophysiological mechanism that underlies
sensory asymmetry. This type of reorganization would be
visualized in Figure 2 as having fewer processing units, or
bias in each, toward the earlier implanted ear. Accordingly,
research in children indicates that the best outcomes are
observed in listeners with the least history of asymmetric
auditory input (Polonenko et al., 2018b).

An important finding demonstrates that no consistent ear
advantage is found in children (Koopmann et al., 2020) or
adults (Litovsky et al., 2006; Mosnier et al., 2009) who are
simultaneously, bilaterally implanted. That is, ear advantage
in listeners with BiCIs may have more to do with neural
health or auditory experience. Some differences in speech
understanding take time to emerge as listeners learn to use
their CIs (Mosnier et al., 2009), suggesting that listeners
may adapt to one ear over time. Thus, rather than attention
as in listeners with NH, other factors associated with the audi-
tory periphery likely contribute to differences in hemispheric
representations of sound. One example that is likely to have a
strong effect on interaural asymmetries in speech outcomes is
scalar translocation (Chakravorti et al., 2019; Wanna et al.,
2014). It should be noted that differences in psychophysical
sensitivity and predictors of auditory nerve health vary
depending upon the place-of-stimulation even within the
same ear as well as across the ears (e.g., Chatterjee &
Oberzut, 2011; Chatterjee & Peng, 2008; Garadat et al.,
2012; Ihlefeld et al., 2015; Kong et al., 2009; Long et al.,
2014; Schvartz-Leyzac et al., 2020; Zhou & Pfingst, 2012).
Thus, interaural asymmetry and unilateral deprivation are
not synonymous. Unilateral auditory deprivation, especially
during development, is a condition that has an extraordinarily
high chance of resulting in interaural asymmetry and whose
pathophysiology has been well-documented. Since it is likely
that many of the same peripheral issues occur for patients
who are sequentially implanted and patients who are simulta-
neously implanted, it is important not to overlook how
peripheral factors contribute to interaural asymmetry for lis-
teners with prolonged unilateral deprivation. One particularly
important question is whether psychophysically based pre-
dictors of neural health are sensitive to the pathophysiologi-
cal changes associated with auditory deprivation. It may be
possible to save time and resources if these predictors
provide similar information about spectro-temporal

processing as more complicated and intensive assessments
of cortical lateralization. It remains unclear whether differ-
ences in sensitivity to spectro-temporal cues between ears
are reflected in cortical activity for most listeners with
BiCIs who experience asymmetries from varied sources. In
other words, interaural asymmetry in the auditory periphery
leading to poorer binaural outcomes may not necessarily be
reflected in all measures of cortical activity.

Auditory Experience and Training
Listeners with BiCIs who are implanted in adulthood show a
period of plasticity during which they adapt to the new mode
of stimulation. With respect to pitch, this is characterized by
adaptation of the place-of-stimulation to pitch map, which is
different for patients with CIs than individuals with acoustic
hearing (Reiss et al., 2014b, 2015). With respect to speech
understanding, accuracy increases and seems to plateau
around 3 to 5 years of CI use (Blamey et al., 2012). This plas-
ticity does not necessarily imply that both ears will improve
at a similar rate. For example, adult listeners who were simul-
taneously implanted demonstrated significant differences in
performance between ears that emerged only after 1 year of
experience (Mosnier et al., 2009). Children with BiCIs tend
to have the best outcomes over time when they are implanted
shortly after onset of deafness, improving over time for sound
source localization or lateralization (Killan et al., 2019;
Steffens et al., 2008; Strøm-Roum et al., 2012; Zheng
et al., 2015) and speech understanding (Dunn et al., 2014),
but not spatial release from masking (Litovsky & Misurelli,
2016). These factors are often interrelated in children with
BiCIs, so it is difficult to discern exactly how deafness and
cochlear implantation interact with the normal developmental
trajectory. Together with earlier sections, these studies imply
that auditory deprivation, especially during early develop-
ment, may interact with experience, producing interaural
asymmetries. This could be illustrated in Figure 2 by modu-
lating the connections between units that are learned over
time.

Recent evidence suggests that providing coherent ITDs
via CIs to the developed auditory system might restore
access to ITD sensitivity later in life (Buck et al., 2021;
Rosskothen-Kuhl et al., 2021; Sunwoo et al., 2021). In
these experiments, animals were deafened early in life,
underwent a period of deafness, then used ITDs to localize
sounds with operant conditioning later in life via bilateral
CIs. Thus, it may be that the utility of ITDs and sensitivity
of the midbrain was based as much on training as exposure
to coherent cues. One important future direction, especially
when making attempts to restore access to spatial cues for
human listeners with BiCIs, may be to involve training. A
lack of training or experience may help explain why benefits
are not observed in listeners with BiCIs when ITDs in the
temporal fine-structure are preserved (Ausili et al., 2020;
Dennison et al., 2022; Fischer et al., 2021), particularly
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because they may have learned to rely on other cues for
sound source localization.

When considered in the context of a patient with signifi-
cant interaural asymmetry, it is not surprising that many lis-
teners report removing one or both hearing devices during the
day (Cox et al., 2011; Fitzpatrick & Leblanc, 2010; McArdle
et al., 2012; Walden & Walden, 2005) as they may feel that
their worse ear interferes with or frustrates listening. Thus,
rather than asking patients to passively listen in these difficult
configurations with the hope that device compliance and per-
formance improve, auditory training may provide a promis-
ing and motivating alternative. Results from listeners with
unilateral CIs and simulated asymmetric loss via earplugging
suggest listeners are able to re-weight cues based on auditory
training (Firszt et al., 2015; Keating et al., 2016). Pilot testing
of another training procedure suggests that it can also lead to
improvements in spatial hearing outcomes for listeners with
BiCIs (Tyler et al., 2010).

Summary
Top-down was proposed as a process whereby ongoing per-
ceptual predictions are refined by new, unexpected sensory
input. This process is thought to occur by using features asso-
ciated with different auditory objects to allocate attention to a
desired source of interest. In listeners with interaural asym-
metry, auditory object formation may be compromised and
attention may be drawn toward the clearer signal. Both of
these processes may be facilitated by an overrepresentation
of the better ear throughout the ipsilateral hemisphere, and
a lack of training or relevant experience may maintain or
compound interaural asymmetry. While unilateral depriva-
tion has received considerable attention, it is unlikely to be
the only factor contributing to overrepresentation of the
better ear and is not the sole predictor of ear advantage.

Implications for Researchers and Clinicians
Interaural asymmetry, evidenced by differences in the neural
health, mismatches in the placement of the electrode array,
psychophysical sensitivity, hemispheric representation, and
speech understanding outcomes is a common problem for lis-
teners with BiCIs. Differences between each ear’s auditory
periphery (or two poorly performing peripheries) lead to
poorer encoding of the binaural cues used to distinguish
between sound sources. Poor encoding leads to poorer audi-
tory object formation, challenges allocating attention to
sources of interest, and hemispheric reorganization favoring
the better ear. While the sources may overlap or vary, the man-
ifestation is the same: one better performing ear and poorer
binaural outcomes.

It is important to note that even listeners who demonstrate
large interaural asymmetries in speech understanding gener-
ally do not experience a decrement from using both CIs com-
pared to a unilateral CI in more realistic, free field speech

understanding tests (Bakal et al., 2021) even as they might
face some challenges with vocal production (Aronoff et al.,
2018). Thus, bilateral implantation is unlikely to result in
worse outcomes than unilateral implantation, but its benefits
may be mediated by interaural asymmetry. This may be due
to more favorable “looks” to target stimuli or the provision of
some limited binaural benefits. It is our hope that the studies
outlined in this review can be used to maximize improvement
of bilateral device use and facilitate better patient outcomes.

Interrelated Sources of Interaural Asymmetry
While the literature has focused on specific conditions that
induce interaural asymmetry, a central idea is that interaural
asymmetry results from similar manifestations of bottom-up
and top-down processing. While we aimed to address each
topic separately, by no means do these sources of interaural
asymmetry occur in isolation. For example, the number of
surviving nerve fibers associated with etiology of hearing
loss predicts the speech outcomes of listeners (Blamey
et al., 2012; Nadol, 1997). Patients with early onset of
hearing loss and delayed implantation will experience dete-
rioration of the auditory periphery, brainstem changes, hemi-
spheric reorganization, and will also have less bilateral
experience relative to age-matched peers. These listeners
may have similar odds of having experienced scalar translo-
cations and interaural place-of-stimulation mismatch.

The factor affecting interaural asymmetry that has
received the most attention in the literature is auditory depri-
vation. There is consensus across clinicians and laboratory
studies in animals and humans that providing consistent
bilateral input, especially during development, is important
for binaural outcomes (Gifford & Dorman, 2018; Gordon
et al., 2014; Polonenko et al., 2018b; Turton et al., 2020).
Auditory deprivation is associated with poorer temporal
response properties beginning at the level of the auditory
periphery and a development of bilateral processing favoring
the better ear. Recent research shows promising results that
binaural processing may be improved (and performance dec-
rements mitigated) by experience with accurate binaural cues
(Buck et al., 2021; Rosskothen-Kuhl et al., 2021; Sunwoo
et al., 2021). While it would be ideal if deprivation can be
avoided in the first place, an audiologist can incorporate audi-
tory training into a patient’s rehabilitative plan to leverage
any remaining plasticity.

Some issues associated with the auditory periphery may
be improved with technological advances and improvements
in surgical techniques. For example, robot-assisted electrode
insertion significantly reduces the number of translocations and
amount of mechanical trauma to the cochlea during surgery
(Kaufmann et al., 2020). The type of CI array also influences
outcomes, with precurved arrays being more likely to result
in translocation (Goupell et al., 2022) but resulting in the small-
est distance from the modiolus (Chakravorti et al., 2019).
Deactivating electrodes suspected of smearing a signal’s
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fluctuations (and thus degrading its spectro-temporal represen-
tation) improves speech understanding (DeVries et al., 2016;
Garadat et al., 2013; Noble et al., 2014; Schvartz-Leyzac
et al., 2017; Zhou & Pfingst, 2012). With new imaging
approaches, it may also be possible to match interaural place-
ment of CI arrays (Bernstein et al., 2021), or at least use
insight from these techniques to reallocate frequencies to elec-
trodes with similar interaural place-of-stimulation (Goupell
et al., 2022).

Differences in loudness growth or dynamic range have not
been systematically addressed in the literature. It has been
hypothesized that loudness growth differences result in
increased interaural decorrelation (Goupell, 2015; Goupell
& Litovsky, 2015), implying that resolving differences in
loudness growth could result in improvement of patient out-
comes. This is a promising avenue for future research.
Similarly, linking the automatic gain control in each ear
may improve binaural outcomes (Archer-Boyd & Carlyon,
2019; Potts et al., 2019) and reduce the occurrence of spur-
ious spatial cues represented by current clinical processors
(Gray et al., 2021). Recent strategies have been devised to
provide fine-structure ITDs, but their use yields inconsistent
benefits on spatial hearing tasks (Ausili et al., 2020;
Dennison et al., 2022; Fischer et al., 2021). Improvements
to processors resulting in coherent and consistent cues may
be most beneficial early in BiCI experience or may become
more beneficial with training.

Assessing Interaural Asymmetry
Depending on the time and equipment available to research-
ers and clinicians, it may not be possible to intensively assess
the sources of interaural asymmetry for listeners. It also
may be difficult to determine the level at which interaural
asymmetry should be assessed. One particularly helpful
trend in the literature is a systems-based approach, where
the behavioral responses (i.e., “output”) of the patient (i.e.,
“system”) are used to make assumptions about the relevant
underlying problems. One example includes measuring tem-
poral sensitivity in each ear or electrode and predicting mon-
aural or binaural outcomes (e.g., Garadat et al., 2012; Ihlefeld
et al., 2015; Zhou & Pfingst, 2012). Another example is the
various forms of the spectral ripple test, which are meant to
provide a proxy of spectro-temporal resolution and has
mainly been used to predict unilateral speech understanding
(e.g., Anderson et al., 2012; Croghan et al., 2017). Such a
task can be completed remotely with limited instructions or
within minutes in the clinic, meaning it can be cost-effective
and efficient for researchers, clinicians, and patients.

While this systems-based approach to investigate issues
with encoding is relatively straightforward, a few additional
considerations should be noted regarding top-down process-
ing. Most importantly, some listeners with BiCIs do not
demonstrate interaural asymmetries until they are given a suf-
ficiently difficult task or are stimulated in both ears

simultaneously (Goupell et al., 2016, 2018a). Measures
need to be taken to demonstrate that the issues assumed to
be associated with top-down processing are not in fact a
bottom-up problem in disguise. Assessments of contralateral
masking and interference, in which speech understanding
measured in each ear alone is compared against the speech
understanding measured following simultaneous stimulation
of both ears, provide a useful example of one such approach
to this dissociation. Finally, like the interrelated sources of
interaural asymmetry, bottom-up and top-down problems
are likely to manifest together since decoded features
depend upon encoded cues. A disproportionate decrement
in performance with no more than a slight challenge to the
listener may be indicative of top-down problems compound-
ing bottom-up problems.

Worse Ear or Degree of Asymmetry?
One important topic that has not been addressed so far is
whether poorer binaural outcomes associated with interaural
asymmetry are a result of irreconcilable differences between
ears or the worse ear acting as a limiting factor. Results from
patients are mixed, suggesting that the worse ear may be pre-
dictive of poorer sensitivity to binaural cues (Ihlefeld et al.,
2015) or that the degree of difference and worse ear are sim-
ilarly predictive (Anderson et al., 2022b). The best way to
address this problem would be to test listeners who have
all combinations of good or poor, symmetric or asymmetric
hearing outcomes. In practice, most participants in laboratory
studies are high performers, so they tend to have at least one
“good” ear. Thus, to investigate this question we conducted a
series of studies simulating interaurally symmetric and asym-
metric conditions with high and low temporal fidelity (by
varying the amplitude modulation depth, where lower
depth provides less fidelity), then measured lateralization
and speech perception. The worse ear predicted extent of lat-
eralization of envelope ITDs and results did not differ when
both ears had low temporal fidelity (Anderson, 2022), sug-
gesting that the poorer ear limits localization abilities.
Increasing interaural asymmetry and decreasing average
degree of temporal fidelity negatively affected speech out-
comes (Anderson et al., 2023), suggesting that both worse
ear and degree of asymmetry play a role. In particular, it
seems that interaural asymmetry may direct attention
toward the better ear, interfering with performance
(Anderson et al., 2023; Goupell et al., 2021). Poorly directed
attention may be facilitated by a fusion of sounds when one
or both ears have low temporal fidelity (Anderson et al.,
2019b 2022b, 2023). The degree of asymmetry in patients
with BiCIs is predictive of binaural redundancy (Figure 2
of Burg et al., 2022). The performance of the worse ear
(data not shown), in contrast, was not related to binaural
redundancy, suggesting that fusion of even interaurally
coherent speech may be affected by interaural asymmetry.
Ultimately, it seems both factors, the degree of difference
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between the ears and performance of the poorer ear, play a
role whose extent differs depending upon the stimulus
paradigm.

Challenges and Suggested Future Directions
The present review attempts to bring together research on
interaural asymmetry conducted using human or animal
behavior, physiology, and computational modeling. This
approach has strengths and weaknesses. One significant
weakness is the idea that bottom-up and top-down processing
are independent of one another and occur in distinct physio-
logical structures along the auditory pathway. As research on
the efferent auditory system develops, it is becoming increas-
ingly clear that bottom-up and top-down processing occur in
parallel, and that bottom-up processing is shaped by ongoing
top-down processing. Similarly, recordings from the binaural
brainstem suggest that even at this low level, neurons are sen-
sitive to changes rather than explicit cues (Gleiss et al., 2019;
Lingner et al., 2018). One circuit or set of circuits will not be
able to explain all of auditory or more general perceptual pro-
cessing. Thus, the framework proposed here should be
treated as a means to make predictions and devise solutions
for patients, not as a complete model of auditory perception.

One of the largest challenges associated with addressing
interaural asymmetry is that the prevalence of different kinds
of asymmetry is often unknown or ill-defined. Amain argument
in the present manuscript is that interaural asymmetry is not a
singularly dimensional spectrum from symmetric to asymmet-
ric, or a dichotomous symmetric/asymmetric state. Instead, it
represents a collection of states or continua (e.g., health of the
auditory nerve in each ear, distance between CI electrodes
and auditory nerve fibers, interaural place-of-stimulation mis-
match, degree of cortical lateralization) that generate similar
outcomes (e.g., differences in speech understanding, difficulty
using spatial cues, challenges segregating speech from noise).
These different “types” of interaural asymmetry could be
described using similar manifestations of the bottom-up and
top-down processing. A natural conclusion of such a frame-
work is that no listener has purely interaurally symmetric
hearing, supported by research showingmodest right ear advan-
tage and earedness in listeners with NH. The question that
researchers should ask instead is whether it is reasonable to
assume interaural symmetry, and if not, we hope that the the
present review can serve as a helpful guide in how to proceed.
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