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arge predictions for furanoses by
random forest regression with atom type symmetry
function

Xiaocong Wang and Jun Gao *

Furanoses that are components for many important biomolecules have complicated conformational

spaces due to the flexible ring and exo-cyclic moieties. Machine learning algorithms, which require

descriptors as structural inputs, can be used to efficiently compute conformational adaptive (CA) charges

to capture the electrostatic potential variations caused by the conformational changes in the molecular

mechanics (MM) calculations. In the present study, we introduced atom type symmetry function (ATSF)

developed based on atom centered symmetry function (ACSF) for describing conformations for

furanoses, in which atoms were categorized by atom types defined by their properties or connectivity in

classic molecular mechanics (MM) force field parameters to generate a suitable coordinate size. Random

forest regression (RFR) models with ATSF showed improvements for predicting CA charges and dipole

moments for furanoses compared to those with ACSF and atom name symmetry functions where atoms

were categorized by their unique atom names. The CA charges predicted by RFR models with ATSF

showed more comparable reproductions of the carbohydrate–water and carbohydrate–protein

interactions computed with RESP charges individually derived from QM calculations than the ensemble-

averaged atomic charge sets commonly employed in molecular mechanics force fields, suggesting that

the predicted CA charges were capable of including electrostatic variations in their dynamic charge

values. Improvements by ATSF showed that categorizing atoms by atom types introduced chemical

structural perceptions to descriptors and produced a suitable coordinate size in ATSF to capture key

structural features for furanoses. This categorizing scheme also allows ATSF to be readily adopted by

other biomolecules thanks to the broad implementations of MM force fields.
Introduction

Furanoses are essential components for the backbones of
nucleic acids and complex polysaccharides frequently found in
organisms ranging from bacteria to protozoa, fungi to plants.1

They have complicated conformational spaces as their ve-
membered ring can adopt multiple stable conformations in
addition to the spinning of their abundant exo-cyclic groups in
solution.2 These conformational variations lead to heteroge-
neous intramolecular properties, such as electrostatic poten-
tials, which affect their recognitions and interactions with other
biomolecules.3 These variations also made it difficult for clas-
sical molecular mechanics (MM) force elds to adequately
represent the electrostatic properties for furanoses, as static
atomic partial charge models are commonly employed.4 These
models, however computationally efficient, lack the accuracy to
represent the intrinsic electrostatic potential variations. Efforts
have been devoted to develop charge models that are capable of
adapting conformational variations.4–10 Approaches have been
rmatics, College of Informatics, Huazhong
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proposed and developed, yet, adoptions of these approaches
depend on their applicability and ease of use. It is also unfea-
sible to derive conformational adaptive (CA) charges duringMM
calculations directly from electrostatic potentials obtained from
resource-hogging quantum mechanics (QM) calculations.5,11,12

Therefore, it is desirable to efficiently compute QM-quality CA
charges that can be used within the classical MM framework.

Machine learning algorithms have been implemented in
calculating electrostatic potentials and provide a promising
alternative approach for computing CA charges.13–15 The accu-
racy and efficiency of machine learning algorithms critically
depend on the descriptors that are used to represent molecular
structures.16,17 Descriptors for machine learning algorithms,
unlike cartesian coordinates, are required to be invariant under
permutations of atoms, as well as translations or rotations of
the molecule, so as to represent any conformation in a unique
set of coordinates.16 These descriptors also need to describe the
key structural features of molecules with a sufficient size of
coordinates. The atom centered symmetry function18 (ACSF)
introduced by Behler and Parrinello in 2007 has become
a prominent descriptor for machine learning algorithms and
many successful implementations have been reported.19–24 ACSF
This journal is © The Royal Society of Chemistry 2020
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categorizes atoms by the number of atom types in the molecule,
which determines the size of its coordinates. Thus, when
describing furanoses and other biomolecules that usually
possess complicated conformational spaces but limited types of
chemical elements, improvements may be needed.

In the present study, we introduced atom type symmetry
function (ATSF), that categorized atoms by their atom types
dened in MM force elds3,25–27 and provided more detailed
structural descriptions, to predict CA charges with properly
trained random forest regression (RFR) models.28 Atom type is
a well-established and crucial concept embedded in common
MM force elds, in which atoms are categorized beyond
chemical elements and by their properties or connectivity. In
the furanose-specic GLYCAM force eld,3 atoms for furanoses
(Fig. 1) that belong to three chemical elements were further
categorized into eight different atom types and the size of
coordinates for ATSF increased by more than three times
comparing to that for ACSF. The Pearson correlation coeffi-
cients for predicted charge values by RFR models with ATSF
with reference to RESP charges derived from QM calculations
were all above 0.9 and increased averagely by 9% and 4%,
respectively, comparing to ACSF and atom name symmetry
functions (ANSF). In addition, the predictions of dipole
moments were improved by 43% and 48% by charges predicted
with ATSF comparing to those with ACSF and ANSF,
Fig. 1 Methyl furanosides for the present study: methyl D-arabino-
furanoside (1), methyl D-lyxofuranoside (2), methyl D-ribofuranoside
(3), and methyl D-xylofuranoside (4).

This journal is © The Royal Society of Chemistry 2020
respectively. Furthermore, the electrostatic related interactions
for furanosides, carbohydrate–water and carbohydrate–protein
interactions, computed with the CA charges predicted by RFR
models with ATSF reduced the average error by more than half
for that calculated with the static ensemble-averaged charge
models and individual RESP charges derived from QM calcu-
lations, which indicated that the predicted CA charges was
capable of including electrostatic variations in their dynamic
charge values.

Methods
Training and testing dataset formation

The training and testing datasets for RFR models were formed
by combining the samplings for the endo- and exo-cyclic
conformations for furanosides, in order to sufficiently cover
their conformational spaces. The conformations for the ve-
membered ring are determined by the endo-cyclic rotations
and can be described by the pseudorotational itinerary,29,30

where the phase angle (P) and puckering amplitude (sm) can be
calculated by the ve ring torsion angles (Fig. 2).

P ¼ tan�1 ðq2 þ q4Þ � ðq1 þ q3Þ
2q0ðsin 36� þ sin 72�Þ (1)

sm ¼ q0

cos P
(2)

In order to thoroughly sample the conformational spaces for
the furanose ring, sm was iterated from 3 to 45� at a 3� interval,
and P was from 0 to 360� at a 6� interval. A total of 900 ring
conformations were generated for each furanoside or furanose.
Unlike the intertwining endo-cyclic torsions, all exo-cyclic
Fig. 2 Pseudorotational itinerary of furanoses depicting different
Envelope (E) and Twist (T) ring conformations with associated
conformational phase angle (P) values in degrees. The inset demon-
strated the definitions of five ring torsion angles: q0 ¼ C1–C2–C3–C4,
q1 ¼ C2–C3–C4–O4, q2 ¼ C3–C4–O4–C1, q3 ¼ C4–O4–C1–C2, and
q4 ¼ O4–C1–C2–C3.
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rotations were independent from each other, so it is hardly to
systematically cover exo-cyclic conformational spaces. So, 30
combinations of randomly assigned values for all exo-cyclic
dihedral angles were created for each ring conformation, in
which 24 structures were randomly selected to construct the
training dataset, and the rest were selected to construct the
testing dataset.
Quantum mechanics (QM) calculations

All of the QM calculations were performed under the same
protocol as that in the development of furanose-specic GLY-
CAM force eld (ref) with the Gaussian 16 soware package31 to
maintain equal comparisons. Structural optimizations were
performed at the HF/6-31G* level of theory, with ve ring
torsion angles and all exo-cyclic torsion angles restrained
(Fig. 1). The electrostatic potentials were calculated on these
optimized structures at the B3LYP/cc-pVTZ level of theory. The
atomic partial charges were derived by employing the restrained
electrostatic potential (RESP) charge tting methodology with
a weak hyperbolic charge restraint weight of 0.0005.3,32 The
charge values for aliphatic hydrogen atoms were assigned to
0 by following GLYCAM force eld parameter development
philosophy.19
Atom type symmetry function

ATSF was constructed under the framework of ACSF, whose
coordinates were calculated from cartesian coordinates of
atoms.18 The cutoff function in ATSF was that same as that in
ACSF:

fc
�
Rij

� ¼
8><
>:

0:5�
�
cos

�
pRij

Rc

�
þ 1

�
for Rij #Rc

0 for Rij $Rc

(3)

with Rc set to 99 Å to include all atoms for molecules included in
this study.

Radial components of atom i were calculated via a sum of
Gaussians,

Gradial
i;J ¼

Xj in J

jsi

e�hðRij�RsÞ2 fc
�
Rij

�
(4)

in which Rs and h are both set to 1.0. Atom j is an atom in atom
types J. Please note that the atom i could be in atom type J. The
assembly of Gradial

i with different atom types constructs the
radial components in ATSF for atom i.

Angular components for atom i were constructed as:

G
angular
i;J;K ¼ 21�z

Xj in J & k in K

j;ksi

�
1þ l cos qijk

�z

� e
�h
�
Rij

2þRik
2þRjk

2
�
fc
�
Rij

�
fcðRikÞfc

�
Rjk

�
(5)

with the parameters of l ¼ 1.0, z ¼ 1.0. Atom j and k are atoms
in atom types J and K, respectively. The atom i could also be in
atom types J and K. The assembly of Gangular

i with different
combinations of atom types constructs the angular components
668 | RSC Adv., 2020, 10, 666–673
in ATSF for atom i. For each atom i in the molecule, the ATSF
coordinates can be assembled as:

Xi ¼
n
Gradial

i; AT1;/;Gradial
i;ATn;G

angular
i;AT1;AT1;/;

G
angular
i;AT1;ATn;G

angular
i;AT2;AT2;/;Gangular

i;AT2;ATn;/;Gangular
i;ATn;ATn

o
(6)

where AT stands for atom type.
The training and testing sets were generated by S ¼ {(X1,y1),

(X2,y2),/, (Xn,yn)}, where y1, y2, ., yn are the RESP derived
charges for the corresponding atoms.

The charge predictions were achieved via multiple random
forest regression (RFR) models, the sum of the predicted
charges for an individual molecule is not necessarily 0. The
corrections were achieved by spreading the discrepancy based
on the standard derivations for RFR predictions. This procedure
was adopted from ref. 33.

Random forest regression

RFR model was trained for atoms in each element using the
scikit-learn library (version 0.18.1)34 with the following param-
eters: number of trees ¼ 200, maximum depth ¼ 6, minimum
number of samples to split ¼ 6, and minimum number of
samples in leaves ¼ 6.

Molecular dynamics (MD) simulations

The initial coordinates for furanosides 1–4 (a and b) were ob-
tained from GLYCAM website (http://www.glycam.org). All
systems were solvated with TIP3P water35 using a 12 Å buffer in
a cubic box, using the LEaP module in the AMBER16 soware
package.36 Force eld valence parameters were taken from
furanose-specic parameters in GLYCAM.3 The energy mini-
mizations for these solvated furanoses were performed sepa-
rately under NVT condition (500 steps steepest descent,
followed by 24 500 steps of conjugate-gradient minimization).
Subsequently, each system was heated to 300 K over a period of
50 ps, followed by equilibration at 300 K for a further 0.5 ns
using NPT condition, with the Berendsen thermostat and
barostat37 for temperature and pressure control, respectively.
SHAKE algorithm38 was employed to constrain all covalent
bonds involving hydrogen atoms, allowing a simulation time
step of 2 fs throughout the simulations. Aer the equilibration,
production simulations were carried out with the GPU imple-
mentation39 of the PMEMD.MPI module and trajectory frames
collected at every 1 ps from the total of 300 ns. A non-bonded
cut-off of 8 Å was applied to van der Waals interactions, with
long-range electrostatics treated with the particle mesh Ewald
approximation.

Hydration free energy and protein–carbohydrate interaction
energy calculations

Hydration free energies for 1–4 (a and b) and protein–carbohy-
drate interaction energies for 3 ATP-binding cassette (ABC)
transporters with furanoses as ligands (PDB ID: 2VK2, a-D-Galf-
OH and a-D-Galf-OH as the ligands; PDB ID: 3KSM, b-D-Ribf-OH
as the ligand) were calculated with molecular mechanics-
This journal is © The Royal Society of Chemistry 2020
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generalized born surface area (MM-GBSA) method using single
trajectory approach. Monosaccharides in all systems were taken
as the ligand in the calculation. Solvent molecules and proteins
were taken as the receptors in hydration free energy and protein–
carbohydrate interaction calculations, respectively. Each MM-
GBSA calculation was performed on the 10 000 evenly extracted
structures of each solvated system with 3 different charge sets:
RESP charges individually derived from QM calculations, pre-
dicted charges by RFR models with ATSF, and the ensemble-
averaged atomic charges from GLYCAM force eld.
Results and discussion
Different atom categorizing schemes in symmetry functions

ATSF in the present study employed atom types dened in
furanose-specic GLYCAM force eld3 (Fig. 3) to divide atoms
into more groups beyond chemical elements. When categorizing
atoms by only three chemical elements, ACSF contains 9 coor-
dinates. The size of ATSF increased to 41 coordinates when cat-
egorizing atoms by a total of eight different atom types. The
descriptor needs to be sufficiently large to ensure an unambig-
uous distinction of different conformations.16 In addition, cate-
gorizing atoms by their atom types introduced structural
perceptions to the descriptor by adding information of property
or connectivity for atoms. For complete comparisons, the most
subtle categorizing scheme was also employed to generate atom
name symmetry function (ANSF), where atoms were divided by
their atom names (Fig. 3) and each single atom was in a unique
category (Fig. 3). The size of ANSF for furanoside was dramatically
increased to 276 coordinates and undoubtedly made this scheme
unpractical for efficient calculations. Remarkably, ANSF abol-
ished all chemical or structural information from the descriptor.
Performances for atom type symmetry function

The performances of ATSF, ACSF, and ANSF were, rstly, eval-
uated individually by comparing the predicted charge values to
the corresponding expected values, aka RESP values.32
Fig. 3 Atom types (left) and atom names (right) for furanosides in GLYCA
exo-cyclic carbon atoms, respectively. “Of” stands for the endo-cyclic oxy
hydroxyl groups, respectively. “H1” and “H2” stand for hydrogen atoms a
withdrawing atoms, respectively; “Ho” is for the hydrogen atoms in hydr

This journal is © The Royal Society of Chemistry 2020
Data in panel C of Fig. 4 appeared to be less scattered than
those in panel B and C, which suggested a better correlation
achieved by ATSF than ACSF and ANSF. The Pearson correlation
coefficients for the CA charges predicted with ATSF reference to
RESP charges derived from QM calculations increased averagely
by 9% and 4%, respectively, comparing to ACSF and ANSF. The
Pearson coefficients for all atoms were larger than 0.9 for those
predicted with ATSF and systematically higher than the other
two descriptors. This stronger correlation indicated RFRmodels
with ATSF were able to produce more accurate CA charges than
ACSF and ANSF. The results of linear ttings between predicted
and RESP-t charges were shown in Table 1. The slopes and
intercepts to Y-axis for predictions with ATSF were close to 1 and
0, respectively, implied charges predicted values were not
overestimated or underestimated. It is worth noting that RFR
models with ANSF, which has a substantially larger size, did not
produce higher quality predictions comparing to ATSF. This
suggested that the chemical perceptions in categorizing scheme
is crucial and increasing the size of coordinates without
chemical perceptions would not necessarily guarantee more
accurate predictions.

RFR models with ATSF have shown great potentials in pre-
dicting atomic partial charge values from different conforma-
tions of furanosides. It is also essential to demonstrate their
advances in representing the electrostatic potentials of furan-
osides by reproducing molecular dipole moments,40–44 which is
the rst order of multipole expansions of electrostatic poten-
tials and strongly depend on the conformation of the molecule.
The average absolute differences of dipole moments between
QM calculated values and the corresponding MM calculated
values with different charge models were shown in Table 2. The
differences of dipole moments computed from atomic partial
charges predicted with ATSF were 43% and 48% smaller than
those computed with ACSF and ANSF, respectively. It is worth
noting that RESP charge models has the lowest dipole moment
differences, which suggested that this charge model is appro-
priate to represent the electrostatic potential variations for
M force field. In GLYCAM force field,3 “Cf” and “Cg” are for endo- and
gen atoms; “Os” and “Oh” are for exo-cyclic oxygen atoms in ether and
ttached to a carbon atom that is bonded with one and two electron-
oxyl groups.

RSC Adv., 2020, 10, 666–673 | 669



Table 1 Linear fitsa results between atomic charges predicted with
different descriptors and their corresponding RESP charges derived
from QM calculations

Atom

ACSF ANSF ATSF

a b a b a b

CH3 1.038 �0.008 0.902 0.021 1.042 �0.009
C1 1.054 �0.020 0.931 0.026 1.047 �0.017

Fig. 4 Comparisons for predicted and the corresponding RESP charges in 1–4 (a and b). Predictions of the CA charges for carbon (black), oxygen
(red), and hydrogen (blue) atoms were performed under trained RFR models with ACSF (A), ANSF (B), and ATSF (C). The predictions were
evaluated with their Pearson coefficients for different atoms (D).

RSC Advances Paper
furanosides and be utilized as the references for RFR model
training.

So far, RFR models with ATSF demonstrated their capabil-
ities of predicting atomic partial charges with QM quality. To
further conrm the validities of ATSF and its CA charges, the
electrostatic-related interactions, carbohydrate–water and
carbohydrate–protein interactions, for furanoses computed
with predicted charges were compared to those with RESP
charges.
C2 1.068 �0.018 0.935 0.016 1.043 �0.011
C3 1.071 �0.017 0.930 0.017 1.055 �0.013
C4 1.077 �0.017 0.938 0.014 1.081 �0.018
C5 1.077 �0.017 0.934 0.015 1.034 �0.008
O1 1.036 0.014 0.924 �0.030 1.040 0.016
O2 1.063 0.038 0.907 �0.057 1.066 0.040
O3 1.096 0.059 0.886 �0.070 1.087 0.053
O4 1.151 0.065 0.886 �0.049 1.119 0.052
O5 1.051 0.030 0.911 �0.053 1.053 0.031
H2O 1.081 �0.030 0.900 0.038 1.062 �0.023
H3O 1.075 �0.027 0.882 0.045 1.087 �0.033
H5O 1.051 �0.019 0.927 0.027 1.035 �0.013

a Linear t was achieved by y ¼ a � x + b.
Performances on carbohydrate–water interaction energy
calculations

Carbohydrate–water interactions, quantied by their hydration
free energies, substantially depend on their electrostatic inter-
actions. Thus, the quality of the atomic charges can be evalu-
ated by their computed hydration free energies.33,45 In terms of
conformation adaptive charges, the validity can be tested by
comparing their computed hydration free energies to those
computed with individual RESP-t charges. Moreover, the
hydration free energy from a single solute conformation could
introduce errors.46 So, the averaged hydration free energies
670 | RSC Adv., 2020, 10, 666–673 This journal is © The Royal Society of Chemistry 2020



Table 2 Average absolute differences between QM calculated dipole moments and the corresponding MM calculated values with different
charge models for all conformations of furanosides in the testing and training data set

Charges

RFR models with

RESPACSF ANSF ATSF

h|Dipole difference|ia 0.28 � 0.23 0.31 � 0.32 0.16 � 0.16 0.04 � 0.03

a In Debye (D).

Paper RSC Advances
computed with conformational adaptive, RESP-t, and
ensemble-averaged charge sets for 100 000 structures of each
furanoside in 1–4 (a and b) extracted from explicit solvent MD
simulations were compared (Table 3). The hydration free ener-
gies calculated with CA charges predicted with ATSF are
comparable to those computed with RESP-t charges. The
difference is 0.4 kcal mol�1, which is signicantly less than that
computed from ensemble-averaged charge sets (1.0 kcal mol�1).
The differences among these calculated hydration free energies
are signicant (p-value < 0.0001), because of the large amount of
structures employed in hydration free energy calculations,
although the standard deviations are mostly over
3.0 kcal mol�1.

It is worth noting that the hydration free energies do not
include the entropic penalties, therefore, the values may be
more negative than the experimental measured values.
Table 4 MM-GBSA energies for three ABC proteins computed with
different atomic partial charge sets

Ligands

QM derived
RESP

RFR model with
ATSF

Ensemble-
averaged

Average Stdev Average Stdev Average Stdev

a-D-Galf-OH �31.7 1.9 �31.3 2.2 �31.9 2.3
b-D-Galf-OH �26.8 2.0 �27.0 2.4 �27.9 2.1
b-D-Ribf-OH �19.9 2.1 �19.6 2.3 �21.2 2.4
h|Error|i 0.3 0.9

Table 3 Hydration free energies for 1–4 (both a and b) computedwith
different atomic partial charge sets

Ensemble-
averaged

RFR model with
ATSF

QM derived
RESP

Average Stdev Average Stdev Average Stdev

1a �6.8 3.2 �8.2 3.2 �7.8 3.4
1b �6.9 3.2 �7.4 3.2 �8.0 3.3
2a �6.8 3.1 �7.9 3.1 �7.8 3.2
2b �6.5 3.0 �8.2 2.9 �7.6 3.1
3a �6.7 3.1 �7.0 3.1 �7.9 3.3
3b �6.7 3.1 �7.2 3.1 �7.4 3.2
4a �7.1 3.2 �8.5 3.2 �8.3 3.3
4b �6.9 3.2 �7.3 3.1 �7.9 3.4
h|Difference|i 1.0 0.4

This journal is © The Royal Society of Chemistry 2020
Performance on carbohydrate–protein interaction energy
calculations

Hydrogen bonding interaction is one of most popular and
crucial hydrophilic interactions between carbohydrate mole-
cules and proteins,47–49 due to the richness of hydroxyl groups
presence in the exo-cyclic moieties. Accurately representing
electrostatic potentials of carbohydrate molecules is crucial for
correctly modeling the strength of hydrogen bonds between
carbohydrate molecules and proteins. Yet, the static charge
model lacks the accuracy for representing the electrostatic
variations due to the changes from both endo- and exo-cyclic
conformations of furanoses while interacting with proteins.
Thus, the CA charge sets could improve the accuracy for
carbohydrate–protein interaction energy calculations.

The computed MM-GBSA energies for three ABC transporter
complexes with furanoses as ligands were listed in Table 4. The
h|error|i for MM-GBSA energies with CA charges predicted by
RFR models with ATSF, comparing to that calculated with RESP
charges derived from QM calculations, was only 0.3 kcal mol�1,
while that with the ensemble-averaged charges was
0.9 kcal mol�1.

The CA charge set predicted by RFR models with ATSF,
comparing to the static charge model, showed improvements
for including the electrostatic potential variations seen by
individually derived charge values from QM calculations in
their dynamic charge values. Similar to hydration free energies,
these values do not include the entropic penalties, therefore, do
not reect the results measured from experiments.
Conclusions

Atom type symmetry function (ATSF) categorized atoms by their
atom types dened by the properties and connectivity of atoms
in MM force eld, beyond chemical elements in ACSF, and
formed amore detailed structural description for furanoses that
have complicated conformational spaces but limited chemical
elements. Hence, the RFR models with ATSF produced more
accurate predictions of CA charges and dipole moments than
those with ACSF, which suggested ATSF obtained improve-
ments in representing structural information for furanoses. The
CA charge predicted by RFR models with ATSF, comparing to
the static ensemble-averaged charges, employed in computing
carbohydrate–water and carbohydrate–protein interaction
energies showed a better agreement to those computed with
individually derived RESP charges, which also demonstrated
RSC Adv., 2020, 10, 666–673 | 671
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that CA charges were able to include the electrostatic potentials
variations into the dynamic charge values.

Improvements achieved by ATSF in representing structural
information for furanoses suggested that introducing structural
perceptions to the descriptor and increasing the size of the
coordinates could improve the performance of ACSF in
describing furanoses. Furthermore, ATSF outperforming ANSF
that had a signicant larger size of coordinates but removed all
chemical or structural perceptions of atoms suggested that
categorizing atoms by atom types generated a suitable size of
coordinates that represented the key structural features for
furanoses. Additionally, this categorizing scheme endued ATSF
with the exceeding potent transferability to other biomolecules
thanks to the broad implementations of MM force elds for
biomolecules.
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