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Abstract: Terpenoids are the largest class of natural products and are essential for cell functions in
plants and their interactions with the environment. Acetyl-CoA acetyltransferase (AACT, EC2.3.1.9)
can catalyze a key initiation step of the mevalonate pathway (MVA) for terpenoid biosynthesis
and is modulated by many endogenous and external stimuli. Here, the function and expression
regulation activities of AACT in Euphorbia kansui Liou (EkAACT) were reported. Compared with
wild-type Arabidopsis, the root length, whole seedling fresh weight and growth morphology of
EkAACT-overexpressing plants were slightly improved. The transcription levels of AtAACT, AtMDC,
AtMK, AtHMGR, and AtHMGS in the MVA pathway and total triterpenoid accumulation increased
significantly in transgenic Arabidopsis. Under NaCl and PEG treatment, EkAACT-overexpressing
Arabidopsis showed a higher accumulation of total triterpenoids, higher enzyme activity of per-
oxidase (POD) and superoxide dismutase (SOD), increased root length and whole seedling fresh
weight, and a decrease in the proline content, which indicated that plant tolerance to abiotic stress
was enhanced. Thus, AACT, as the first crucial enzyme, plays a major role in the overall regulation of
the MVA pathway.

Keywords: Euphorbia kansui Liou; acetyl-CoA acetyltransferase gene (AACT); terpenoids; abiotic tolerance

1. Introduction

Terpenoids are the largest class of natural secondary metabolites and contain more
than 70,000 different molecules [1]. These molecules are synthesized in mitochondria,
plastids, nonorganellar cytoplasm, endoplasmic reticulum (ER) and the specialized vac-
uoles by the mevalonic acid (MVA) and methylerythritol-4-phosphate (MEP) pathways [2].
As vital secondary metabolites, terpenoids play important roles in many aspects of plant
life, including growth, development, metabolism, and defense against biotic and abiotic
stresses [1,3–7]. In addition, terpenoids have important economic value and are widely
used in rubber production as well as the preparation of drugs, nutraceuticals, flavors,
fragrances, pigments, agrochemicals and disinfectants [8]. In higher plants, all types of
isoprenoids are synthesized using a five-carbon (C5) skeleton as a common precursor; the
precursor is often isopentenyl diphosphate (IPP) and its double-bond isomer dimethylallyl
diphosphate (DMAPP) [9]. According to the number of five-carbon units, terpenoids are
divided into polyterpenoids, sesquiterpenoids, triterpenoids and sterols, which are syn-
thesized in the cytosolic MVA pathway, and diterpenes, tetraterpenes, and monoterpenes,
which are derived via the plastid MEP pathway [10]. The MVA pathway, which can pro-
duce antioxidant molecules, was proven to be crucial for maintaining the redox state and
increasing fitness under abiotic stress.
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In plants, the MVA biosynthesis pathway contains a series of enzymes that can cat-
alyze acetyl-coenzyme A (COA) to form corresponding terpenoids [11,12]. The cytosolic
MVA pathway starts with acetyl-CoA and progresses through the catalysis of a series of
enzymes, including AACT, 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 3-hydroxy-
3-methylglutaryl-CoA reductase (HMGR), MVA kinase (MK), phospho-MVA kinase (PMK)
and MVA diphosphate decarboxylase (MDC) [10]. Acetyl-CoA forms isopentenyl diphos-
phate (IPP), which can be converted into dimethylallyl diphosphate (DMAPP), which is
a common precursor for the synthesis of terpenes (sterols, sesquiterpenes, ubiquinones,
dolichols) [10,13]. Acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase, AACT), which
is also called synthetic thiolase and belongs to thiolase II, catalyses the condensation of two
acetyl-CoA to form acetoacetyl-CoA; this step is the first enzymatic step in the MVA biosyn-
thesis pathway [14,15]. As a vital starting enzyme, AACT has been cloned from plants
including Arabidopsis thaliana [16,17], Helianthus annuus [14,18], Hevea brasiliensis [19], Bacopa
monnieri [20], Houttuynia cordata [21], Isodon rubescens [22] and Euphorbia helioscopia [23]. In
addition, it was reported that in Ganoderma lucidum, an overexpression of the GlAACT gene
can improve the transcription of related genes in the MVA pathway and the accumulation
of triterpenes [24]. Furthermore, in Medicago sativa, the salinity tolerance was better in
MsAACT-overexpressing transgenic plants than in empty vector transformed plants, which
showed that AACT, as a vital regulatory enzyme in isoprenoid biosynthesis, is involved
in the abiotic stress adaptation [15]. Nevertheless, further studies are needed to explore
the vital regulatory function of AACT in the MVA biosynthesis pathway and adaptation of
plants to abiotic stress.

Euphorbia kansui Liou, a Chinese medicinal material in Euphorbia of Euphorbiaceae,
has important economic value [25,26]. It has been used as an herbal remedy for ascites
and cancer and has a wide spectrum of antiviral activities. Terpenoids are considered
as the major active metabolites in E. kansui, including diterpenes and triterpenes [27].
In the present study, to further explore the role of EkAACT in terpenoid biosynthesis
and plant tolerance to abiotic stresses, an AACT gene from E. kansui was cloned and
then overexpressed in wild-type (WT) Arabidopsis. By analyzing WT and transgenic
Arabidopsis under salt and drought stress, it was found that EkAACT overexpression
increased triterpene accumulation and the transcription level of triterpene biosynthesis
genes in Arabidopsis, as well as salt and drought-stress resistance. These studies provide
guidance for further analyses of the regulation of terpenoid biosynthesis and provide green
methods for improving the production of bioactive compounds.

2. Results
2.1. EkAACT Cloning and Characterization

To study the function of E. kansui thiolase II, the full-length coding sequence was
obtained using sequence-specific primers. The full-length CDS of the EkAACT gene is
1098 bp long and encodes a 365 amino acid polypeptide. The protein molecular weight is
38.28 kDa, and the isoelectric point (pI) is 6.74.

An NCBI-BLASTP search indicated that the amino acid sequence of the EkAACT
protein had high similarity with proteins from Hevea brasiliensis (XP_021656809.1, 90.80%),
Jatropha curcas (KDP29950.1, 89.61%), Manihot esculenta (XP_021629494.1, 90.50%), Euphorbia
helioscopia (KP995935.1, 80.15%), and Glycine max (XP_003545555.1, 86.18) (Figure 1a).

Thiolases in plant cells are divided into biosynthetic thiolases and degradative thi-
olases based on their functional differences [28,29]. Degradative thiolases, which are
also called 3-ketoacyl-CoA thiolases and belong to thiolase I, catalyze the β-oxidation of
fatty acids [30,31]. Biosynthetic thiolases, which are also called acetyl-CoA acetyltrans-
ferases and belong to thiolase II, catalyze the condensation of two acetyl-CoA to form
acetoacetyl-CoA [14,15]. Among them, thiolase I is located in peroxisomes, and thiolase
II is located in the cytosol [23]. Studies have shown that KAT1, KAT2 and KAT5 of Ara-
bidopsis are located in peroxisomes, belong to thiolase I and catalyze the β-oxidation of
fatty acids, ACAT1 and ACAT2 are located in the cytosol, belong to thiolase II and catalyze
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acetoacetyl-CoA formation [16]. In addition, the AACT proteins of Hevea brasiliensis and
Euphorbia helioscopia are located in the cytosol and belong to thiolase II [19,23]. To further
determine the function of EkAACT, a phylogenetic tree was constructed using the amino
acid sequence of the EkAACT protein and those of AACT proteins from the species. As
shown in Figure 1b, EkAACT was clustered into the same branch as acetyl-CoA acetyltrans-
ferases from Hevea brasiliensis, Populus trichocarpa, Arabidopsis thaliana (ACAT1 and ACAT2),
Euphorbia helioscopia, Glycine soja, Oryza sativa Japonica Group, Zea mays, and Triticum urartu,
which belong to thiolase II. Neurospora crassa OR74A (XP_324153.1), Neurospora crassa
OR74A (XP_958712.1), Arabidopsis thaliana KAT1, Arabidopsis thaliana KAT2, Arabidopsis
thaliana KAT5, and Oryza sativa Japonica Group, which belong to thiolase I, were grouped
into the same branch. These results indicated that EkAACT belongs to cytosolic thiolase II
and catalyzes two acetyl-CoA molecules to form acetoacetyl-CoA.
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Figure 1. Bioinformatics analysis of the EkAACT gene. (a), Homology analysis of the EkAACT
protein. The deduced amino acid sequences of EkAACT and AACT proteins from other species
were aligned with DNAMAN software. Dark blue background: similarity is 100%, pink background:
similarity is ≥75%, and light blue background: similarity is ≥50%. (b), Phylogenetic tree of EkAACT
homologous proteins created by MEGA-X using the maximum likelihood method. The bootstrap
value was 1000, and the branch lengths were calculated by the Poisson model.
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2.2. EkAACT Was Targeted to the Cytoplasm

To further determine the localization of EkAACT in cells, the pCAMBIA1300::35S-
EkAACT-GFP recombinant expression vector was used for transient expression in tobacco
(Nicotiana benthamiana) epidermal cells. As shown in Figure 2, compared with the positive
control in which the GFP fluorescence was distributed in both the cytoplasm and the nu-
cleus, the EkAACT-GFP fusion protein was located in the cytoplasm, which was consistent
with the results of the analysis of the phylogenetic tree.
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Figure 2. Subcellular localization of EkAACT protein in tobacco epidermal cells. Control: 1300 empty
vector transformed in tobacco epidermal cells. Bar = 40 µm.

2.3. Identification of Transgenic Arabidopsis

In order to study the function of EkAACT, Arabidopsis plants were transformed to
overexpress EkAACT. Subsequently, six different EkAACT-overexpressing transgenic lines
(T1 generation) were obtained by hygromycin (Hyg) resistance selection and named L1-L6,
respectively. To confirm that the EkAACT gene was successfully integrated into the WT
Arabidopsis genome, PCR analyses were performed by using specific primers that are
able to amplify the EkAACT gene from the transgenic Arabidopsis genome. As shown
in Figure 3, the 1098 bp bands were amplified from six different EkAACT-overexpressing
transgenic Arabidopsis lines, which was consistent with the bands amplified from the
pH7FWG0::35S-EkAACT recombinant expression vector as a template. However, no bands
were amplified in WT Arabidopsis. The results indicated that the EkAACT gene was
successfully integrated into WT in the Arabidopsis genome.

The relative expression levels of the EkAACT gene in the T2 generation of six indepen-
dent transgenic and WT Arabidopsis lines were analyzed. As shown in Figure 4, the expres-
sion level of the EkAACT gene was different in the six different EkAACT-overexpressing
transgenic lines, ranging from 4- to 40- fold compared with L1 plants. Among them, L2,
L3, L4 and L6 showed significantly higher expression levels. Compared with transgenic
Arabidopsis, WT Arabidopsis did not express the EkAACT gene. These results suggested
that the EkAACT gene was successfully transcribed in Arabidopsis.
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Figure 3. The EkAACT gene was detected in six transgenic lines. Transgenic seedling detection of
EkAACT-overexpressing Arabidopsis using PCR. Abbreviations: M: D2000 marker; N: water (negative
control); P: pH7FWG0::35S-EkAACT vector (positive control); WT: wild-type Arabidopsis; and 1–6:
L1–L6 transgenic Arabidopsis.
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Figure 4. Detection of EkAACT gene expression levels in Arabidopsis by using RT-qPCR. Expression
levels of genes were represented as the expression relative to a Line 1 that was set to 1.0. WT: wild-
type Arabidopsis; L1–L6: EkAACT-overexpressing Arabidopsis lines. All data are the mean ± SE of
three biological replicates. “**” indicates a significant difference from that of the WT at p ≤ 0.01 by
Student’s t-test.

2.4. EkAACT-Overexpressing Arabidopsis Grew Better Than WT Plants

Under normal growth conditions, the L2, L3, L6 and WT seedlings were cultured on
1/2 MS medium for 10 days. The root length and whole seedling fresh weight are shown
in Figure 5a,b. Compared with wild-type Arabidopsis, EkAACT-overexpressing transgenic
Arabidopsis had longer roots and an increase in whole seedling fresh weight. The root
length and whole seedling fresh weight of WT Arabidopsis were 1.56 cm and 1.92 mg,
respectively. Compared with WT plants, the root length and whole seedling fresh weight of
L2, L3, and L6 transgenic plants increased by approximately 21.79% and 9.20%. When the
seedlings grew for 28 days, the growth morphology of Arabidopsis changed significantly.
Transgenic plants grew better than WT plants (Figure 5c).



Plants 2022, 11, 1539 6 of 19Plants 2022, 11, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 5. Overexpression of EkAACT promotes plant growth. (a,b), Analysis of root length and 

whole seedling fresh weight in 10 days old Arabidopsis under a normal environment. Bar = 15 mm. 

(c), Photographs of four-week-old Arabidopsis under a normal environment. Bar = 30 mm. WT: 

wild-type Arabidopsis; L2, L3 and L6: transgenic Arabidopsis lines. Root length and fresh weight 

data are presented as the mean ± SE of ten biological replicates. “*” and “**” indicate a significant 

difference from that of the WT at p ≤ 0.05 and ≤0.01, respectively, by Student’s t-test. 

2.5. EkAACT Overexpression Enhanced the Expression of MVA Pathway Genes and Increased 

the Total Triterpenoid Accumulation 

Through the observation of root length, whole seedling fresh weight and other phe-

notypes, we found that EkAACT-overexpressing Arabidopsis grew better than WT plants. 

RT–qPCR was used to analyze the expression level of genes related to the MVA pathway 

in transgenic (L2, L3, and L6) and WT Arabidopsis. The results indicated that the gene 

expression levels of key enzymes, including AtAACT, AtHMGS, AtHMGR, AtMK, and 

AtMDC, in the MVA pathway were upregulated, albeit at different levels in L2, L3, and 

L6 plants compared with the WT plants (Figure 6a). In addition, the total triterpenoid 

content of transgenic and WT plants was measured. The results indicated that the total 

triterpenoid content in L2, L3, and L6 transgenic plants increased by approximately 30% 

compared with that in WT plants (Figure 6b).  

Figure 5. Overexpression of EkAACT promotes plant growth. (a,b), Analysis of root length and
whole seedling fresh weight in 10 days old Arabidopsis under a normal environment. Bar = 15 mm.
(c), Photographs of four-week-old Arabidopsis under a normal environment. Bar = 30 mm. WT: wild-
type Arabidopsis; L2, L3 and L6: transgenic Arabidopsis lines. Root length and fresh weight data are
presented as the mean ± SE of ten biological replicates. “*” and “**” indicate a significant difference
from that of the WT at p ≤ 0.05 and ≤0.01, respectively, by Student’s t-test.

2.5. EkAACT Overexpression Enhanced the Expression of MVA Pathway Genes and Increased the
Total Triterpenoid Accumulation

Through the observation of root length, whole seedling fresh weight and other phe-
notypes, we found that EkAACT-overexpressing Arabidopsis grew better than WT plants.
RT–qPCR was used to analyze the expression level of genes related to the MVA pathway
in transgenic (L2, L3, and L6) and WT Arabidopsis. The results indicated that the gene
expression levels of key enzymes, including AtAACT, AtHMGS, AtHMGR, AtMK, and
AtMDC, in the MVA pathway were upregulated, albeit at different levels in L2, L3, and L6
plants compared with the WT plants (Figure 6a). In addition, the total triterpenoid content
of transgenic and WT plants was measured. The results indicated that the total triterpenoid
content in L2, L3, and L6 transgenic plants increased by approximately 30% compared with
that in WT plants (Figure 6b).

The L2, L3, L6 and WT seedlings were cultured in a 1/2 MS medium supplemented
with 50 mM NaCl and 20% PEG6000 for 10 days. Under NaCl treatments, the root length
and whole seedling fresh weight of WT Arabidopsis were 0.63 cm and 1.1 mg, respectively,
which were approximately 59.62% and 42.71% lower than those of WT plants under normal
growth conditions. Under PEG stress treatments, the root length and whole seedling fresh
weight of WT Arabidopsis were 0.59 cm and 1.02 mg, respectively, approximately 62.18%
and 46.88% lower than those of WT plants under normal growth conditions. However, the
transgenic Arabidopsis showed a significant increase in root length and whole seedling
fresh weight under stress treatment (Figure 7a,b). Under NaCl treatment, the root length
and whole seedling fresh weight of L2, L3, and L6 transgenic plants were approximately
124.34% and 34.55% higher than those of WT plants. In addition, under PEG treatment,
the root length and whole seedling fresh weight of L2, L3, and L6 transgenic plants were



Plants 2022, 11, 1539 7 of 19

approximately 166.67% and 69.61% higher than those of WT plants. These results indicated
that the overexpression of the EkAACT gene can promote an increase in plant root length
and whole seedling fresh weight under NaCl and PEG stress treatment. After treatment
with 200 mM NaCl and 20% PEG solution for 30 days and 40 days, the morphology of the
Arabidopsis plants was observed. Compared with those under normal conditions, salt
and drought stress treatment affected the growth of both WT and EkAACT-overexpressing
Arabidopsis, but this effect was much more severe in WT Arabidopsis. When treated with
NaCl and PEG for 30 days, EkAACT-overexpressing Arabidopsis remained green; however,
the leaves of the WT plants started to turn yellow. When treated with NaCl and PEG
for 40 days, compared with transgenic Arabidopsis, the WT Arabidopsis leaves showed
more serious shrinking, which indicated that EkAACT overexpression can enhance plant
tolerance to salt and drought stress (Figure 7c).
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Figure 6. EkAACT overexpression promotes the expression of genes related to the mevalonate
pathway (MVA) and triterpene accumulation. (a), Expression level detection of related genes in the
MVA pathway under a normal growth environment. Expression levels of genes are represented as
expression relative to a WT that was set to 1.0. (b), Detection of the total triterpenoid content in a
normal growth environment. WT: wild-type Arabidopsis; L2, L3 and L6: transgenic Arabidopsis
lines. All data are the mean ± SE of three biological replicates. “*” and “**” indicate a significant
difference from that of the WT at p ≤ 0.05 and ≤0.01, respectively, by Student’s t-test.
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Figure 7. Overexpression of EkAACT causes plants to grow better under stress. (a,b) Changes of root
length and whole seedling fresh weight in 10 days old Arabidopsis grown on 1/2 MS solid medium
containing 50 mM NaCl and 20% PEG. Bar = 15 mm. (c) Photographs of four-week-old Arabidopsis
under 200 mM NaCl and 20% PEG treatment for 30 and 40 days. Bar = 30 mm. WT: wild-type
Arabidopsis; L2, L3 and L6: transgenic Arabidopsis lines. Root length and fresh weight data are
presented as the mean ± SE of ten biological replicates. “*” and “**” indicate a significant difference
from that of the WT at p ≤ 0.05 and ≤0.01, respectively, by Student’s t-test.

2.6. EkAACT Overexpression Further Enhanced Gene Expression and Total Triterpenoid
Accumulation under Abiotic Stress

In previous studies, MsAACT-overexpressing transgenic Medicago had a stronger
tolerance to salt stress than empty vector-transformed plants, which showed that AACT,
as a vital regulatory enzyme in isoprenoid biosynthesis, is involved in abiotic stress adap-
tation [15]. To further show that EkAACT overexpression can enhance plant tolerance
to salt and drought by increasing the relative expression of genes in the MVA pathway
and total triterpenoid accumulation, four-week-old transgenic (L2, L3, and L6) and WT
Arabidopsis were treated with 200 mM NaCl and 20% PEG for two weeks to simulate salt
and drought stress. Under salt and drought stress, the RT–qPCR results indicated that the
expression levels of key enzyme genes, including AtAACT, AtHMGS, AtHMGR, AtMK,
and AtMDC, in transgenic Arabidopsis were significantly higher than those in WT plants
(Figure 8a,b). In addition, the total triterpenoid contents in L2, L3, and L6 transgenic plants
were approximately 78.57% higher under NaCl treatment, and approximately higher by
49.13% under PEG treatment than in WT plants under stress treatment (Figure 8c,d). These
results indicated that EkAACT gene overexpression enhances the plant tolerance to salt and
drought stress by increasing relative gene expression and total triterpenoid accumulation.
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Figure 8. EkAACT overexpression further promotes the expression of genes related to the mevalonate
pathway (MVA) and triterpene accumulation under stress. (a,b), Expression level detection of related
genes in response to 200 mM NaCl and 20% PEG treatment. Expression levels of genes are represented
as expression relative to a WT that was set to 1.0. (c,d), Changes in the total triterpenoid contents in
response to stress treatment. WT: wild-type Arabidopsis; L2, L3 and L6: transgenic Arabidopsis lines.
All data are the mean ± SE of three biological replicates. “*” and “**” indicate a significant difference
from that of the WT at p ≤ 0.05 and ≤0.01, respectively, by Student’s t-test.

2.7. SOD and POD Gene Expression Levels and Enzyme Activities Were Increased in
EkAACT-Overexpressing Arabidopsis

Previous studies demonstrated that plants can activate a series of complex signal
transmission networks to resist abiotic stress. This activation can improve tolerance to
NaCl and drought stress by increasing SOD and POD enzyme activity to remove excess
intracellular reactive oxygen species (ROS), which can inhibit ROS-induced intracellular
component oxidation and damage [32,33]. The gene expression and enzyme activity of
SOD and POD were measured to investigate whether EkAACT-overexpressing Arabidopsis
can promote plant stress resistance to NaCl and drought. The EkAACT-overexpressing
Arabidopsis had significantly higher AtSOD and AtPOD expression than the untreated
groups (Figure 9a,b). Under normal growth conditions, the AtSOD and AtPOD enzyme
activities of WT Arabidopsis were 575.541 U·g−1FW·min−1 and 358.586 U·g−1FW·min−1,
respectively. Compared with WT plants, the AtSOD and AtPOD enzyme activities of
L2, L3, and L6 transgenic plants increased by approximately 6.87% and 10.71%, respec-
tively. Under NaCl stress, the AtSOD and AtPOD enzyme activities of WT Arabidop-
sis were 610.689 U·g−1FW·min−1 and 387.879 U·g−1FW·min−1, and those of the L2, L3,
and L6 transgenic plants increased by approximately 19.91% and 15.28%, respectively.
Under PEG stress, the AtSOD and AtPOD enzyme activities of WT Arabidopsis were
621.672 U·g−1FW·min−1 and 392.929 U·g−1FW·min−1, and those of the L2, L3, and L6
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transgenic plants increased by approximately 19.20% and 8.48%, respectively (Figure 9c,d).
These results indicated that EkAACT-overexpressing Arabidopsis can enhance POD and
SOD enzyme activities to increase abiotic stress tolerance in plants.
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Figure 9. EkAACT overexpression enhances AtSOD and AtPOD gene expression and enzyme ac-
tivities under stress. (a,b), AtSOD and AtPOD expression analysis. Expression levels of genes are
represented as the expression relative to a WT that was set to 1.0. (c,d), Identification of AtSOD
and AtPOD enzyme activities. WT: wild-type Arabidopsis; L2, L3 and L6: transgenic Arabidopsis
lines. All data are presented as the mean ± SE of three biological replicates. “*” and “**” indicate a
significant difference from that of the WT at p ≤ 0.05 and ≤0.01, respectively, by Student’s t-test.

2.8. Salt and Drought Tolerance Was Strengthened by EkAACT Overexpression

Proline is proposed to act as the main osmolyte in enhancing plant stress tolerance [34].
Proline accumulation is used as a physiological index of water shortage in plants, which
increased with the decrease in the water content in plants [33]. Under NaCl and PEG
treatment, the proline content of EkAACT transgenic Arabidopsis (L6) and wild-type plants
was measured. As shown in Figure 10, WT Arabidopsis had a significantly higher proline
content than transgenic L6. In addition, the proline content of wild-type and transgenic
L6 was lower under normal growth conditions. According to the relationship between
the proline and water content in plants, the results indicated that the water content of
EkAACT-overexpressing Arabidopsis was higher than that of wild-type under salt and
drought-stress treatments, and transgenic Arabidopsis showed stronger resistance to salt
and drought stress.
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3. Discussion

Plants can synthetize a variety of terpenoid metabolites that participate in the pro-
cess of growth and development. Terpenoid metabolites are essential for cell functions
and interactions with abiotic and biotic environments. Moreover, the ecological impor-
tance of terpenoids has gained increased attention in the development of strategies for
sustainable pest control and abiotic stress protection [35]. There are two main pathways
in plant terpenoid biosynthesis, namely the MVA pathway and MEP pathway [11]. In
the MVA pathway, the formation of mevalonate catalyzed by HMGR has been described
as the first rate-limiting step, as it is a vital synthesis step [36–38]. However, acetyl-CoA
acetyltransferase (AACT), as a key starting enzyme, was also found to play significant
roles [14]. Mutation of the Arabidopsis AtAACT2 gene showed an embryo-lethal pheno-
type, which indicated that AtAACT2 plays a significant role in isoprenoid biosynthesis [39].
Okamura et al. (2010) reported that the co-expression of nphT7 (an alternative biosynthetic
thiolase II from Streptomyces sp. strain CL190) with the HMGS and HMGR genes in
Escherichia coli demonstrated a 3.5-fold higher production of mevalonate than when only
the HMGS and HMGR genes were expressed, and this result suggests that nphT7 can be
used to significantly increase the concentration of acetoacetyl-CoA in cells [40]. Further-
more, it was found that the knockdown of AACT expression levels led to lower levels,
altered the profiles of sterols and caused a reduced expression of downstream genes en-
coding FPP synthases and sterol methyltransferase [39]. Moreover, studies have shown
that the overexpression of the GlAACT gene can also promote the transcription of related
genes in the MVA pathway and the accumulation of triterpenes in Ganoderma lucidum [24].
These studies indicated that the activity of AACT can affect the activity of other enzymes
in the MVA pathway. In this study, we showed that the overexpression of EkAACT in
Arabidopsis remarkably upregulated the gene expression levels of AtAACT and AtHMGS,
which encodes the HMG-CoA synthase at the second step, as well as AtHMGR, AtMK and
AtMDC, which, respectively, encode the first, second and last rate-limiting enzymes in
the MVA pathway (Figure 6a). Correspondingly, the gene expression level of AACT was
also found to be strongly positively correlated with the expression levels of the HMG-CoA
synthase gene [16,17]. As a result, as AACT and HMGS expression is upregulated, the con-
centration of HMG-CoA in cells increases, eventually promoting HMGR gene expression
and the conversion of HMG-CoA to mevalonate. Because HMGR is the first rate-limiting
enzyme and can affect the total speed of the whole metabolic pathway, AtMK and AtMDC
expression levels were also enhanced, and the average total triterpenoid content of L2, L3
and L6 transgenic Arabidopsis was 30% higher than that of the wild type under normal
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treatment (Figure 6b). As stated above, our results proved that EkAACT is an important
regulatory enzyme in the MVA biosynthesis pathway that can effectively increase the
expression of other related genes and promote the accumulation of bioactive compounds.

The response of plants to various environmental stresses, including drought and salt
stress, depends on the expression of key genes that can promote the synthesis and accumu-
lation of bioactive compounds, which can then enhance the ability of the plant to adapt
to stresses [41–43]. The AACT gene can positively respond to abiotic stresses such as salt
and cold stress. Under high salt environments and cold conditions, the overexpression of
the AACT (MsAACT) gene in roots and leaves can boost squalene production in Medicago,
which can enhance salt and cold tolerance [15]. To further prove that the overexpression
of EkAACT can enhance salt and drought tolerance, we treated WT and transgenic Ara-
bidopsis with NaCl and PEG. The results showed that compared with WT plants, the root
length and whole seedling fresh weight of L2, L3, and L6 transgenic plants increased by
approximately 124.34% and 34.55% under NaCl treatment and increased by approximately
166.67% and 69.61% under PEG treatment (Figure 7a,b). In addition, the leaves of wild-type
Arabidopsis showed faster yellowing, more severe shrinkage and faster death than those of
transgenic Arabidopsis (Figure 7c). By detecting the gene expression levels of key enzymes
and the total triterpenoid contents, we found that the expression levels of genes (AtAACT,
AtHMGS, AtHMGR, AtMK, and AtMDC) in the MVA pathway and the total triterpenoid
contents in EkAACT transgenic Arabidopsis were significantly higher than those in WT
plants (Figure 8). Plants have used many mechanisms for addressing biotic and abiotic
stress during their evolution. Under environmental conditions unfavorable for growth and
development, plants’ internal metabolism undergoes complex changes involving the pri-
mary and secondary metabolism. For example, the secondary metabolites and terpenoids
represent a wide variety of natural products in plants. Experiments have demonstrated that
terpene compounds are involved in plant resistance and are believed to regulate sensitivity
to biotic and abiotic stress [44,45]. In the present study, by increasing the transcription
expression level of the key enzyme AACT in the terpenoid synthesis pathway, transgenic
Arabidopsis increased the accumulation of total triterpenoids by approximately 78.57%
under NaCl treatment, and approximately 49.13% under PEG treatment (Figure 8c,d).
Consequently, the salt and drought tolerance of transgenic Arabidopsis was improved.

Under normal circumstances, physiological and other oxidative metabolic pathways
in plants are in dynamic equilibrium. Under stress conditions, a series of stress reactions
occur, resulting in the production of reactive oxygen species (ROS), mainly hydrogen
peroxide (H2O2), hydroxyl radicals (OH), and super oxygen anions (O2-), in a short pe-
riod of time [46]. Excess ROS poses a threat to plant cells and causes serious oxidative
damage such as protein degradation. Therefore, the concentration of ROS must be kept
within a certain range to be used as a signaling molecule to activate the expression of
resistance genes and defense genes, promote the synthesis of plant defensive secondary
metabolites, and enhance plant resistance to adverse environments as a way to avoid
oxidative damage [47,48]. Under stress, the ROS response and clearance mechanisms,
including enzymatic and nonenzymatic antioxidant defense mechanisms, play important
roles. The enzymatic mechanisms include several well-defined systems directly involved
in ROS removal such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD),
and ascorbic peroxidase (APX). Nonenzymatic antioxidants include hydrophilic molecules
(e.g., ascorbic), carotenoids and phenols which are the richest fat-soluble antioxidants in
terpenoids in plant cells [49]. As key enzymes, SOD and POD can remove redundant ROS
produced in plants under stress environments [50]. Therefore, the tolerance of plants to
abiotic stress is often reflected through SOD and POD activity [51,52]. In the present study,
we found that under NaCl and PEG treatment, the L2, L3 and L6 EkAACT-overexpressing
lines upregulated the expression of the AtPOD and AtSOD genes (Figure 9a,b). Moreover,
compared with WT, the AtSOD and AtPOD enzyme activities of L2, L3, and L6 transgenic
plants increased by approximately 19.91% and 15.28% under NaCl stress, and increased
by approximately 19.20% and 8.48% under PEG stress, respectively (Figure 9c,d). On
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the other hand, proline accumulation was used as a physiological index of water short-
age in plants [33]. Under NaCl and PEG treatment, the increase in free proline in vivo
EkAACT-overexpressing Arabidopsis was lower than that in WT plants (Figure 10), which
indicated that EkAACT-overexpressing Arabidopsis has a high-water content. The results
above indicated that EkAACT-overexpressing plants indeed had a stronger tolerance to
NaCl and drought stress, which also proved that EkAACT is a regulatory enzyme of
isoprenoid biosynthesis involved in abiotic stress adaptation.

4. Materials and Methods
4.1. Plant Materials

Healthy and fresh E. kansui leaves at the same vegetative growth periods were picked
in September from the Botanical Garden of Northwest University in Shaanxi Province and
used for RNA extraction in this study.

Both wild-type Arabidopsis thaliana (Arabidopsis, Brassicaceae) and EkAACT-overexpressing
transgenic lines were derived from the Columbia (Col-0) ecotype. After surface sterilization
with 75% (v/v) ethyl alcohol and 10% (v/v) HClO, the seeds were sown on 1/2 Murashige
and Skoog (MS) medium supplemented with 2% (w/v) sucrose and 0.7% (w/v) agar [33]
and grown in a 22 ◦C light incubator for 10 days. Then, the seedlings were potted in soil
and grown in a greenhouse at 22 ◦C under a 16 h light/8 h dark illumination regime as
previously described [53,54].

Nicotiana benthamiana growing in pots, were sown on nutrient soil of vermiculite:
perlite (1:1), and grown at 24–26 ◦C, with a relative humidity~55% greenhouse for a 16 h
day and 8 h night cycle [55].

4.2. Cloning and Bioinformatics Analysis of the EkAACT Gene

The coding sequence (CDS) of EkAACT was successfully cloned from E. kansui using
specific primers (Table S1) that were designed based on the EkAACT cDNA derived from
the transcriptome database of E. kansui (NCBI Sequence Read Archive database SRP126436).
First, according to the manufacturer’s instructions, total RNA was extracted from the fresh
leaves of E. kansui using the Plant RNA Mini Kit (Omega, Norcross, GA, USA) and then
reverse-transcribed into cDNA using oligo (dT) 18 and 5×TRUE Reaction Mix (Aidlab,
Beijing, China). PCR amplifications were performed in a 25 µL final reaction volume using
the above cDNA template by 5×PrimerSTAR HS DNA Polymerase (TaKaRa, Dalian, China)
with an initial denaturation at 95 ◦C for 3 min, followed by 35 cycles at 95 ◦C for 30 s, 60 ◦C
for 30 s, and 72 ◦C for 1 min, and a final extension at 72 ◦C for 10 min.

The homologous coding sequence of the EkAACT gene was searched and analyzed
on the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.
nlm.nih.gov/, accessed on 15 May 2021) using online BLAST tools. The protein information
(isoelectric point, molecular weight) of EkAACT was predicted by the ProtParam tool
at the ExPASy website (https://web.expasy.org/protparam/, accessed on 15 May 2021).
The deduced amino acid sequences of AACT proteins were used for a multiple sequence
alignment analysis, which was performed with DNAMAN 6.0 software. A phylogenetic
tree of the EkAACT protein and AACT proteins from other species was built with MEGA-X
software version 10.2.6 by using the neighbor joining (NJ) method [56].

4.3. Subcellular Localization of EkAACT

The coding sequence (CDS) of EkAACT and GFP were inserted into the pCAM-
BIA1300 expression vector between KpnI and SacI restriction sites to generate the pCAM-
BIA1300::35S-EkAACT-GFP recombinant expression vector. The pCAMBIA1300::35S-GFP
vector and pCAMBIA1300 empty vector were used in this study as a positive and negative
control, respectively. Subsequently, the recombinant plasmids were transformed into the
Agrobacterium tumefaciens strain GV3101 cells to infect tobacco epidermal cells, as described
previously [57]. After 72 h of transient expression, the GFP fluorescence was recorded using
a confocal microscope (Olympus, FV10-MCPUS) at 488 nm excitation.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
https://web.expasy.org/protparam/
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4.4. Obtaining of EkAACT Transgenic Arabidopsis and Analysing of Root Length, Whole Seedling
Fresh Weight and Other Phenotypes

The pH7FWG0::35S-EkAACT recombinant expression vector (Figure 11) was trans-
formed into Agrobacterium tumefaciens strain GV3101 cells using the freeze–thaw method;
these cells were then used to infect wild-type Arabidopsis according to previously pub-
lished methods [58]. Positive transgenic seedlings were screened on 1/2 MS plates with
added hygromycin (Hyg; 25 mg/L) and were confirmed by PCR in which a 1098 bp frag-
ment of EkAACT was amplified from the transgenic Arabidopsis genome using specific
primers (Table S1). Then, the T3 generation seedlings were grown vertically for 10 days
under 16 h light/8 h dark conditions at 22 ◦C and subsequently used to analyze root length
and whole seedling fresh weight. Four-week-old T3 generation seedlings grown in pots
were used to observe phenotypes.
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Streptomyces hygroscopic gene; and EkAACT, Euphorbia kansui acetyl-CoA acetyltransferase gene.

4.5. Assay of Related Gene Expression and Total Triterpenoid Contents in Transgenic Arabidopsis

Four-week-old WT and transgenic OEAACT-2, OEAACT-3, and OEAACT-6 Arabidop-
sis lines were used to analyze the expression levels of related genes in the triterpenoid
biosynthesis pathway with the primers listed in Table S1. According to the manufacturer’s
instructions, real-time qPCR was performed using SYBR Green qPCR MasterMix (Tiangen
Biotech, Beijing, China), and the expression levels were calculated and analyzed with RT–
qPCR using the 2DDCT method described by Livak and Schmittgen (2001) [59]. The gene
Actin 8 from Arabidopsis served as an endogenous control in the RT–qPCR experiment.

To analyze the total triterpenoid content, four-week-old WT and transgenic Arabidop-
sis seedlings were harvested to determine the total triterpenoid content with a colorimetric
method as described previously [60]. Fresh Arabidopsis seedlings (0.4 g) were ground in
liquid nitrogen using a mortar and pestle, extracted for 40 min with an ultrasonic wave
(60 ◦C, 40 kHz) after adding 12 mL of 60% ethanol and then centrifuged at 10,000× g for
10 min. The supernatant was filtered and collected for testing. One milliliter of filtered
solvent was evaporated in boiling water, covered and mixed after adding 0.4 mL of 5%
vanillin-glacial acetic acid (5 g/100 mL) and 1.6 mL of perchloric acid; then, the mixture
was hydrolyzed at 65 ◦C for 20 min. Eight milliliters of acetic acid was added after cooling
the solution. The Oleanolic acid absorbency was measured with an ultraviolet light spec-
trophotometer at 550 nm, and a mixture of 0.4 mL of 5% vanillin-glacial acetic acid, 1.6 mL
of perchloric acid and 8 mL of acetic acid was used as a blank control. The content of the
total triterpenoids was calculated according to the Oleanolic acid standard curve.

4.6. Analysis of the Root Length, Whole Seedling Fresh Weight and Phenotypes of Transgenic
Arabidopsis under Salt and Drought Treatments

The T3 generation seeds were sown on a 1/2 MS solid medium containing 50 mM NaCl
and 20% PEG. After incubation at 4 ◦C in the dark for three days, the seed dormancy was
broken. Then, the seedlings were grown vertically for 10 days at 22 ◦C in a light incubator
and used to analyze root length and whole seedling fresh weight. For the phenotypic
analysis, four-week-old transgenic and WT Arabidopsis plants were treated with 200 mM
NaCl and 20% PEG solution once every four days for thirty and forty days, and then the
growth status was recorded and imaged.
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4.7. Assay of Gene Expression Level and Total Triterpenoid Content in Transgenic Arabidopsis
under Salt and Drought Treatment

The four-week-old WT and transgenic OEAACT-2, OEAACT-3, and OEAACT-6 Ara-
bidopsis lines were irrigated using 200 mM NaCl and 20% PEG once every four days
for two weeks [33]. Assays of gene expression levels and total triterpenoid contents in
transgenic Arabidopsis were performed as described above.

4.8. Expression Analysis and SOD and POD Enzyme Activity Detection under Salt and
Drought Treatment

Four-week-old WT and transgenic seedlings treated as described above were used to
measure the gene expression levels and activities of the SOD and POD enzymes. Transgenic
and WT Arabidopsis seedlings treated with water were used as the control. According to
the manufacturer’s instructions, the SOD and POD enzyme activities were measured by
using the Total Superoxide Dismutase (T-SOD) Test Kit A001-1 (Jiancheng, Nanjing, China)
and the peroxidase POD kit A084-3 (Jiancheng, Nanjing, China), respectively. The SOD
and POD enzyme activities in the test sample were obtained using the following formula:

SOD activity =
control(OD550) − determination(OD550)

control(OD550nm)

÷ 50% × total volume of reaction solution
sampling volume

÷ fresh weight of tissue
homogenate volume

POD activity =
control(OD420)− determination(OD420)

12 × colorimetric light path

× total volume of reaction solution
sampling volume

÷ reaction time

÷ fresh weight of tissue
homogenate volume

4.9. Proline Content Detection under Salt and Drought Treatment

Four-week-old WT and transgenic seedlings treated as described above were used
to measure the proline content. The extraction and measurement of the free proline con-
tent were performed according to a previously described method [33,61]. The proline
concentration was calculated according to a standard curve.

4.10. Statistical Analysis

Statistical differences between WT and transgenic plants under different treatments
were analyzed using a two-tailed Student’s t-test with SPSS version 19.0 software. All trials
were carried out in triplicate, and values are displayed as the mean ± standard error (SE).
“*” and “**” indicate a significant difference at p ≤ 0.05 and ≤0.01, respectively.

5. Conclusions

EkAACT, a key initiation enzyme in the biosynthetic pathway of terpenoids, is very
important for plant growth and development and plant resistance to external adverse
environments. EkAACT overexpression can upregulate the expression of downstream genes
to varying degrees to increase the accumulation of total triterpenoids. The triterpenoids
accumulated in plants promote the activity of SOD and POD, which is consistent with
previous studies [62], and thereby enhances plant tolerance to abiotic stress (Figure 12).
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