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Abstract

The regulatory mechanisms of physical activity are postulated to include environmental and 

biological/genetic factors. In particular, the sex steroids appear to have profound effects on wheel 

running in rodents. The purpose of this project was to investigate the effects of 17β-estradiol and 

testosterone on wheel running distance, duration, and speed in male and female C57BL/6J mice. 

The mice (N=46) were provided free access to running wheels interfaced with computers to track 

daily running distance, duration, and speed. Activity was assessed at baseline in intact mice, after 

surgical gonadectomy, and after replacement with either 17β-estradiol or testosterone. Upon 

removal of the gonads, physical activity levels were significantly reduced in both males and 

females. Distance (10–30% of baseline) and duration (20–47% of baseline) measures were most 

affected by the loss of endogenous steroids, while running speed (60–77% of baseline) though 

significantly reduced-decreased by a much lower magnitude. Testosterone replacement fully 

recovered running distance, duration, and speed to pre-surgical levels in both sexes (100% of 

baseline). Distance (30–42% of baseline) and duration (43–47% of baseline) were partially 

recovered by 17β-estradiol, but not to baseline levels. Speed (100% of baseline) was fully 

recovered by 17β-estradiol replacement in males and females. This study suggests that physical 

activity in mice is affected by endogenous steroids and can be altered by exogenous steroid 

replacement. The differences in the recovery abilities of 17β-estradiol and testosterone suggest that 
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both estrogenic and androgenic pathways may be involved to variable degrees in activity 

regulation.

Keywords

Sex hormones; Physical activity; 17β-Estradiol; Testosterone

Introduction

Physical inactivity enhances the risk of many diseases including obesity, diabetes, many 

types of cancer, and heart disease [1]. The US health care system is excessively burdened by 

hypokinetic related diseases, resulting in reduction in service and care. Furthermore, quality 

of life parameters are significantly degraded as inactivity induced diseases progress. To 

understand the mechanisms inducing physical inactivity within the human population, 

efforts to elucidate the biological and genetic factors that alter either the motivation or 

ability to partake in increased activity are necessary.

The sex steroids have previously been shown to influence physical activity in rodents and 

may be important biological factors regulating activity levels. Gorzek et al. [2] altered 17β-

estradiol levels in young female mice by surgically removing their ovaries followed by 

replacement in a capsulated form. The study showed a significant decrease in voluntary 

wheel running distance following ovariectomy and a recovery back to pre-surgery levels 

when capsulated 17β-estradiol was administered. A similar response has been shown in male 

rats after castration [3]. Several other studies report comparable effects in various rodent 

species [4–8]; however, with the exception of the study by Gorzek et al. [2], these studies 

were conducted in the 1920s prior to the discovery and purification of many of the 

chemicals involved in activity regulation. The results from these studies, though unique and 

novel for the early parts of the 20th century, are outdated and require revision using newly 

available delivery techniques, measurement apparatuses, and purified steroid samples.

In a seminal study, Roy and Wade [9] administered dihydrotestosterone propionate, a non-

aromatizable form of testosterone, to castrated male rats and found no significant change in 

activity levels suggesting that an estrogen-aromatase dependent mechanism was responsible 

for activity regulation by the sex steroids. Additionally, using estrogen receptor α (ERα) and 

β (ERβ) knock-out mice, Ogawa et al. [10] demonstrated alterations in wheel running via 

ERα, but not ERβ pathways. Finally, it has been hypothesized that changes to activity in 

murine systems due to changes in sex steroid levels may be due in part to undiscovered non-

genomic effects and/or intricate interactions between estrogens, ERα, and dopaminergic 

neurons [11].

The purpose of this study was to systematically remove and replace both 17β-estradiol and 

testosterone in male and female mice allowing comparisons to be made between the steroids 

and sexes in the regulation of running wheel activity. Alteration in running distance or 

number of wheel revolutions has been the flagship measure defining physical activity levels 

in mouse models [2–3,5–8,12–14]; newer techniques now allow running duration and speed 

to be quantified. Thus, a secondary purpose of this study was to evaluate the changes in 
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running distance, duration, and speed in a murine model of physical activity under minimal 

and supra-physiological levels of circulating sex steroids.

Materials and Methods

Animals

This project conformed to standards of humane animal care and received approval from the 

UNC Charlotte Institutional Animal Care and Use Committee prior to initiation. C57BL/6J 

inbred mice (Jackson Laboratory, Bar Harbor, ME) were used in this study due to their 

prevalent use in the scientific literature and because of their genetic homogeneity. Twenty-

three male and 23 female mice were initially used in this study; however, five mice (male=1; 

female=4) showed signs of distress following the surgical gonadectomy procedures and 

were euthanized for humane purposes resulting in a total cohort of 41 animals for the 

remainder of the study. Prior to the start of this project, mice were group housed three to 

four per cage until they reached approximately 9 weeks of age. The mice were then 

individually housed and provided unlimited access to running wheels for the duration of the 

study. Whereas mice reach their activity zenith between 9 and 12 weeks of age [15] this 

study encompassed the most active parts of the lifespan. Through the entirety of the study, 

the mice were housed under a 12:12hr light: dark cycle initiating daily at 6am. Free access to 

water and standard mouse chow (Harlan Teklad, Madison, WI) was provided throughout the 

study. The chow provided to the mice during this study was not phytoestrogen-free. Several 

authors [16–20] have shown that phytoestrogens do not increase activity in gonadectomized 

mice; therefore the use of phytoestrogen-free food did not affect activity levels in this study.

Experimental procedures

The timeline for this project is displayed in Figure 1. Each mouse was randomly assigned to 

either an experimental group or a control group. This random assignment was stratified by 

sex and by the initial housing scheme in order to ensure that previous group housing effects 

would be minimized. After separation into individual cages, each mouse was supplied a 

running wheel. Wheel running distance, duration, and speed represented physical activity 

levels and were monitored under three experimental treatments including at baseline, after 

gonadectomy, and with supraphysiological steroid replacement (detailed below).

After an initial seven-day period to assess baseline wheel running, gonadectomy surgeries 

(detailed below) were performed to reduce circulating steroid levels. The control groups 

received sham surgeries. A 10-day recovery period, without wheels, allowed the surgical 

wounds to heal and remaining circulating steroids to clear from the system. After this 

recovery period, the wheels were replaced in the cages. Wheel running activity was then 

tracked for an additional seven days.

Next, the implant surgeries were completed and followed by two days of recovery. Activity 

was monitored for seven days. Silastic capsules (detailed below) containing 17β-estradiol 

were implanted in eight females and nine males. Silastic capsules containing testosterone 

were implanted in eight females and ten males. The animals in the control groups were 

given empty implants. The two-day recovery period allowed the animals to recover from 
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surgical wounds and the silastic implants to deliver steroid into the bloodstream [21]. After 

recovery, the mice were re-exposed to running wheels and their physical activity levels were 

monitored for seven days. At the end of each seven-day data collection period, body masses 

and percentage body fat measures were completed. A PIXImus 2.10 (Lunar, Madison, WI) 

was used to collect the percentage body fat measurements via dual energy x-ray 

absorptiometry.

Measurement of wheel-running activity

Physical activity was measured by determining daily distance, duration, and speed of wheel 

running using standard protocols [22,23]. In brief, running wheels were mounted to the cage 

tops of standard rat cages and were equipped with a cycling computer (BC500, Sigma Sport, 

Batavia, IL) to record running distance and duration. Running wheels had a 450 mm 

circumference and a 40 mm wide, solid running surface. Running distance and duration data 

were collected on a daily basis in the morning and average daily running speed was 

calculated from the corresponding distance and duration measures. The sensor and magnet 

alignment and freeness of the wheel were checked daily and adjusted as needed.

Surgical procedures

Twenty males and twenty females received orchidectomies or ovariectomies. The remaining 

six mice (3 males; 3 females) acted as control animals and underwent sham surgical 

procedures. A preemptive dose (0.05 mg·kg−1) of buprenorphine was administered via 

intraperitoneal injection approximately 30 minutes prior to the gonadectomy procedures. All 

procedures were performed under light isoflurane anesthesia with a 300 ml·min−1 oxygen 

flow rate. Incisions were made under sterile conditions (10% betadine followed by 70% 

alcohol) with sterile surgical tools.

The gonadectomy surgery performed depended upon the sex of the mouse. Orchidectomy 

surgeries were preformed on the male mice and were initiated by making a small access 

incision in the skin directly proximal to the scrotal sac. Additional incisions were made in 

the fascia on either side of the scrotal sac. Slight pressure was applied just above the incision 

sites to expose the testes. Both the testes and epididymis were excised and discarded. The 

incision wound in the skin was closed with a surgical staple. Bilateral ovariectomies were 

preformed on the female mice. A small incision was made in the skin directly above the 

lumbar region. A small pocket was developed between the skin and muscle to allow 

unrestricted access to the animal’s dorsolateral region. Small incisions were made in the 

fascia approximately 5 mm on either side of the spine just proximal to visible white fatty 

tissue. Each ovary was exposed and excised. The skin wound was closed with a surgical 

staple. The sham procedures performed on the control animals were identical to the 

procedures described above minus the excision of the sex organs.

Replacement procedures

Two sets of implants were developed to release sex steroids into the bloodstream of the mice 

based on diffusion. The silastic implants were produced similar to the technique of Cohen 

and Milligan [21], except that dry powder without arachis oil was packed into silastic 

tubing. A 10 mm section of the silastic tubing (Dow Corning, Midland, MI) with an outer 
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diameter of 2.16 mm and inner diameter of 1.02 mm was packed with either powder 

testosterone or powder 17β-estradiol (Sigma-Aldrich, St. Louis, MO). The ends of the tubing 

were covered with a small bead of weatherproof silicone glue. Each implant was washed in 

70% alcohol for one minute and rinsed in deionized water. After washing, the implant was 

patted dry and stored in Eppendorf tubes at room temperature under dark, dry conditions. 

The implants for the control animals were prepared in the same way, but were left empty. 

Surgeries to implant silastic capsules to replace the sex steroids were preformed during the 

later stages of this project. A small incision was made on the lateral aspect of the neck. A 

cavity about 15 mm in depth and width was developed between the skin and muscle tissue. 

Forceps were used to insert a 10 mm long silastic implant into the cavity. The incision 

wound was closed with a surgical staple.

Sex steroid assays

The current project was performed in conjunction with two other related projects. Blood 

samples were taken on regular two week intervals during the studies and at the end of each 

project. Blood samples taken during the project were completed on live animals. The mice 

were immobilized in a decapicone bag with slots for the hind limbs. The medial aspects of 

the hind limbs were cleaned and blood was sampled from the saphenous vein via 

venipuncture. Plasma was retrieved after cold centrifugation and individual samples (n=3) 

from each experimental condition were pooled. The blood sampled at the end of experiment 

was taken directly from the inferior vena cava. These samples were allowed to clot at room 

temperature and were then centrifuged. The serum was also pooled (n=3) based on common 

inclusion in a given experimental condition. The pooled samples were extracted in ethyl 

acetate (Sigma Aldrich, St. Louis, MO) that was then evaporated. The residue was re-

suspended in steroid free serum (IBL America, Minneapolis, MN).

Testosterone (ng·ml−1) and 17β-estradiol (pg·ml−1) was measured via ELISA (IBL America, 

Minneapolis, MN) per the manufacturer’s instructions. The data were assessed for errors and 

outliers and adjusted accordingly. Data points with high variation between duplicate 

measures and considerable deviation from the condition mean were eliminated from 

analysis. Unfortunately, viable blood samples were not obtained from the female cohort, but 

vaginal smears and inspection of the uterine horns were completed to evaluate the 

effectiveness of each experimental intervention.

Statistical analysis

Distance, duration, and speed were averaged for seven days per experimental treatment (i.e. 

baseline, gonadectomized, and replaced). Unpaired-sample t-tests were utilized to evaluate 

the overall mean differences attributable to sex. Separate two-way (group by treatment) 

analysis of variance (ANOVA) calculations were used to assess differences between the 

treatment levels for each physical activity variable. A three-way ANOVA was used to 

compare the body composition measures between groups, sexes, and experimental periods. 

Tukey’s HSD post-hoc tests were used if the main effects or interactions from the initial 

ANOVA reached significance. The alpha value was set a priori to 0.05.
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Results

Male mice

While no difference was noted between the treatment groups during the baseline period (i.e. 

before gonadectomy), physical activity patterns of the male mice were markedly altered by 

removal and replacement of the sex steroids (Figure 2). After orchidectomy, both the 

testosterone and 17β-estradiol groups ran significantly less (10% of baseline, p<0.05) than 

the sham group and compared to baseline measurements. Replacement of testosterone 

recovered the activity pattern back to baseline and sham levels (90% of baseline). 

Replacement of 17β-estradiol partially recovered running distance (31% of baseline), but the 

distance remained significantly less (p<0.05) than baseline and sham values. Wheel running 

duration mirrored the distance results. At baseline, running durations were similar among 

the different experimental groups. Orchidectomy significantly reduced (19% of baseline) 

daily running duration compared to the sham group and baseline values (p<0.05). 

Testosterone replacement recovered duration to baseline levels (97% of baseline) while 17β-

estradiol replacement failed to recover running duration to baseline levels (44% of baseline). 

Average wheel running speed was significantly influenced (59% of baseline) by sex gland 

removal (p<0.001) and recovered to near baseline after replacement. Running speed was 

significantly recovered during testosterone replacement (93% of baseline). 17β-estradiol 

replacement increased running speed to near baseline levels (74% of baseline), but did not 

recover running speed by the same magnitude as testosterone replacement.

Female mice

Without regard to the steroidal or surgical conditions of the mice (all female data points 

compared to all male data points), the females ran farther (t=3.87; p<0.001), longer (t=4.06; 

p<0.001), and faster (t=2.24; p<0.05) than their male counterparts. However, similar to the 

males, removal and replacement of the sex steroids altered the physical activity patterns of 

the female mice (Figure 3). The female mice did not show differences in the running pattern 

among the experimental groups at baseline. As in the male mice, both the surgical and 

replacement interventions influenced running distances. After ovariectomy, wheel running 

distance was partially reduced (31% of baseline, p<0.05); running activity was reduced less 

in females than males after surgery. Administration of testosterone fully recovered running 

distance (114% of baseline), while replacement of 17β-estradiol only slightly recovered 

running distance (43% of baseline). After removal of the ovaries, running duration was 

significantly reduced (37% of baseline, p<0.05). Testosterone increased running time to the 

highest levels recorded during the experiment (103% of baseline). After replacement of 17β-

estradiol, wheel running duration remained significantly different compared to baseline 

values (46% of baseline, p<0.05). Running speed was significantly reduced after removing 

the ovaries (79% of baseline, p<0.05) in the 17β-estradiol treatment group, but not in the 

testosterone group (85% of baseline). Testosterone administration increased (107% of 

baseline) running speed slightly above the baseline and sham values. Replacement with 17β-

estradiol slightly (86% of baseline) increased running speed.
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Body composition

The body mass (g) and body fat (%) measures are summarized in Table 1. The body masses 

varied between sexes and across the experimental periods. Males (25.1 ± 1.9) weighed 

significantly more than females (20.9 ± 2.0) throughout the study. The body mass increased 

significantly across all three periods (baseline: 21.8 ± 2.9; after gonadectomy: 22.5 ± 2.3; 

with replacement: 25.0 ± 2.6). The percentage of body fat was also altered across 

experimental periods; percentage body fat was significantly lower during replacement 

(11.14 ± 0.90) compared to baseline (14.13 ± 2.04) and gonadectomy (13.11 ± 1.20).

Implant efficacy

The functionality of silastic implants to deliver sex steroids in rodents has been previously 

shown and is a common technique in the endocrinology literature [18,21,24–28]. Direct 

measurement of sex steroid blood plasma levels in the mice observed during study is 

difficult due to the necessary volume restrictions placed on survival blood draw techniques. 

Viable blood samples were obtained from male mice and ELISA data were summarized in 

Table 2. The function of the implants and surgical success were confirmed via several direct 

observations in the female mice. First, the female mice receiving implants presented with 

visibly larger uterine horns when compared to control animals, suggesting circulating 

steroids were present in these mice [29]. Secondly, the content of vaginal smears taken from 

individuals with steroid implants, were dominated by the presence of cornified epithelial 

cells, which also are indicative of estrogen replacement [29]. Thirdly, the vaginal content of 

the mice after gonadectomy, but prior to implantation of silastic capsules was void of 

cellular debris. Thus, the successful use of silastic implants by past researchers to deliver 

steroid compounds to rodents [21] and the direct observations made during this study 

suggest effective delivery of 17β-estradiol and testosterone to the present cohort of mice.

In addition to the aforementioned observations, semi-quantitative measures of steroid release 

were made. Each implant contained approximately 3600 µg of powder steroid prior to 

placement in a mouse. Accurate post usage measurement of steroid containing devices is 

difficult due to the absorption of extraneous bodily fluids as the steroid moves into 

circulation. With the use of the current method of steroid delivery it was evident through 

direct observation that during the seven day period approximately half (1800 µg) of the 

powder had exited the implant upon retrieval of the capsule from the mice. Based on these 

observations it was estimated that between 200 and 300 µg was released from the capsules 

per day over the seven-day period. Comparing these data to the data of Cohen and Milligan 

[21], the capsules used in this study induced supraphysiological levels of the steroid in 

circulation as these authors demonstrated a five-fold increase in vaginal smear response and 

a nine-fold increase in uterine weight after an eight day exposure to silastic capsules 

containing 17β-estradiol (100 µg·ml−1). This method of steroid delivery was chosen to 

ensure adequate delivery of the steroids into the blood and the tissues involved in activity 

regulation. It has previously been shown that the blood plasma levels of the sex steroids are 

not equal to the levels of the steroids found in other tissue areas including the brain [30].
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Discussion

In this study, running distance, duration, and speed were significantly reduced following 

surgical removal of the gonads in male and female C57BL/6J inbred mice. After the 

diminution of wheel running activity, attempts to recover activity levels via exogenous 

testosterone and 17β-estradiol produced variable magnitudes of recovery. Testosterone’s 

propensity to boost the activity pattern in mice to normal levels after gonadectomy (101% of 

baseline; average across all wheel running characteristics) was evident in both males and 

females, surprising given the limited and contradictory [9] literature available regarding 

testosterone replacement. As surprising, were the somewhat limited effects of administered 

17β-estradiol which resulted in only partial recovery of the activity patterns of both sexes 

(54% of baseline; average across all wheel running characteristics). Interestingly, the present 

study indicates that both testosterone and 17β-estradiol influenced activity primarily by 

modulating running distance and duration as opposed to speed. Thus, while administration 

of estrogens has been shown previously to recover activity levels to some extent [2], these 

are the first data to suggest an equal or higher activity recovery level with testosterone 

administration.

Running wheel activity

This study evaluated physical activity patterns as a multifaceted character because running 

duration and speed have not been investigated in the previous sex steroid related literature. 

These physical activity characteristics have been suggested to contain a significant genetic 

component [31,32] but the mechanisms are yet to be fully delineated. Given that the 

treatment we used was replacement of the sex steroids, the design of the present study 

allowed for further understanding of the interactions of the sex steroids and these physical 

activity characteristics. The novel aspect of the current study is that it examined both sexes 

under individual influences of both an estrogenic and androgenic compound via 

gonadectomy and replacement procedures.

The majority of activity studies present in the literature have used number of wheel 

revolutions or running distance (revolutions multiplied by wheel circumference) to evaluate 

changes to physical activity patterns and have mostly reintroduced estrogen analogs after 

sex gland removal. Gorzek et al. [2], who observed a decrease from roughly 9.0 km·day−1 to 

less than 1.0 km·day−1 in a group of female C57BL/6J mice after ovariectomy and Hoskins, 

in 1925 [5] who observed a decrease from 15,142 rev·day−1 (≈ 14.6 km·day−1) in normal 

male rats to 3,283 rev·day−1 (≈ 3.2 km·day−1) in castrated male rats are just two examples 

of studies that have observed decreases in activity with removal of the sex steroids.

The preponderance of literature in this area has investigated the effect of estrogenic 

replacement on wheel running with some variability in post-surgical recovery of activity. 

Most recently, Gorzek et al. [2] observed recovery of wheel running activity to levels 

observed in control mice (≈ 85% compared to shams) of running distance in female mice 

with administered 17β-estradiol. Durrant [13] fed ovariectomized white rats a diet of 

glycerine prepared ovarian extracts and reported no effects on wheel revolution number 

suggesting limits to activity recovery with oral administration of steroids. Wang et al. [3] 

demonstrated a robust increase from less than 1,000 rev·day−1 to between 6,000 and 8,000 
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rev·day−1 in castrated male rats treated with ovarian tissue grafts from female littermates. 

This response equated to a 50–100% recovery compared to intact control animals. Bugbee 

and Simond [7] found 100% of wheel revolutions were recoverable with repeated injections 

of ovarian follicular fluid, but noted that when the dosage was tripled, additional 

improvements in activity were not observed. The designs and age of past experiments have 

made it difficult to determine dose responses and thus, it is unclear how the estrogen 

replacement dosages used in previous literature compare to that used in the current study. 

However, the various estrogen replacement protocols in the literature have resulted in a 50–

100% recovery rate for activity with the lower recovery rates reported by these studies 

[2,3,7,13] similar to those observed in the present study.

Potential androgenic effects

There are few studies regarding the androgenic influences on activity patterns in rodents 

available for comparison with the results of the current study. Before the discovery of 

testosterone, Hoskins [6] grafted testicular tissue into castrated rats, but did not observe 

changes in their activity patterns. In a similar study, Richter and Wislocki [33] used a more 

elaborate technique to introduce testicular grafts into male and female rats. The authors 

found a greater number of wheel revolutions in several of the animals and upon further 

histological investigations suggested that successful transplantation of the grafted tissue in 

most animals resulted in running at higher levels. Much later, Roy and Wade [9] 

investigated the effects of aromatizable testosterone propionate and found increased activity 

(from 2 km·day−1 to 4 km·day−1) in castrated male rats. To our knowledge, the data in the 

current study represent the first data available regarding the effect of testosterone 

replacement on activity patterns in both male and female mice and suggests that testosterone 

may play a larger role in regulating daily activity than previously suggested. Thus, our 

results suggest a broader picture of physical activity regulation by the sex steroids that also 

includes a yet to be outlined androgenic effect.

There are three lines of evidence commonly reported to support involvement of estrogen 

rather than testosterone compounds as the primary activity regulator in rodents. First, several 

experiments have shown a variable increase in activity in both male and female rodents 

when estrogenic compounds are delivered through a variety of administrative techniques [2–

4,7,12,14,34–38]. Second, in studies of knockout mice of both sexes, Ogawa et al. [10] 

observed that activity levels were dependent upon an interaction between an estrogenic 

compound and estrogen receptor α. In their study, no differences in activity were seen after 

implantation of β-estradiol 3-benzoate in animals lacking the α isoform of the estrogen 

receptor. Third and most notable, Roy and Wade [9] observed increased activity patterns 

only with the administration of testosterone propionate, an aromatizable androgen and not 

with administration of dihydrotestosterone propionate, a non-aromatizable androgen in 

castrated rats [9].

The mice in the present study that received 17β-estradiol capsules after gonadectomy would 

have elevated levels of the estrogens alone (Figure 4). Since the estrogens are not converted 

to testosterone, very little testosterone would be present in these mice. The mice receiving 

testosterone implants would fall into one of three categories regarding steroid levels in 
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general circulation; 1) only estrogens are present (complete conversion of testosterone to 

estrogens via aromatization; Figure 4, panel a), 2) some of each steroid is present (some 

testosterone is aromatized to estrogens; Figure 4, panel b), and 3) only testosterone is 

present (no conversion to estrogens via aromatization; Figure 4, panel c).

Comparisons between the estrogen replacement group and the testosterone replacement 

groups mentioned above (no estrogen, some estrogen, and all estrogen) suggest the presence 

of an androgenic regulatory effect on physical activity (Figure 4). The precise dimensions of 

a silastic implant allowed a constant volume (approximately 200 to 300 µg·day−1 as 

suggested earlier) of steroid to be present in each capsule, which led to the release of similar 

amounts of steroids to all mice. Therefore, the circulating levels of estrogens in mice with 

17β-estradiol capsules would be equal only to the levels of mice with testosterone capsules if 

the testosterone were converted completely to 17β-estradiol leaving no circulating 

testosterone (Figure 4, panels a, d, g). If the testosterone were completely converted to 17β-

estradiol, it should be expected that the mice, regardless of steroid replaced, would not differ 

in activity performed. This was not the case in this study, as the mice receiving the 

testosterone capsules outperformed the mice receiving the 17β-estradiol capsules. In reality, 

replaced testosterone is probably not entirely converted to 17β-estradiol (Figure 4, panel b). 

The residual levels of testosterone remain available to interact in an androgenic manner that 

can affect activity levels. These observations conflict with the results of Roy and Wade [9] 

who suggested that the androgens needed to first be converted to estrogens prior to 

influencing wheel running; testosterone’s regulatory effects were not dependent upon 

estrogen.

Other potential factors

The removal of the gonads, especially in female mice, not only removes the primary 

estrogen sources in these animals, but also a substantial progesterone source. While the 

influence of progesterone on wheel running activity was not the focus of this paper, past 

research has indicated a minimal effect of this steroid on activity regulation. Rodier [39] 

injected ovariectomized albino rats with 40 mg·kg−1·day−1 progesterone and found no 

changes to the activity pattern. In the same study, 8 mg·kg−1·day−1 of progesterone was 

given to intact female rats and was found to have a slight inhibitory effect [39]. Based on 

these lines of evidence, the effects of progesterone loss due to ovariectomy in the present 

study was likely minimal.

The changes observed in the body composition variables appear to relate to natural 

differences between the sexes and appeared to follow temporal patterns rather than patterns 

attributable to changes in steroid status. Past research [19] has shown changes in body 

composition characteristics with alterations in steroid levels; however, the brevity of the 

experimental periods in this study may have hindered full development of this effect. 

Furthermore, the effects of body mass on activity have been shown to be limited in non-

obese rodents [22,23,40].

In conclusion, the current study investigated the influence of both testosterone and 17β-

estradiol on physical activity patterns in male and female C57BL/6J mice. All three indices 

of activity were significantly decreased with removal of the sex steroids; running distance 
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and duration were most responsive to alterations in circulating steroid levels. The 

differences in recovery of physical activity observed in mice implanted with 17β-estradiol 

(lower recovery) and testosterone (higher recovery) provided evidence that in mice, both 

steroids variably alter activity patterns. Based on the significantly larger magnitude of 

recovery with testosterone replacement, it is suggested that testosterone believed from 

limited past studies to only regulate activity via an estrogen dependent mechanism may also 

influence activity through a direct, androgenic mechanism.

Acknowledgments

The project described was supported by a National Institutes of Health grant (NIAMS AR050085- J. T. Lightfoot, 
R. S. Bowen, A. M. Knab, A. T. Hamilton, T. Moore-Harrison) and an American College of Sports Medicine 
Foundation Doctoral Research Grant (R. S. Bowen). The authors would like to thank the UNC Charlotte Vivarium 
staff for assistance with animal husbandry.

References

1. Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the United States, 
2000. JAMA. 2004; 291:1238–1245. [PubMed: 15010446] 

2. Gorzek JF, Hendrickson KC, Forstner JP, Rixen JL, Moran AL, et al. Estradiol and tamoxifen 
reverse ovariectomy-induced physical inactivity in mice. Med Sci Sports Exerc. 2007; 39:248–256. 
[PubMed: 17277588] 

3. Wang GH, Richter CP, Guttmacher AF. Activity studies on male castrated rats with ovarian 
transplants, and correlation of the activity with the histology of the grafts. Am J Physiol. 1925; 
73:581–599.

4. Wang GH. The relation between “spontaneous” activity and oestrous cycle in the white rat. Comp 
Psychol Mon. 1923; 2:1–27.

5. Hoskins RG. Studies on vigor. II. The effect of castration on voluntary activity. Am J Physiol. 1925; 
72:324–330.

6. Hoskins RG. Studies on vigor. IV. The effect of testicle grafts on spontaneous activity. 
Endocrinology. 1925; 9:277–296.

7. Bugbee EP, Simond AE. The increase in voluntary activity of ovariectomized albino rats caused by 
injections of ovarian follicular hormone. Endocrinology. 1926; 10:349–359.

8. Young WC, Fish WR. The ovarian hormones and spontaneous running activity in the female rat. 
Endocrinology. 1945; 36:181–189.

9. Roy EJ, Wade GN. Role of estrogens in androgen-induced spontaneous activity in male rats. J 
Comp Physiol Psychol. 1975; 89:573–579. [PubMed: 1194459] 

10. Ogawa S, Chan J, Gustafsson JA, Korach KS, Pfaff DW. Estrogen increases locomotor activity in 
mice through estrogen receptor alpha: specificity for the type of activity. Endocrinology. 2003; 
144:230–239. [PubMed: 12488349] 

11. Lightfoot JT. Sex hormones’ regulation of rodent physical activity: a review. Int J Biol Sci. 2008; 
4:126–132. [PubMed: 18449357] 

12. Wang GH. A sexual activity rhythm in the female rat. Am Nat. 1924; 58:36–42.

13. Durrant EF. Studies in vigor. III. The Effect of ovarian extract feeding on the activity of 
ovariectomized white rats. Endocrinology. 1925; 9:221–228.

14. Slonaker JR. The effect of copulation, pregnancy, pseudopregnancy and lactation on the voluntary 
activity and food consumption of the albino rat. Am J Physiol. 1925; 71:362–394.

15. Swallow JG, Garland T Jr, Carter PA, Zhan WZ, Sieck GC. Effects of voluntary activity and 
genetic selection on aerobic capacity in house mice (Mus domesticus). J Appl Physiol. 1998; 
84:69–76. [PubMed: 9451619] 

Bowen et al. Page 11

J Steroids Horm Sci. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



16. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, et al. Comparison of the ligand 
binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. 
Endocrinology. 1997; 138:863–870. [PubMed: 9048584] 

17. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, et al. Interaction of estrogenic 
chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998; 139:4252–4263. 
[PubMed: 9751507] 

18. Garey J, Morgan MA, Frohlich J, McEwen BS, Pfaff DW. Effects of the phytoestrogen coumestrol 
on locomotor and fear-related behaviors in female mice. Horm Behav. 2001; 40:65–76. [PubMed: 
11467885] 

19. Hertrampf T, Degen GH, Kaid AA, Laudenbach-Leschowsky U, Seibel J, et al. Combined effects 
of physical activity, dietary isoflavones and 17 beta-estradiol on movement drive, body weight and 
bone mineral density in ovariectomized female rats. Planta Med. 2006; 72:484–487. [PubMed: 
16773530] 

20. Hertrampf T, Gruca MJ, Seibel J, Laudenbach U, Fritzemeier KH, et al. The bone-protective effect 
of the phytoestrogen genistein is mediated via ER alpha-dependent mechanisms and strongly 
enhanced by physical activity. Bone. 2007; 40:1529–1535. [PubMed: 17383949] 

21. Cohen PE, Milligan SR. Silastic implants for delivery of oestradiol to mice. J Reprod Fertil. 1993; 
99:219–223. [PubMed: 8283441] 

22. Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR. Genetic influence on daily 
wheel running activity level. Physiol Genomics. 2004; 19:270–276. [PubMed: 15383638] 

23. Turner MJ, Kleeberger SR, Lightfoot JT. Influence of genetic background on daily running-wheel 
activity differs with aging. Physiol Genomics. 2005; 22:76–85. [PubMed: 15855385] 

24. Pieper DR, Lobocki CA, Lichten EM, Malaczynski J. Dehydroepiandrosterone and exercise in 
golden hamsters. Physiol Behav. 1999; 67:607–610. [PubMed: 10549900] 

25. Ellis GB, Turek FW. Testosterone and photoperiod interact to regulate locomotor activity in male 
hamsters. Horm Behav. 1983; 17:66–75. [PubMed: 6862394] 

26. Morin LP, Cummings LA. Splitting of wheelrunning rhythms by castrated or steroid treated male 
and female hamsters. Physiol Behav. 1982; 29:665–675. [PubMed: 7178271] 

27. Daan S, Damassa D, Pittendrigh CS, Smith ER. An effect of castration and testosterone 
replacement on a circadian pacemaker in mice (Mus musculus). Proc Natl Acad Sci U S A. 1975; 
72:3744–3747. [PubMed: 1059163] 

28. Bowman RE, Ferguson D, Luine VN. Effects of chronic restraint stress and estradiol on open field 
activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats. 
Neuroscience. 2002; 113:401–410. [PubMed: 12127097] 

29. Gordon MN, Osterburg HH, May PC, Finch CE. Effective oral administration of 17 beta-estradiol 
to female C57BL/6J mice through the drinking water. Biol Reprod. 1986; 35:1088–1095. 
[PubMed: 3828426] 

30. Gentry RT, Wade GN, Roy EJ. Individual differences in estradiol-induced behaviors and in neural 
3H-estradiol uptake in rats. Physiol Behav. 1976; 17:195–200. [PubMed: 996156] 

31. Leamy LJ, Pomp D, Lightfoot JT. An epistatic genetic basis for physical activity traits in mice. J 
Hered. 2008; 99:639–646. [PubMed: 18534999] 

32. Lightfoot JT, Turner MJ, Pomp D, Kleeberger SR, Leamy LJ. Quantitative trait loci for physical 
activity traits in mice. Physiol Genomics. 2008; 32:401–408. [PubMed: 18171721] 

33. Richter CP, Wislocki GB. Activity studies on castrated male and female rats with testicular grafts, 
in correlation with histological studies of the grafts. Am J Physiol. 1928; 86:651–660.

34. Slonaker JR. The effect of pubescence, oestruation and menopause on the voluntary activity in the 
albino rat. Am J Physiol. 1924; 68:294–315.

35. Wang GH, Guttmacher AF. The effect of ovarian traumatization on the spontaneous activity and 
genital tract of the albino rat, correlated with a histological study of the ovaries. Am J Physiol. 
1927; 82:335–349.

36. Richter CP. Pregnancy urine given by mouth to gonadectomized rats: its effect on spontaneous 
activity and on the reproductive tract. Am J Physiol. 1934; 110:499–512.

37. Richter CP, Hartman CG. The effect of injection of amniotin on the spontaneous activity of 
gonadectomized rats. Am J Physiol. 1934; 108:136–143.

Bowen et al. Page 12

J Steroids Horm Sci. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



38. Asdell SA, Doorenball H, Sperling GA. Sex steroid hormones and voluntary exercise in rats. J 
Reprod Fertil. 1962; 3:26–32. [PubMed: 13862784] 

39. Rodier WI 3rd. Progesterone-estrogen interactions in the control of activity-wheel running in the 
female rat. J Comp Physiol Psychol. 1971; 74:365–373. [PubMed: 5546884] 

40. Friedman WA, Garland T Jr, Dohm MR. Individual variation in locomotor behavior and maximal 
oxygen consumption in mice. Physiol Behav. 1992; 52:97–104. [PubMed: 1529020] 

Bowen et al. Page 13

J Steroids Horm Sci. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Experimental timeline (in days) for study assessing physical activity differences in 

C57BL/6J mice under various circulating sex steroid levels including normal physiological 

levels at baseline, low levels during gonadectomy phase, and elevated levels during 

replacement phase. Baseline, gonadectomy, and replacement indicate periods when wheel 

running activity was measured. Dark black bars indicate the recovery periods immediately 

following the gonadectomy surgery (beginning of day 8) and silastic capsule implantation 

surgery (beginning of day 24).
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Figure 2. 
Male C57BL/6J mice wheel running distance, duration, and speed under normal 

physiological condition (Baseline), with low circulating steroid levels (Gonadectomy), and 

with artificially elevated steroid levels (Replacement). White bars=sham controls; Hatched 

bars=testosterone during replacement period; Black bars=17β-estradiol during replacement 

period; *=significantly different from sham controls and baseline treatments.
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Figure 3. 
Female C57BL/6J mice wheel running distance, duration, and speed under normal 

physiological condition (Baseline), with low circulating steroid levels (Gonadectomy), and 

with artificially elevated steroid levels (Replacement). White bars=sham controls; Hatched 

bars=testosterone during replacement period; Black bars=17β-estradiol during replacement 

period; *=significantly different from sham controls and baseline treatments; †=significantly 

different from baseline.
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Figure 4. 
Schematic representation comparing mice receiving only 17β-estradiol (represented by 

mouse with ‘E’ on abdomen) to those receiving testosterone (represented by mouse with ‘T’ 

on abdomen) after surgical gonadectomy. Three scenarios (panels a–c) exist regarding 

testosterone’s conversion and lead to three possible wheel running responses if the estrogens 

are the primary effecters of activity (panels d–f) and three possible responses if an 

androgenic effect is also present (panels g–i). T=Testosterone, E=17β-estradiol, dotted 

outline=observed outcome from present dataset.
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Table 2

Sera/plasma testosterone and 17β-estradiol concentrations for male mice* at baseline and under various 

placebo and experiment conditions.

Condition (n=T/E2) Testosterone (ng·ml−1)
mean ± SD

17β-Estradiol (pg·ml−1)
mean ± SD

Baseline (n=3/3) 6.3 ± 2.8 59.8 ± 16.7

Placebo (n=15/15) 11.5 ± 7.5 397.1 ± 881.5

Experimental

ORCH (n=3/2) min 109.8 ± 29.7

ORCH+E2 (n=2/3) 0.2 ± 0.2 613.4 ± 185.9

ORCH+T (n=3/2) 15.4 ± 1.2 152.0 ± 53.2

*
Sera/Plasma from 3 mice were pooled together to form a single data point (n); female blood samples were non-viable

Abbreviations: ORCH: Orchidectomy; E2: 17β-Estradiol Implant; T: Testosterone Implant; min: At the minimum of prediction curve
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