SCIENTIFIC REPLIRTS

OmniGA: Optimized Omnivariate
Decision Trees for Generalizable
Classification Models

Received: 2 February 2017 Arturo Magana-Mora(® & Vladimir B. Bajic

Accepted: 9 May 2017 :

Published online: 20 June 2017 Classification problems from different domains vary in complexity, size, and imbalance of the number

. of samples from different classes. Although several classification models have been proposed, selecting

the right model and parameters for a given classification task to achieve good performance is not trivial.
Therefore, there is a constant interest in developing novel robust and efficient models suitable for a
great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate
decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble
learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets
taken mainly from biomedical problems and compared with the results obtained by several robust and
commonly used machine-learning models with optimized parameters. The results show that OmniGA
systematically outperformed these models for all the considered datasets, reducing the F; score error
in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that
OmniGA produces robust models with improved performance. OmniGA code and datasets are available
at www.cbrc.kaust.edu.saomniga/.

Problems from a wide range of domains may be formulated as classification tasks including those in biology
and chemistry, i.e., disease classification'~*, drug toxicity and response®’, and many others®-'%. However, the
performance of a classification model depends on its parameters and the nature of the data. Therefore, a par-
ticular classification model may work better for a given dataset than other models!* 2. Consequently, selecting
an optimized model and its parameters for each dataset is crucial. Although there are several classifier families
(statistical, ensemble methods, rule-based, etc.), we start by defining decision trees (DTs) and their evolution for
creating more robust models, which combines linear and non-linear models in the DT nodes. DTs are popular
machine-learning models for pattern recognition and classification, and several algorithms have been proposed
for the induction of DT classifiers from data'®. A DT implements a set of classification rules inferred from a
labeled dataset of samples. Each non-terminal node implements a locally optimal discriminant function, which
splits the data into two or more partitions until all samples in the node belong to one class or until a stopping
criterion is met. DTs may be broadly classified into three groups based on the type of discriminant function used
at each non-terminal node: (1) univariate DT, where each non-internal node uses one feature to split the data, (2)
linear multivariate DT, where the discriminant function consists of a linear combination of the features, and (3)
nonlinear multivariate DT, where each non-terminal node uses nonlinear function of data features to split the
data (Fig. 1).

While univariate DTs offer several advantages, i.e., scalability, simplicity and understandability'* %, their
performance may be compromised when dealing with difficult pattern recognition problems that may require
extremely complex DTs. Consequently, several DT induction algorithms have been proposed with the aim of
producing models that can perform better in both simple and complex classification tasks. Linear multivariate
CART induction algorithm'¢ uses an iterative back fitting algorithm based on a deterministic hill-climbing tech-
nique to individually optimize coefficients for the linear combination of features at each node. Oblique classifier
1'7 (OC1) was later developed as an extension of CART to avoid local minima during the coefficient optimization
phase. Linear multivariate DTs were modified to support classification problems with more than two classes'® '°.
Although other DT induction algorithms have been proposed (FACT?’, QUEST?!, and CRUISE??), the prediction
performance is not statistically different from results obtained by CART or univariate C4.5 DTs*. The studies

King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Thuwal,
23955-6900, Saudi Arabia. Correspondence and requests for materials should be addressed toV.B.B. (email: vladimir.
bajic@kaust.edu.sa)

SCIENTIFICREPORTS | 7:3898 | DOI:10.1038/s41598-017-04281-9 1

http://orcid.org/0000-0001-8696-7068
http://orcid.org/0000-0001-5435-4750
mailto:vladimir.bajic@kaust.edu.sa
mailto:vladimir.bajic@kaust.edu.sa

www.nature.com/scientificreports/

feature Y

feature X

Figure 1. DT classification boundaries. Example of univariate (dotted line, three rules), linear multivariate
(dashed line, one rule) and nonlinear multivariate (solid line, one model) DTs.

mentioned above have shown that linear multivariate trees generally produced smaller DTs (although with more
complex nodes) with competitive and in some cases better accuracy than univariate DTs.

At the expense of simplicity and model interpretation, nonlinear multivariate DTs define a hypersurface with
an arbitrary shape that, in principle, may separate the data more accurately, particularly for difficult classification
problems®*%¢. Guo and Gelfand?® proposed to use small artificial neural networks (ANNs) at each non-terminal
node to model class separation. Authors concluded that the method generally produced lower error rates com-
pared to CART and similar to those obtained by ANNs. Nevertheless, the use of ANNs in each non-terminal
node increased the number of parameters that had to be defined, i.e., the number of hidden layers, the number
of nodes in the layers, learning rate, etc. To avoid this, Sankar and Mammone?’ proposed the neural tree net-
works (NTN) method, which uses a single layer perceptron or neuron with a sigmoid activation function in
each non-terminal node. NTNs are expanded using a heuristic learning algorithm based on the minimization
of the absolute error (L1 norm) of the neurons. NTN method was able to achieve a similar prediction accuracy
compared to the best ANN model but can be achieved without the hassle of determining an optimal ANN struc-
ture for a particular problem. Yildiz and Alpaydin® proposed to use Fisher’s linear discriminant analysis in each
non-terminal node to generate binary trees (LDA DT). They compared results from their method against other
DT induction algorithms (univariate ID3, linear multivariate CART, linear NTN and LMDT) and concluded
that univariate ID3 achieves the best accuracy when the data are small and features are not correlated. However,
LDA DT achieved better accuracy than ID3 DT in more complex problems. Their method outperformed the
results from linear multivariate CART and produced the same accuracy as linear NTN. Despite the improve-
ments achieved by LDA DT, the method still presents the limitations of linear classifiers, which results in lower
performance when dealing with complex classification problems. As a consequence, Kumar and Rani® proposed
the use of the direct fractional-step linear discriminant method, in which each node uses a DF-LDA to form a
nonlinear DT model. However, studies?® ?® have shown that complex models, i.e., multivariate trees, increase
the risk of overfitting the data for problems where data are simple (features are not correlated) or where data are
scarce (reason why ID3 performed better than LDA DT in some cases). To avoid these problems and still make
use of the advantages of nonlinear models, Yildiz and Alpaydin®® proposed the Omnivariate DTs (ODTs). ODT
induction algorithms allow the tree to use any of the above-mentioned discriminant functions (i.e., univariate,
linear multivariate or nonlinear multivariate) in non-terminal nodes. The original ODT induction algorithm uses
comparative statistical tests of accuracy to dynamically select the most appropriate discriminant model at a node
with the sub-problem defined by the data reaching the node. The authors also suggested that model selection
plays a crucial role in the induction of ODTs. Therefore, several studies®**!-** developed new strategies for model
selection in the nodes, considering more robust or faster statistical measures. Yildiz and Alpaydin®’-3? observed
that ODTs were never outperformed by DTs with all nodes from the same class (univariate, linear multivariate or
nonlinear multivariate). However, the use of different discriminant functions in the nodes and the use of more
complex models increase the intricacy of DT generation and DT pruning strategies. Moreover, using nonlinear
models at each non-terminal node, i.e., ANNS, introduce the challenges of parameter tuning of that particular
model. For the purpose of simplifying this task, previous studies?® * used small and fixed ANN structures, which
may result in suboptimal local classification models. Moreover, ODTs, as well as other DT induction algorithms
(ID3, C4.5, CART, etc.), implement local operations to find the feature (or model in the case of ODTs) and the
split threshold values that best splits the data in a particular non-terminal node. These local partitioning heuris-
tics may produce suboptimal solutions, as they do not have the information of the data and the model as a whole.

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 2

www.nature.com/scientificreports/

Dataset # Samples | # Features Class ratio
TF combinations (TFC) 2,418 3,186 1:1.04
Lung tissue (LT) 2,387 351 1:10
Esophagus tissue (ET) 1,474 351 1:10
TIS prediction (TIS) 24,832 47 1:1
EEG eye state (EES) 14,980 14 1:1.22
Heart statlog (HS) 270 13 1.25:1
Pima Indian diabetes (PID) 768 8 1:1.86
Central nervous system (CNS) | 60 7,129 1:1.85
Colon tumor (CT) 62 2,000 1:1.81
Synthetic (SYN) 2,000 65 1:1
German credit (GC) 1,000 24 2.33:1
Credit card clients (CCC) 30,000 24 1:3.52

Table 1. Datasets description.

In this study, we propose OmniGA, a generic framework that uses a parallel genetic algorithm (GA) for the
optimization of ODTs. In the OmniGA framework, the GA encodes the structure of the tree and the parameters
for each model in non-terminal nodes. The GA simultaneously optimizes the following processes:

(1) Model selection: GA attempts to find the best model type for each non-terminal node (linear or nonlinear
model).

(2) ODT model simplification: GA prunes non-terminal nodes.

(3) Model optimization in non-terminal nodes: GA finds the set of optimized parameters for models used at
each non-terminal node.

(4) Threshold optimization: GA attempts to find an optimal threshold value that best discriminates data class-
es at each non-terminal node.

Moreover, OmniGA takes advantage of the hierarchical model of the DT to construct a deep learning (DL)
structure, where each successive non-terminal node uses as new features the predicted probabilities for each
sample in the parent node. Finally, we describe and evaluate an ensemble model* that uses a set of OmniGA
models encoded into the GA strings to produce the final prediction. This ensemble method takes advantage of
the different models produced by the GA while decreases model variance®.

Usually, new proposed classification models are only compared against other models within the same clas-
sifier family. However, the goal of our study is to develop a robust and generalizable model able to outperform
existing commonly used classification methods. For this, we measured OmniGA performance on 12 different
classification problems mainly from biomedical domain and compared it against four other classification meth-
ods with their optimized parameters, i.e., ANNs (as described in**), random forest*® (RF), multinomial logistic
regression®” (MLR) and C4.5 DTs*. The results from these comparisons convincingly demonstrate that OmniGA
performance represents an improvement compared to that of the other models we tested and that it was never
outperformed by these other models.

Results

The key contribution of our study is the development of OmniGA, a new robust framework for classification tasks
capable of learning from a great variety of data (despite data complexity, the number of samples, imbalances, etc.).
OmniGA combines several machine-learning techniques such as GAs, DL, synthetic minority oversampling tech-
nique* (SMOTE), early stopping of model training (ES), ensemble learning, and different types of classifiers for
deriving robust ODTs. The technical details of OmniGA are presented in the Methods section.

To evaluate the utility of the OmniGA framework, we used 12 different datasets (see Table 1) and compared
the results to those obtained by other robust and commonly used classification models, i.e., ANN, RE, MLR and
C4.5 DT. To ensure a fair comparison with the baseline reference models, we performed a grid search of the
parameters for each model and dataset (Supplementary Table S1 shows the parameter values considered for the
grid search and Supplementary Table S2 shows the final selected parameters that achieved the best performance
on the validation set). Specifically, models tuned are MLR (ridge parameter), RF (number of trees and number of
random features), ANN (learning rate and number of nodes in the hidden layer) and C4.5 DT (confidence factor
and minimum number of instances for further tree expansion). In this way, we obtained optimized reference
models. OmniGA framework also performs a grid search for the crossover and mutation probabilities. Each of
these combinations produces different models. From the resulting models, the one with the highest performance
on the validation set is selected as the final model. Note that in OmniGA algorithm, the GA optimizes the ODT
structure and performs the tuning of the models in the non-terminal nodes. Although new hybrid classification
algorithms have been proposed (LibD3C*, DTNB*!, among others*>*), there are several justifications for the
selection of the reference classification models used in this study. An extensive empirical study'! has shown that
RF produced the best average performance over the UCI machine-learning repository database and therefore
suggest it should be considered as the reference gold standard. Moreover, RF have shown to produce outstanding
results in some bioinformatics applications*~*¢. In addition, ANNs achieved the best average performance on

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 3

http://S1
http://S2

www.nature.com/scientificreports/

C. Nervous system (CNS) EEG eye state (EES) Lung tissue (LT) Heart statlog (HS)
06- 0.25- 0.90-
0.20- 06"
0.4- 0.85-
0.15-
0.5
0.10-
0.2- 0.80-
0.05- . 0.4-
Colon tumor (CT) Esophagus tissue (ET) TIS prediction (TIS) Synthetic (SYN)
D 0.9s- 0.70 1.000-
8 0.92-
7 .)
Eo9o e 0.91- 0.975-
@oss 0.60-
u:b 0.90- 0.950-
g 0.80- 0.55-
= 0.89-
0.925-
0.75- 0.50-
0.88-
oro [- N oot

Pima Indian Diabetes (PID) German credit (GC) TF combinations (TFC) Credit card clients (CCC)
0.75- 0.95- 0.55-

- 050.
0.70-
0.45-
0.40-
0.65-
0.35-
0.60- < 0.30- .
O & SDF O Q& SoF
F¥EFTE TV E
o

Classification models

Figure 2. Models performance. F, for each model on the twelve considered datasets.

two-class classification problems!'. Finally, we also considered MLR and C4.5 as they are consistently used to
compare DT induction algorithms?.

Predictive results are normally reported in terms of accuracy. However, this measure is not well suited for
imbalanced datasets. For instance, consider a dataset with 90% of the observations from class 1 and the rest from
class 2; a model that only learns class 1 samples would report ~90% accuracy. Therefore, in order to account for
imbalanced datasets, we used the F; score (we will refer to it as F,, hereafter), which accounts for both precision
and sensitivity (Supplementary Table S3). However, we also provide results in terms of other performance meas-
ures (Supplementary Table S4 shows the accuracy, sensitivity, specificity and precision measures for each data-
set). Moreover, all reported results are obtained using 2/3 of the data for training and the remaining for testing
(Supplementary Table S5 shows the results using a 3-fold cross-validation technique).

Figure 2 shows the F; values for each model in the respective dataset. We observe that from the existing mod-
els (ANN, RF, MLR and C4.5) there is no model that consistently achieves the best performance. For instance,
MLR (yellow bar) outperformed all existing models in two datasets (HS and GC), while ANN (blue bar) outper-
formed other models in two datasets (TIS and PID), and finally, RF (green bar) achieved best results on the eight
remaining datasets. Moreover, we observe the inability of both C4.5 and ANN to learn the positive class (minority
class) in CNS and EES datasets as these models achieve F; of 0% and 0.2%, respectively.

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 4

http://S3
http://S4
http://S5

www.nature.com/scientificreports/

Best performing Reduction of the
Dataset existing model Frelative_error (g4
TF combinations (TFC) RF 16.06
Lung tissue (LT) RF 11.71
Esophagus tissue (ET) RF 17.28
TIS prediction (TIS) ANN 2.25
EEG eye state (EES) RF 18.75
Heart statlog (HS) MLR 18.54
Pima Indian diabetes (PID) ANN 13.83
Central Nervous system (CNS) | RF 47.05
Colon tumor (CT) C4.5, MLR, RE ANN | 71.79
Synthetic (SYN) RF 100.00
German credit (GC) MLR 13.06
Credit card clients (CCC) RF 14.03

Table 2. Classification error reduction. Comparison between best performing model and OmniGA framework.
Best performing existing model refers to the model (MLR, ANN, RF and C4.5) achieving the best F, performance
in a given dataset. Reduction of the F,™ " denotes the relative error reduction of OmniGA with respect to
the best performing model as defined in Equation 1.

Results show that the OmniGA framework (purple bar) was never outperformed by any of the other tested
models (OmniGA parameters are listed in Supplementary Table S6). Moreover, OmniGA improved results in all
of the 12 considered datasets, showing that OmniGA consistently produced robust models despite the complexity
and dataset size.

Table 2 compares OmniGA results against those obtained by the best performing model for each dataset. Here
we define relative F, error, F,/@ativeerror ag

Flerror(ml) _ Flermr(m2)

Flerror(ml) (1)

relative_error
K (my, my) =

where
Flerror(m) -1 Fl(m) (2)

and where m; stands for the classification model. From these results, we observe the considerable reduction of
relative F, error e.g. for SYN, CT, CNS, ESS and HS datasets compared to the best performing model tested as
100%, 71.8%, 47%, 18.7% and 18.5%, respectively.

Discussion

The performance of classification models depends on model parameters and the nature of the problem. Therefore,
choosing the right model for a given problem is crucial. In search of a robust and generalizable model, we devel-
oped OmniGA, a novel framework to optimize the structure of ODTs. OmniGA uses a parallel GA to optimize:
(1) a split threshold for splitting the data, (2) model selection for each non-terminal node, (3) parameters for
models in non-terminal nodes, and (4) pruning of the tree. OmniGA takes advantage of the hierarchical structure
of the tree and implements a DL structure in some ODT structures depending on the data. DL origins date to the
mid 80’s when Rumelhart et al.*” described the back-propagation algorithm for ANNs. DL algorithms consist of
a multi-layered architecture that transforms the data representation at one level to a higher and more abstract
level*® (where features are learned from the data itself). In an OmniGA model, it is possible to have multiple
ANNSs or MLRs or a combination of both in a decision branch of the OmniGA, which would constitute a DL
structure. Additionally, in OmniGA, the outputs of the parent non-terminal node (prediction scores for each
sample and split threshold derived from the parent non-terminal node) are used as new features for samples
reaching the child non-terminal node. For instance, consider sample s= [s;, s,, 3, ..., S,] where s; represents a
feature and d denotes the number of features. A non-terminal node of the ODT would assign a prediction score
s, and the split threshold s, for each sample s. These two numerical values represent an abstraction of the feature
vector and constitute the novel features learned from the original data reaching the parent non-terminal node.
These two values, s, and Sp> Are later added as two additional features to the original feature vector for the sam-
ple, resulting in s=[s, 55, 53, .-+, 54 Sy §,]. Thus the combination of the above characteristics conforms the DL
structures in an OmniGA. Moreover, a subset of the resulting GA strings is used to build an ensemble model
and therefore reduce the prediction variance of a single model. Finally, we defined different add-ons, the use of
which results in different ODT induction strategies, i.e., using SMOTE, ES and DL at each non-terminal node.
The rationale behind using SMOTE is that since ODTs recursively split the data based on the samples predicted
probabilities, it is often the case that non-terminal nodes receive an imbalanced partition of the data with respect
to the classes. Since data imbalances may have a crucial effect on the performance of classification models*, this
is, therefore, an important factor to consider in model training in non-terminal nodes of the ODTs. Finally, the
ES add-on consists of prematurely stopping the model training in non-terminal nodes. Clearly, complex and fully

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 5

http://S6

www.nature.com/scientificreports/

/E)dej\ node4 node, node;node,
(RF\ C45| ANN|RF[C457C45WWW‘/

I
1
I
1
|
! Non-terminal nodes
node, node3 |
1
/C4 ;‘ | nodeg nodeg node node, node
|
|
|
|
1
|

o0 de4 node { node node, 5 leaf | leaf | leaf | leaf | leaf | leaf | leaf | leaf
Leaf nodes

node8 nodeg

Figure 3. Schematic representation of an ODT model. ODT model is encoded by the GA string in a breadth-
first order.

trained models in non-terminal nodes may possibly result in smaller ODTs. However, the use of semi-trained
and less complex models may partition the data in more subsets and hence increase the robustness of the model.

The process of using the set of different OmniGA models with different add-on configuration could be
regarded as a GA with parallel populations (where each subpopulation evolves differently) without individual
migration. Supplementary Table S7 shows the best performing add-on configurations for each dataset (chosen
based on the performance on the validation set).

We compared OmniGA framework performance against other robust and commonly used classification mod-
els, namely ANN, RE, MLR and C4.5. We used 11 datasets from different domains and one consisting of synthetic
rules to compare our framework against the four above-mentioned models (C4.5, MLR, ANN and RF) with
their optimized parameters for each of the datasets. Results demonstrate that the OmniGA framework improved
results in all of the 12 datasets from Table 1, showing that OmniGA consistently produced robust models despite
the complexity, size of the data or number of features used to describe the data.

The OmniGA framework considerably reduced F,*"*" compared to the best performing model tested. Notably,
the best improvements correspond to the highly imbalanced and scarce datasets CT and CNS containing 62 and
60 samples, respectively (reduction of the relative F, error by 71.8% and 47%, respectively). These results demon-
strate the capability of our framework to produce robust and generalizable models even when the data are limited
and scarce.

Methods

In this section, we first describe the datasets considered to assess the performance of our framework and the data
processing, followed by the GA configuration and the encoding technique. Finally, we discuss in detail the struc-
ture of the OmniGA framework.

Datasets. Inorder to assess the performance of our OmniGA framework, we selected 12 datasets with differ-
ent characteristics, i.e., datasets with a significant imbalance in the number of samples with respect to the classes,
limited in the number of samples, as well as described by a large number of features. The first four datasets were
obtained from recent studies®*->*, five datasets were taken from the UCI machine-learning repository**-*, two
from the Kent Ridge biomedical datasets®®-** and the last dataset consists of a set of synthetically generated rules
(using DatGen www.datasetgenerator.com). The characteristics of these datasets are described in Table 1 (See
Supplementary Material 1 for dataset details).

Data processing and feature selection. Feature values for all datasets were normalized to have values
within the range of [—1, 1]. Feature selection was performed only on datasets described by more than 300 fea-
tures. We used the gain ratio method from WEKA v3.6.12° to evaluate and rank the features. We retained only
the top 300 ranked features for further analyses (see Supplementary Material 2).

Genetic algorithm (GA) design. Encoding models in non-terminal nodes. OmniGA encodes the param-
eters of four different models, i.e., ANN, RF, MLR and C4.5 from WEKA v3.6.12. Nodes are encoded into the
GA string following the breadth-first search order. Figure 3 illustrates an example of a resulting ODT where
non-terminal nodes 5, 6 and 7 were pruned from the tree. We developed two variants of GA encoding: the first
only encodes the parameters for models in non-terminal nodes, while the second encodes the model parameters
as well as the early stopping (ES) of training for the models (we refer to this as ‘ES add-on’). We describe in detail
the encoding ODT into a GA string in Supplementary Material 3.

The objective function and GA operators. The fitness value for each GA string in the population consists on the
statistical performance measure. In our tool (www.cbrc.kaust.edu.sa/omniga/), the measure may be, for example,
accuracy, precision or F; (see Supplementary Table S3).

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 6

http://S7
http://www.datasetgenerator.com
http://1
http://2
http://3
http://www.cbrc.kaust.edu.sa/omniga/
http://S3

www.nature.com/scientificreports/

A) GA Initial population
SLURM generation
[Proc.q = GAstring | "~<(_ il /)
| Proc., |—| GA stringy | I Population ' Botimi
i — —_ : iteria > mm— ptimized
| Proc.3 = GA string3] ,ﬂtness evaluation | Siopping critork Yes | model
: g
[Proc.p, |= GA stringp, |, ~~ I 4 No
[| [Selection
Elitism operator operator (roulette
f wheel)
Mutation + Crossover
operator operator
B) ¢ Cut points \L C) J’ Cut points J’
1]
ANN RF MLR ' | ANN ANN RF MLR ANN
GA string, ! ' GA string 4

R R XA AN R A XN AN SIS
NN N N A N NN NN SN NN NN NN NN NN NN, N NN AN NN NN NN NN NN NN NN NN RN NN,
DA A, RAL KA /! AL IAALY. o UA L2
St NN NN N RN NSRBI, NN SN NSNS NSNS
. VAN, NNV NANN XN N AR . PN NN NN NN NN A NG 00
GA Strlngz A A AN I IS T (T g0 B A AN NN NN AN NN NN CANNNNNNN
T T 2
Crossover ' Crossover
RANAS AL, ALY ST,
% NN TIILR % NN RININNNNNININ
ANN | RF ANKOSEL " ANN ANN (SRR VACE8Y ANN
. A VAN AN . RN AN NN AN NG
Offspring 4 AN Offspring4 A AN
|
N RN, [V % SN N RN R AN
NN NN SN NN % INNINNINNNN, NNNNNNNN
N (IR NN R NN NN &N NN
N\ RYRECUANNRF | MLR (3 0Cab N ORESS RF MLR R8s
Offspnng9 INNNNNNINNINNNN NPAINNNNNNN Offspnng9 INNINNNNNN NNNNNNNN

Figure 4. (A) Schematic representation of the GA execution. (B) Crossover inconsistencies when considering
random cut points at an arbitrary bit. (C) Consistent crossover scheme, where cut values must be either at the
beginning or end of an encoded model.

The fitness value is calculated from the validation set (15% exclusively reserved from the training data).
Evaluation of the fitness values for the entire GA population is implemented as a parallel execution using the
SLURM system®, where the evaluation of each GA string is computed by an independent process (Fig. 4A).
Supplementary Table S8 shows the running time of the OmniGA framework. The fitness values for each GA
string in the population are scaled by subtracting the fitness value of the worst GA string in the population, i.e.,
new Fitness; = old Fitness; — worst Fitness. This procedure intends to eliminate those GA strings that are least
likely to converge to a good solution. We used the ‘roulette wheel’ fitness-based selection operator®, to select
parents for the crossover operator.

In OmniGA, the crossover operator selects two random cut points from both parents (generating three splices
from the GA string). However, GA strings encode different models (and their parameters), hence random cut
points at an arbitrary bit are likely to happen within the bits encoding the model parameters and hence generating
inconsistent offspring which may confuse the GA search (Fig. 4B). Consequently, we defined cut values as the i-th
node in the GA string (Fig. 4C). The resulting offspring replace the old population, i.e., the population evolves
whilst keeping the same number of strings. Moreover, to ensure that the best solution remains in the population,
OmniGA uses an elitism operator. Such an operator replaces the worst fitted string in the current iteration by the
fittest GA string from the previous iteration.

Finally, we implemented three different mutation strategies depending on the bit where a mutation occurs: (1)
mutation in the bit encoding the model type, changes the bit to a random integer value within range of [—1, 3], 2)
mutation in the threshold bit generates a random numeric value within range of [—0.65, 0.65], and 3) mutation at
any other binary bit simply inverts the current value (0 — 1 or 1 —0).

OmniGA methods. In this subsection, we first describe the methods for the induction of ODTs. The set of
optimized ODTs (generated by the GA) forms an OmniGA model. Finally, we describe the different add-ons for
an OmniGA model induction, which as an ensemble constitute the OmniGA framework.

ODT model. ODTs use linear or nonlinear models to split the data in each non-terminal node. Each of the
models produces two outputs corresponding to the probabilities for a sample to belong to class 1 or class 2,

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 7

http://S8

www.nature.com/scientificreports/

respectively. Algorithm 1 shows the pseudo code for the partitioning of the data based on the predicted probabil-
ities, where the threshold is the variable encoded in the GA string for a given non-terminal node.

Algorithm 1 Data splitting algorithm

for each sample S in data
if PredictionScore, > | PredictionScore,
if PredictionScorec, > GA.threshold
S — Class 1
else
S — Class 2
else
if PredictionScorec, < GA.threshold
S — Class 2
else

S — Class 1

An ODT recursively expands until one of the following three stopping criteria is met:

o Maximum ODT depth: recursive ODT expansion stops if a maximum depth of 5 is reached (max. 31 nodes).

o Node impurity: ODT recursion stops if the node contains samples from only one class (clean node) or if the
ratio of samples from the two classes is less or equal than 1/500.

o The minimum number of instances: this case considers only the number of samples in a node independently
of their class labels. To account for small and large datasets, we set the minimum number of instances to 100
for datasets containing more than 2,000 training samples or 5% of training samples for datasets with less than
2,000 samples.

Each non-terminal node in an ODT contains an add-on module, which allows for data transformation before
model training or for training early stopping, as shown in Fig. 5A.
The three add-on capabilities are:

« Early stopping (ES) for model training in non-terminal nodes: as described in the GA methods, a GA string
may encode a parameter to prematurely stop the training of a model in non-terminal nodes.

« Dataimbalance reduction: we used the synthetic minority oversampling technique® (SMOTE) to reduce data
imbalances in data partitions at each non-terminal node. The synthetic samples are local to a particular node
and are not inherited by the child nodes. SMOTE is performed by using WEKA v3.6.12 and was only applied
when the data imbalance exceeded a ratio of 1:5. In such cases, data imbalance was reduced to a 1:2 ratio by
increasing the minority class by a percentage given by

majority

percentage increase = [1] x 50

minority

3)

where minority and majority correspond to the number of samples in the minority and majority classes.

o Deep learning structure (DL): the prediction probabilities for each sample and split threshold are forwarded
from the parent node to the child nodes. These probabilities and threshold are concatenated to the original set
of features for each sample. Considering Fig. 5A, the split threshold, and probabilities generated for samples
in node 1 are forwarded to node 2 and node 3 and are concatenated to the original feature set for each sample
accordingly.

OmniGA model. An OmniGA model uses a GA to find competitive ODT models. Each OmniGA model pro-
duces three predictions for a sample (Fig. 5B):

« First prediction: prediction based on a single ODT model encoded into the fittest GA string.

o Second prediction: we constructed an ensemble method by considering a set of GA strings to perform voting
majority. There are in total m evaluations of different ensembles with different numbers of GA strings, where
m is equal to GA population size — 3. As such, the first ensemble includes the fittest GA string + 2 randomly
chosen GA strings (ensemble of three models), the second ensemble includes the fittest GA + 3 randomly
chosen GA strings (ensemble of four models), and so on. At the end, the ensemble that produced the best
discrimination based on the validation set is selected for the final majority voting ensemble model.

o Third prediction: we implemented a module that considers the prediction probabilities (instead of only the
predicted class) as input for training an RF model. The number of random trees in an RF model is experi-
mentally found in order to increase the performance as observed on the validation set. In this module, each
sample is defined by a feature vector of size equal to 3 x GA population size. The three features for each GA
string in the population are defined as follows: (a) predicted scores within range of [—1, 1] where positive

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 8

www.nature.com/scientificreports/

A) Node 1 |
&= Add-on
NOMM. o (DL SMIOTE, b fasias
. data
¥ ey |
gedictiopsﬂ-—l
Data split 1 / Data split 2
predictions <= threshold predictions > threshold
[Node 2] [Node 3 |
£ [Add-on €2 [Addon
Norm. o (DL, SMOTE, wp fiaiaie”) Norm. (DL, SMOTE, s fesbants]
. data ES) data J ES)
_split1 i ESplit2 === |
[Predictions| [—— 4 Predictions 7"_1
Nodei _ Predictions ‘Node 1 Predictions |
B)
OmniGA model "Ei,ttgsl,GA_string’ X oDT Fittest
_‘LODT modelg [S ! model model
G atdacs) 0 prediction
=) ODT model ==}
¢ - o <
GA GA string 2 oS |mmmy| Voting Voting
i [ODT model. o majori
execution _)LODT model, T‘_’ @8‘ jority prediction
GAstring n-1 RE
[| e—
==ODT model,_ e ‘ RF model prediction
) _aggregation |
C
[Mm
GA string 1 | GA string 2 | GA string n
PredictionThreshold Pred. class| Prediction ThresholdPred. class ... Prediction Threshold Pred. class|
opbT, | ODT, | ODT, \ oDT, | ODT, | ODT, oDT, | ODT, | ODT, [
D I[OmniGA model ’
) | SMOTE=0, ES=0, DL=0
\ OmniGA model
Data ¥ SMOTE=0, ES=0, DL=1, " o I —
reproc — Periorming me OmniGA model
prep \ OmniGA model , OmniGA | .
| SMOTE=0, ES=1, DL=0 model
/| OmniGA model

LS_.MOTE=1, ES:1’ DL=1 —

Figure 5. Illustration of the ODT structure and the OmniGA framework. (A) Schematic representation of
the method followed for each non-terminal node in the ODT. (B) Induction process for an OmniGA model.
(C) Illustration of the feature vector used for the deep learning module in the OmniGA model. (D) OmniGA
framework consisting of eight OmniGA models using different add-on configurations.

and negative values indicate class 1 and class 2, respectively, (b) split threshold used in the ODT model for
that particular sample at the non-terminal node previous to the leaf node, and (c) the predicted class label
(Fig. 5C).

The prediction scheme considered for the final model is chosen by evaluating the performance of the OmniGA
model for the three predictions independently based on the validation set. A comparison of the three prediction
schemes is given in Supplementary Table S9.

OmniGA framework. 'The OmniGA framework consists of a set of eight OmniGA models (computed in paral-
lel) with different add-on parameters (Fig. 5D). The eight different induction configurations are the result of
combining the three add-ons described in the ODT model induction (#¥combinations = 23), i.e., first the OmniGA
model is trained without any of these add-ons (SMOTE = 0, ES=0, DL =0), the second model considers only the
DL structure (SMOTE =0, ES=0, DL=1), etc. The final output is the best performing OmniGA model for a
given problem based on the performance observed on the validation set.

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9

http://S9

www.nature.com/scientificreports/

References

1.
2.

3.
. Huang, M., Yang, W,, Feng, Q., Chen, W. & Initiative, T. A. s. D. N. Longitudinal measurement and hierarchical classification

10.
11.
12.

13.
. Quinlan, J. R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann. (1992).
15.
16.
17.

18

43.
44.
45.
46.
47.
. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521 (2015).
49.
50.
51.

52.

Nilashi, M., Ibrahim, O. & Ahani, A. Accuracy Improvement for Predicting Parkinson’s Disease Progression. Scientific Reports 6.
Zhou, L.-T. et al. Feature selection and classification of urinary mRNA microarray data by iterative random forest to diagnose renal
fibrosis: a two-stage study. Scientific Reports 7 (2016).

Zhao, G. & Wu, Y. Feature Subset Selection for Cancer Classification Using Weight Local Modularity. Scientific Reports 6 (2016).

framework for the prediction of Alzheimer’s disease. Scientific Reports 7 (2017).

. Li, H,, Yuan, D., Ma, X., Cui, D. & Cao, L. Genetic algorithm for the optimization of features and neural networks in ECG signals

classification. Scientific Reports 7 (2017).

. Stanfield, Z., Coskun, M. & Koyutiirk, M. Drug Response Prediction as a Link Prediction Problem. Scientific Reports 7 (2017).
. Tharwat, A., Moemen, Y. S. & Hassanien, A. E. A Predictive Model for Toxicity Effects Assessment of Biotransformed Hepatic Drugs

Using Iterative Sampling Method. Scientific Reports 6 (2016).

. Cao, J., Chen, L., Wang, M., Shi, H. & Tian, Y. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset

Classification. Scientific Reports 6 (2016).

. Wang, L. et al. Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Scientific Reports

7 (2016).

Zhang, ., Ju, Y., Lu, H., Xuan, P. & Zou, Q. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.
International Journal of Genomics 2016, 1-11 (2016).

Fernandez-Delgado, M., Cernadas, E. & Barro, S. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
Journal of Machine Learning Research 15, 3133-3781 (2014).

Eugster, M. J. A., Hothorn, T. & Leisch, F. Domain-based benchmark experiments: exploratory and inferal analysis. Austrian J. of
Stat. 51, 5-26 (2014).

Murthy, S. K. On growing better decision trees from data. Ph.D. disseration, University of Maryland, College Park (1997).

Russell, S. J. & Norvig, P. Artificial Intelligence - A Modern Approach (Pearson Education, 2010).

Breiman, L., Friendman, J., Stone, C. . & Oshen, R. A. Classification and Regression Trees. (Chapman and Hall/CRC, 1984).
Murthy, S. K., Kasif, S. & Salzberg, S. A System for Induction of Oblique Decision Trees. Journal of Artificial Intelligence Research 2,
1-32 (1994).

. Brodley, C. E. & Utgoff, P. E. Multivariate decision trees. Machine Learning 19, 45-77 (1995).
19.
20.

Utgoff, P. E. & Brodley, C. E. Linear Machine Decision Trees. Technical report 10, University of Massachusetts, Amherst MA. (1991).
Loh, W.-Y. & Vanichsetakul, N. Tree-structured classification via generalized discriminant analysis. Journal of the American
Statistical Association 83,715-728 (1988).

. Loh, W.-Y. & Shih, Y.-S. Split selection methods for classification trees. Statistica Sinica 7, 815-840 (1997).
. Kim, H. & Loh, W.-Y. Classification trees with unbiased multiway splits. Journal of the American Statistical Association 96, 598-604

(2001).

. Kim, H. & Loh, W.-Y. Classification Trees wth Bivariate Linear Discriminant Node Models. Journal of Computational and Graphical

Statistics 12, 512-530 (2003).

. Altingay, H. Decision trees using model ensemble-based nodes. Pattern Recognition 40, 3540-3551 (2007).
. Li, Y. & Dong, M. Classifiability based omnivariate decision trees. Neural Networks. Proceedings of the International Joint Conference

4,3223-3228 (2003).

. Guo, H. & Gelfand, S. B. Classification trees with neural network feature extraction. IEEE Transactions on Neural Networks 3,

923-933 (1992).

. Sankar, A. & Mammone, R. J. Growing and Pruning Neural Tree Networks. IEEE Trans. Computers 42, 291-299 (1993).
. Yildiz, O. T. & Alpaydin, E. Linear Discriminant Trees. Pat Langley, ed. ICML, Morgan Kaufmann, 1175-1182 (2000).
. Kumar, S. & Rani, A. DF-LDA tree: a nonlinear multilevel classifier for pattern recognition. J. Exp. Theor. Artif. Intell. 25, 177-188

(2013).

. Yildiz, O. T. & Alpaydin, E. Omnivariate decision trees. IEEE transactions on Neural Neutworks 12, 1539-1546 (2001).
. Yildiz, O. T. & Alpaydin, E. Model Selection in Omnivariate Decision Trees. Jodo Gama; Rui Camacho; Pavel Brazdil; Alipio Jorge &

Luis Torgo, ed. ECML, Springer, 473-484 (2005).

. Yildiz, O. T. Model selection in omnivariate decision trees using Structural Risk Minimization. Inf. Sci 181, 5214-5226 (2011).
. Yildiz, O. T. Omnivariate Rule Induction Using a Novel Pairwise Statistical Test. IEEE Trans. Knowl. Data Eng 25,2105-2118 (2013).
. Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques. Third edition.

Morgan Kaufmann series in data management systems. Elsevier Science & Technology. (2011).

. Friedman, J. & Hall, P. On bagging and nonlinear estimation. Technical report (1999).

. Breiman, L. Random forest. Machine Learning 45, 5-32 (2001).

. leCessie, S. & van Houwelingen, J. C. Ridge Estimators in Logistic Regression. Applied Statistics 41, 191-201 (1992).

. Quinlan, R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA. (1993).

. Chawla, N. V,, Bowyer, K. W, Hall, L. O. & Kegelmeyer, W. P. Synthetic Minority Over-sampling Technique. Journal of Artificial

Intelligence Research 16, 321-357 (2002).

. Lin, C. et al. LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123, 425-435 (2014).
. Hall, M. & Frank, E. Combining naive Bayes and decision tables. Florida Artificial Intel. Soc. Conf. 318-319 (2008).
. Houeland, T. G. & Aamodt, A. In Hybrid Artificial Intelligent Systems. HAIS 2011 Vol. 6679 (eds Corchado E, Kurzynski M, &

Wozniak M.) (Springer, Berlin, Heidelberg, 2011).

Maia, T. T, Braga, A. P. & Carvalho, A. Fd Hybrid classification algorithms based on boosting and support vector machines.
Kybernetes 37, 1469-1491, doi:10.1108/03684920810907814 (2008).

Liao, Z., Ju, Y. & Zou, Q. Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest. Scientifica 2016,
10, doi:10.1155/2016/8309253 (2016).

Zhao, X., Zou, Q, Liu, B. & Liu, X. Exploratory Predicting Protein Folding Model with Random Forest and Hybrid Features. Current
Proteomics 14, 289-299, doi:10.2174/157016461104150121115154 (2014).

Liao, Z., Wang, X., Zeng, Y. & Zou, Q. Identification of DEP domain-containing proteins by a machine learning method and
experimental analysis of their expression in human HCC tissues. Scientific Reports 6, 39655, doi:10.1038/srep39655 (2016).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagation errors. Nature 323, 533-536 (1986).

Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proceedings of the 2000 International Conference on
Artificial Intelligence (IC-AI'2000): Special Track on Inductive Learning Las Vegas, Nevada (2000).

Schmeier, S., Jankovic, B. & Bajic, V. B. Simplified method to predict mutual interactions of human transcription factors based on
their primary structure. PLoS One 6 (2011).

Kleftogiannis, D., Kalnis, P. & Bajic, V. B. DEEP: a general computational framework for predicting enhancers. Nucleic Acids
Research 43 (2015).

Magana-Mora, A. et al. Dragon TIS Spotter: an Arabidopsis-derived predictor of translation initiation sites in plants. Bioinformatics
29,117-118 (2013).

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 10

http://dx.doi.org/10.1108/03684920810907814
http://dx.doi.org/10.1155/2016/8309253
http://dx.doi.org/10.2174/157016461104150121115154
http://dx.doi.org/10.1038/srep39655

www.nature.com/scientificreports/

53. Magana-Mora, A. et al. In Systemic Approaches in Bioinformatics and Computational Systems Biology: Recent Advances (eds Paola
Lecca, Dan Tulpan, & Kanagasabai Rajaraman) Ch. 5, 105-116 (IGI Global, 2011).

54. Bache, K. & Lichman, M. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and
Computer Science (2013).

55. Smith, J. W,, Everhart, J. E., Dickson, W. C., Knowler, W. C. & Johannes, R. S. Using the ADAP learning algorithm to forecast the
onset of diabetes mellitus. Proceedings of the Symposium on Computer Applications and Medical Care, 261-265 (1988).

56. Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R. & Consonni, V. Quantitative Structure - Activity Relationship models for
ready biodegradability of chemicals. Journal of Chemical Information and Modeling 53, 867-878 (2013).

57. Yeh, 1. C. & Lien, C. H. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card
clients. Expert Systems with Applications 36, 2473-2480 (2009).

58. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415,
436-442 (2001).

59. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc Natl Acad Sci 96, 6745-6750 (1999).

60. Li, J., Liu, H. & Wong, L. Mean-entropy discretized features are effective for classifying high-dimensional biomedical data. The 3rd
ACM SIGKDD Workshop on Data Mining in Bioinformatics, 17-24 (2003).

61. Witten, L. H. et al. Weka: Practical Machine Learning Tools and Techniques with Java Implementations. (1999).

62. Yoo, A. B., Jette, M. A. & Grondona, M. SLURM: Simple Linux Utility for Resource Management. Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing 2862, 44-60 (2002).

63. Mitchell, M. An Introduction to Genetic Algorithms. (Cambridge, MA: MIT Press, 1996).

Acknowledgements

This work was supported by King Abdullah University of Science and Technology (KAUST) through the baseline
fund BAS/1/1606-01-01 of V.B.B. This research made use of the resources of CBRC at KAUST, Thuwal, Saudi
Arabia.

Author Contributions
A M.M. designed the study, performed the experiments, analyzed the data, and wrote the manuscript. V.B.B.
conceptualized and designed the study, contributed to the discussion, and reviewed/edited the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-04281-9

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

T | icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS|7:3898 | DOI:10.1038/541598-017-04281-9 11

http://dx.doi.org/10.1038/s41598-017-04281-9
http://creativecommons.org/licenses/by/4.0/

	OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models

	Results

	Discussion

	Methods

	Datasets.
	Data processing and feature selection.
	Genetic algorithm (GA) design.
	Encoding models in non-terminal nodes.
	The objective function and GA operators.

	OmniGA methods.
	ODT model.
	OmniGA model.
	OmniGA framework.

	Acknowledgements

	Figure 1 DT classification boundaries.
	Figure 2 Models performance.
	Figure 3 Schematic representation of an ODT model.
	Figure 4 (A) Schematic representation of the GA execution.
	Figure 5 Illustration of the ODT structure and the OmniGA framework.
	Table 1 Datasets description.
	Table 2 Classification error reduction.

