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Abstract: Hafnium(IV) triflate (Hf(OTf)4) has been identified as a potent catalyst for the direct three-
component synthesis of β-carbamate ketones. This new method, featuring a low catalyst loading, fast
reaction rate, and solvent-free conditions, provided facile access to a diversity of carbamate-protected
Mannich bases. A mechanistic investigation indicated that the three-component reaction proceeds
via sequential aldol condensation and aza-Michael addition, but not the Mannich-type pathway.
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1. Introduction

β-Amino ketones, commonly known as Mannich bases, represent an important class of
synthetic scaffold [1–5] that has been widely employed in the synthesis of pharmaceutical
agents [6–8] and natural products [9,10]. Without a doubt, the Mannich reaction [11] is one
of the most effective approaches to synthesize β-amino carbonyl compounds. It is widely
accepted that the mechanism of the Mannich reaction involves the condensation of aldehyde
and amine and the subsequent addition of ketone [1–5]. Currently, a huge number of
synthetic methods have been reported for the catalyzed three-component Mannich reaction
based on arylamine and alkylamine substrates [12–14]. Among various Mannich bases,
β-carbamate ketones are of high synthetic value, because the facile removal of carbamate
protecting groups offers easy access to β-primary amino ketones. However, it has been
reported that the replacement of amine substrates with less reactive carbamates under the
same Mannich reaction conditions typically results in significantly lowered yields [15,16].

To date, only a few catalytic systems, including AuCl3-PPh3 [17], Bi(OTf)3 [15], I2 [18],
FeCl3·6H2O/Me3SiCl [19], H3PW12O40 [20], Me2S+BrBr− [21], and PPh3Br2 [22], have been
developed to enable direct one-pot, three-component synthesis of β-carbamate ketones from
aldehydes, ketones, and carbamates. However, these methods are limited by drawbacks,
such as slow reaction rate, low to moderate yields, high catalyst loading, and use of stinky,
corrosive, or expensive catalysts. Whilst the catalytic mechanisms of Me2S+BrBr− and
PPh3Br2 have not been studied, those of the other methods have simply been described
as Mannich-type reactions without substantial evidence regarding the formation of key
aldimine intermediates. Since it is known that aldimine is extremely hard to form directly
from aldehyde and carbamate [23,24], the proposed Mannich reaction-based mechanisms of
these reactions are disputable. The true underlying reaction pathways of these carbamate-
based three-component reactions still need to be elucidated.

In our previous research, we found that hafnium(IV) triflate (Hf(OTf)4) is a highly
potent Lewis acid catalyst for many reactions involving the activation of carbonyl [25],
such as the selective anomeric deacetylation of peracetylated saccharides [26], the
Biginelli reaction [27], and the synthesis of fluorinated benzimidazolines [28] and
pyrimido[2,1-b][1,3]benzothiazoles [29,30]. Our recent identification of Hf(OTf)4 as a highly
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reactive catalyst for the Mannich reaction [31] inspired our further exploration of its appli-
cation in the one-pot synthesis of β-carbamate-protected Mannich bases. Herein, we report
the development of a novel Hf(OTf)4-catalyzed three-component reaction of aldehydes,
ketones, and carbamates for the efficient synthesis of β-carbamate ketones. An experiment-
based mechanistic investigation was also conducted to reveal the underlying mechanism
of this three-component reaction.

2. Results and Discussion

In the preliminary experiments, we tested the catalytic reactivity of a series of Lewis
acids of Group IVB transition metals. The reaction of 1.0 equiv of acetophenone, 1.0 equiv of
benzaldehyde, and 1.5 equiv of benzyl carbamate (Cbz-NH2) in CH3CN was performed in
the presence of 10 mol% of Lewis acid catalyst at ambient temperature. The results listed in
Table 1 showed that most of these catalysts, including ZrCl4, bis(cyclopentadienyl)zirconium
dichloride (ZrCp2Cl2), ZrOCl2, Zr(NO3)4, ZrO(NO3)2, hafnium acetylacetonate (Hf(acac)4),
and bis(cyclopentadienyl)hafnium dichloride (HfCp2Cl2), were ineffective in this one-pot,
three-component synthesis of β-carbamate ketone 1. Only Hf(OTf)4 and HfCl4 exhibited
moderate catalytic activity. However, this is significantly lower than that observed in the
Mannich reaction under similar conditions [31].

Table 1. Catalytic effects of Group IVB transition metal Lewis acids on the three-component synthesis
of 1 1.
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Entry Catalyst (10 mol%) Reaction Time (h) Isolated Yield (%)

1 Hf(OTf)4 18 71
2 HfCl4 24 55
3 Hf(acac)4 24 trace
4 HfCp2Cl2 24 trace
5 ZrCl4 24 trace
6 ZrCp2Cl2 24 trace
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1 Acetophenone/benzaldehyde/Cbz-NH2 1:1:1.5 mmol ([benzaldehyde] = 0.5 M).

In the following research, the effects of solvent on the Hf(OTf)4-catalyzed three-
component synthesis of 1 were explored. The experimental results (Table 2, Entry 1–4)
showed that Hf(OTf)4 exhibited similar moderate catalytic activities in CH2Cl2, toluene,
and THF with an even slower reaction rate, whereas Hf(OTf)4 was totally ineffective in DMF.
Interestingly, under solvent-free conditions, the reaction time was remarkably shortened
to 8 h and the yield of 1 was improved to 82%. The elevation of reaction temperature
from 20 to 80 ◦C further shortened the reaction time to 30 min and increased the yield
to 91%. However, the yield of 1 dropped when the temperature increased to 100 ◦C due
to the generation of polar by-products (Table 2, Entry 6–7). In addition, the amount of
Hf(OTf)4 catalyst was also optimized. The experimental results showed that when as
little as 2 mol% Hf(OTf)4 was used, the reaction could still afford 1 in an excellent yield
(90%) within 2 h. However, further reducing the amount of Hf(OTf)4 to 1 mol% caused
an incomplete reaction and a drop in yield. In a control experiment, when Hf(OTf)4 was
replaced by TfOH, the reaction under the same conditions only afforded a trace amount
of 1, confirming the catalytic role of Hf(OTf)4.
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Table 2. Effects of solvent, temperature, and amount of catalyst loading on the three-component
synthesis of 1 1.
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4 DMF 10 20 24 n. r.
5 CH3CN 10 20 18 71
6 Solvent-free 10 20 8 82
7 Solvent-free 10 80 0.5 91
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10 Solvent-free 2 80 2 90
11 Solvent-free 1 80 8 72
12 Solvent-free 2 (TfOH) 80 2 trace

1 Acetophenone/benzaldehyde/Cbz-NH2 1:1:1.5 mmol ([benzaldehyde] = 0.5 M).

With the optimized conditions, the substrate scope of the Hf(OTf)4-catalyzed direct
synthesis of β-carbamate ketones was explored. The data in Table 3 showed that this
new approach tolerated a variety of substituents on both acetophenone and benzalde-
hyde substrates at different positions. It also maintained a good catalytic efficacy in the
synthesis of ethyl carbamate products. As shown in Table 3, a range of β-carbamate
carbonyl compounds 1–20 were obtained in 75–91% yields in 2–4 h under solvent-free
conditions. It was noted that the reactions with p-nitrobenzaldehyde were relatively
slower and lower-yielding. This is in accordance with the previous reports that nitro-
containing benzaldehydes are typically less reactive substrates in this three-component
reaction [17,19,20,32].

Multicomponent reactions (MCRs), which employ three or more reactants to yield
a product derived from all the starting materials in a one-pot manner, have long been
recognized as a powerful tool to enrich molecular diversity in natural product synthesis
and medicinal chemistry [33–35]. However, the revelation of the reaction mechanisms of
MCRs, which is crucial for condition optimization and the manipulation of stereochem-
istry outcomes, has always been a challenging task due to the multiple potential reaction
pathways and the difficulty of capturing key intermediates [35–37]. To elucidate the reac-
tion pathway for the three-component synthesis of β-carbamate ketones, we separately
tested the reactivity of each component to another under solvent-free conditions. As
shown in Scheme 1A,B, Cbz-NH2 does not react with either acetophenone or benzaldehyde
alone in the presence of 2 mol% of Hf(OTf)4 at 80 ◦C, which excluded the possibility of
a Mannich-type reaction mechanism. On the other hand, simply heating benzaldehyde
and acetophenone at 80 ◦C without Hf(OTf)4 caused no reaction (Scheme 1C). However,
the addition of Hf(OTf)4 dramatically promoted the aldol condensation to afford chalcone
in a high yield (90%, 2 h). This result is in agreement with the precedents of metal Lewis
acid-catalyzed aldol condensation [38–40]. In the next stage, we tested the reaction be-
tween Cbz-NH2 and chalcone in the presence or absence of Hf(OTf)4 (Scheme 1D). The
experimental results showed that the two components did not react in the absence of a
catalyst. In contrast, Hf(OTf)4 catalyzed the highly efficient conversion to 1 (99%, 1 h).
This result is supported by the previous reports on the catalytic aza-Michael addition of
carbamates to enones [32,41–43]. Taken together, it is proposed that the Hf(OTf)4-catalyzed
three-component reaction proceeds via sequential aldol condensation and aza-Michael
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addition to afford the desired β-carbamate ketones (Scheme 2). Hf(OTf)4 exerts catalytic
effects on both steps. This is perhaps because the Hf(IV) strongly activates the carbonyl-
containing substrates, including benzaldehyde, acetophenone, and chalcone, in both steps
(Scheme 2), as has been demonstrated in previous research [27,31,32,44].

Table 3. Hf(OTf)4-catalyzed three-component synthesis of β-carbamate ketones 1–20.
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3. Materials and Methods
3.1. General Methods

Chemical reagents and solvents were purchased from Leyan-Shanghai Haohong Sci-
entific Co., Ltd., Shanghai, China. Reactions were monitored by TLC plates coated with
0.25 mm silica gel 60 F254 and visualized by UV irradiation (254 nm). Flash column chro-
matography employed silica gel (particle size 32–63 µm, Qingdao Haiyang Chemicals,
Qingdao, China). NMR spectra were acquired on an AV-400 instrument (Bruker BioSpin,
Faellanden, Switzerland) with chemical shifts reported in ppm and referenced to CDCl3.
IR spectra were obtained with a Vertex-70 instrument (Bruker Optics, Billerica, MA, USA).
High-resolution mass spectra were obtained with a Dalton micrOTOF-Q II spectrometer
(Bruker Optics, Billerica, MA, USA) and reported as m/z. Melting points were determined
with an X-4 digital melting point apparatus and uncorrected (Tech Instrument, Beijing,
China). The characterization data of known compounds 1–9, 11, and 13–17 are in agree-
ment with previous reports [17,18,20,23,32,45] and listed in the Supplementary Materials.
The characterization spectra of new compounds 10, 12, 18–20 are also provided in the
Supplementary Materials.

3.2. General Synthetic Procedure and Characterization of β-Carbamate Ketones

Hf(OTf)4 (0.04 mmol, 0.02 eq.) was added to a mixture of aldehyde (2 mmol, 1.0 eq.),
ketone (2 mmol, 1.0 eq.), and carbamate (3 mmol, 1.5 eq.) in an open glass vial (10 mL).
The reaction was stirred at 80 ◦C in an aluminum heating module for 2–4 h. The reaction
mixture was cooled, dissolved in CH2Cl2 (1 mL), and loaded on a silica gel column. Flash
column chromatography (PE/EA = 5:1) afforded products 1–20 in pure form.
Benzyl (3-(4-chlorophenyl)-3-oxo-1-(o-tolyl)propyl)carbamate (10): a white solid, mp: 108–109 ◦C.
1H NMR (400 MHz, CDCl3): δ 7.82 (d, J = 7.9 Hz, 2H), 7.41–7.26 (m, 8H), 7.18–7.11 (m,
3H), 5.58–5.44 (br, 2H), 5.14–5.03 (m, 2H), 3.61 (d, J = 14.8 Hz, 1H), 3.42 (d, J = 14.8 Hz, 1H),
2.44 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 196.7, 155.7, 140.0, 139.3, 136.5, 135.8, 135.2,
131.0, 129.7 (×2), 129.1 (×2), 128.7 (×2), 128.3, 128.2, 127.8, 126.6, 125.5, 67.0, 48.5, 43.8, 19.5;
IR (KBr): vmax 3422, 3064, 3031, 2951, 1692, 1588, 1570, 1523, 1455, 1400, 1340, 1252, 1177,
1136, 1092, 1043, 1013, 989, 899, 832, 755 cm−1; HRMS (ESI+): m/z calcd for C24H23ClNO3
[M + H]+ 408.1361; found 408.1365.
Benzyl (3-oxo-1-(o-tolyl)-3-(p-tolyl)propyl)carbamate (12): a white solid, mp: 72–74 ◦C. 1H
NMR (400 MHz, CDCl3): δ 7.79 (d, J = 7.9 Hz, 2H), 7.38–7.32 (m, 6H), 7.23 (d, J = 7.9 Hz,
2H), 7.19–7.12 (m, 3H), 5.68 (br, 1H), 5.58–5.50 (m, 1H), 5.11–5.03 (m, 2H), 3.67–3.49 (m, 1H),
3.49–3.27 (m, 1H), 2.46 (s, 3H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 197.5, 155.7,
144.3, 139.8, 136.6, 135.7, 134.5, 130.9, 129.5 (×2), 128.7, 128.6, 128.4 (×2), 128.3, 128.2 (×2),
127.7, 127.1, 125.6, 66.9, 48.6, 43.6, 21.8, 19.5; IR (KBr): vmax 3357, 3063, 3032, 2934, 1673,
1606, 1571, 1524, 1454, 1407, 1258, 1181, 1102, 1041, 810, 738 cm−1; HRMS (ESI+): m/z calcd
for C25H26NO3 [M + H]+ 388.1907; found 388.1910.
Ethyl (1-(4-chlorophenyl)-3-oxo-3-(p-tolyl)propyl)carbamate (18): a white solid, mp: 109–110 ◦C.
1H NMR (400 MHz, CDCl3): δ 7.78 (d, J = 8.2 Hz, 2H), 7.31–7.26 (m, 4H), 7.23 (d, J = 8.2 Hz,
2H), 5.86 (br, 1H), 5.25 (m, 1H), 4.09 (q, J = 7.0 Hz, 2H), 3.72–3.53 (m, 1H), 3.39 (m, 1H), 2.39
(s, 3H), 1.21 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 197.5, 156.1, 144.6, 140.4,
134.3, 133.2, 129.6 (×2), 128.9 (×2), 128.4 (×2), 128.0 (×2), 61.2, 51.3, 43.8, 21.8, 14.7; IR (KBr):
vmax 3345, 3033, 2980, 2928, 1688, 1607, 1531, 1492, 1444, 1410, 1367, 1335, 1257, 1182, 1091,
1047, 1014, 979, 813, 779, 759 cm−1; HRMS (ESI+): m/z calcd for C19H21ClNO3 [M + H]+

346.1204; found 346.1206.
Ethyl (1-(2-chlorophenyl)-3-oxo-3-(p-tolyl)propyl)carbamate (19): a white solid, mp: 125–126 ◦C.
1H NMR (400 MHz, CDCl3): δ 7.79 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 7.5 Hz, 1H), 7.32 (d,
J = 7.5 Hz, 1H), 7.24–7.19 (m, 3H), 7.15 (dd, J1 = J2 = 7.5 Hz, 1H), 6.16 (br, 1H), 5.60 (m, 1H),
4.07 (q, J = 6.9 Hz, 2H), 3.68–3.54 (m, 1H), 3.47–3.37 (m, 1H), 2.38 (s, 3H), 1.20 (t, J = 6.9 Hz,
3H); 13C NMR (100 MHz, CDCl3): δ 198.0, 155.9, 144.5, 139.1, 134.3, 132.4, 129.9, 129.5 (×2),
128.7, 128.4 (×3), 127.2, 61.1, 49.8, 42.1, 21.7, 14.6; IR (KBr): vmax 3443, 2979, 1679, 1535, 1442,
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1406, 1350, 1260, 1180, 1060, 805, 755 cm−1; HRMS (ESI+): m/z calcd for C19H21ClNO3
[M + H]+ 346.1204; found 346.1208.
Ethyl (1-(2-methoxyphenyl)-3-oxo-3-(p-tolyl)propyl)carbamate (20): a white solid, mp: 117–118 ◦C.
1H NMR (400 MHz, CDCl3): δ 7.81 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.4 Hz, 1H), 7.25–7.17 (m,
3H), 6.90 (dd, J1 = J2 = 7.4 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 5.98 (br, 1H), 5.54–5.52 (m, 1H),
4.08 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 3.54–3.40 (m, 2H), 2.38 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H);
13C NMR (100 MHz, CDCl3): δ 198.0, 156.7, 156.0, 144.0, 134.6, 129.4 (×2), 129.3, 128.7 (×2),
128.5 (×2), 120.9, 110.9, 60.9, 55.5, 49.7, 43.6, 21.7, 14.7; IR (KBr): vmax 3442, 3063, 2934, 2837,
1719, 1681, 1606, 1493, 1463, 1439, 1408, 1368, 1289, 1245, 1181, 1107, 1048, 812, 754 cm−1;
HRMS (ESI+): m/z calcd for C20H24NO4 [M + H]+ 342.1700; found 342.1701.

4. Conclusions

In summary, we developed a Hf(OTf)4-catalyzed one-pot method for the synthesis
of β-carbamate-protected Mannich bases directly from the reaction of aldehydes, ketones,
and carbamates. Compared to the previously reported catalytic systems, this new method
only requires 2 mol% catalyst and affords a diversity of β-carbamate ketones under solvent-
free conditions in excellent yields within only 2–4 h. Our experimental results based
on sequential bimolecular reactions show that the Hf(OTf)4-catalyzed three-component
reaction should not be categorized as a Mannich or Mannich-type reaction. The replacement
of amine with much less reactive carbamate radically changes the reaction pathway to
sequential aldol condensation and aza-Michael addition.

Supplementary Materials: The characterization data of known compounds and Figures S1–S20: The
characterization spectra of new compounds [17,18,20,23,32,45].
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