
Effect of Start-Up Strategies and Electrode Materials on
Carbon Dioxide Reduction on Biocathodes

Soroush Saheb-Alam,a Abhijeet Singh,b Malte Hermansson,c Frank Persson,a Anna Schnürer,b Britt-Marie Wilén,a

Oskar Modina

aChalmers University of Technology, Department of Architecture and Civil Engineering, Division of Water
Environment Technology, Gothenburg, Sweden

bSwedish University of Agricultural Sciences, Department of Molecular Sciences, BioGas Group, Unit of
Microbiology, Uppsala, Sweden

cUniversity of Gothenburg, Chemistry and Molecular Biology, Gothenburg, Sweden

ABSTRACT The enrichment of CO2-reducing microbial biocathodes is challenging.
Previous research has shown that a promising approach could be to first enrich bio-
anodes and then lower the potential so the electrodes are converted into biocath-
odes. However, the effect of such a transition on the microbial community on the
electrode has not been studied. The goal of this study was thus to compare the
start-up of biocathodes from preenriched anodes with direct start-up from bare elec-
trodes and to investigate changes in microbial community composition. The effect
of three electrode materials on the long-term performance of the biocathodes was
also investigated. In this study, preenrichment of acetate-oxidizing bioanodes did
not facilitate the start-up of biocathodes. It took about 170 days for the preenriched
electrodes to generate substantial cathodic current, compared to 83 days for the
bare electrodes. Graphite foil and carbon felt cathodes produced higher current at
the beginning of the experiment than did graphite rods. However, all electrodes
produced similar current densities at the end of the over 1-year-long study (2.5
A/m2). Methane was the only product detected during operation of the biocathodes.
Acetate was the only product detected after inhibition of the methanogens. Micro-
bial community analysis showed that Geobacter sp. dominated the bioanodes. On
the biocathodes, the Geobacter sp. was succeeded by Methanobacterium spp., which
made up more than 80% of the population. After inhibition of the methanogens,
Acetobacterium sp. became dominant on the electrodes (40% relative abundance).
The results suggested that bioelectrochemically generated H2 acted as an electron
donor for CO2 reduction.

IMPORTANCE In microbial electrochemical systems, living microorganisms function
as catalysts for reactions on the anode and/or the cathode. There is a variety of po-
tential applications, ranging from wastewater treatment and biogas generation to
production of chemicals. Systems with biocathodes could be used to reduce CO2 to
methane, acetate, or other high-value chemicals. The technique can be used to con-
vert solar energy to chemicals. However, enriching biocathodes that are capable of
CO2 reduction is more difficult and less studied than enriching bioanodes. The effect
of different start-up strategies and electrode materials on the microbial communities
that are enriched on biocathodes has not been studied. The purpose of this study
was to investigate two different start-up strategies and three different electrode ma-
terials for start-up and long-term operation of biocathodes capable of reducing CO2

to valuable biochemicals.
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Increasing demand for fossil fuels and limited resources drive a search for renewable
energy sources and environmentally friendly production methods for chemicals.

Bioelectrochemical systems (BESs) constitute a new set of technologies, which has
developed quickly in research laboratories worldwide during the last decade. BESs
include, e.g., new methods for the treatment of wastewater, recovery of resources and
energy, storage of renewable electricity as chemical fuels, and environmental sensing
(1–3). Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of
BESs. In MFCs, microorganisms generate electricity by oxidizing organic compounds
and delivering electrons to the anode, from which the electrons travel through an
external circuit to the (usually aerobic) cathode (4). MECs are typically used to generate
a chemical product at the cathode. The electrons are given an extra energy boost by
applying an external input voltage. In MECs, the bioanode can provide some of the
reducing power needed for producing valuable chemicals, such as hydrogen gas, at the
cathode (5, 6).

In BESs, living microorganisms can also serve as catalysts on the cathode. For
example, biocathodes have been used to produce hydrogen (7–9), reduce carbon
dioxide to acetate (10, 11) and methane (12, 13), and reduce acetate to caproate (14).
Biocathodes may be especially beneficial for multielectron-reduction reactions, which
are difficult or impossible to achieve on abiotic cathodes. The use of biocathodes to
produce multicarbon chemicals from simple substrates is called microbial electrosyn-
thesis (11). The concept is attractive, as it would allow environmentally friendly pro-
duction of fuels and chemicals using only renewable electricity and carbon dioxide as
input. However, it is more difficult to enrich biocathodes than to enrich bioanodes (8,
15). Since bioanodes need less time for start-up than biocathodes, it would be bene-
ficial if it were possible to develop microorganisms on a bioanode and then switch
them to operate as a biocathode. Rozendal et al. (7) demonstrated this concept by
enriching hydrogenotrophic microorganisms on an anode surface and then switching
the potential to change the electrode into a hydrogen-producing biocathode. Geel-
hoed and Stams (9) also showed that Geobacter sulfurreducens, known for its ability to
transfer electrons to an anode, could catalyze H2 production when the cathode
potential was lowered to about �0.6 to �0.8 V versus the standard hydrogen electrode
(SHE). Pisciotta et al. (15) investigated the possibility of adapting mixed-culture anodic
biofilms to cathodic conditions at different cathode potentials. Their biocathode pro-
duced hydrogen and methane, and they suggested that the technique of switching a
bioanode to a biocathode can be helpful for enriching biocathodes capable of pro-
ducing biofuels from carbon dioxide. Hartline and Call (16) compared different organic
substrates and anode enrichment potentials for the conversion of bioanodes to bio-
cathodes. Electrodes that had been preenriched on formate at a high anode potential
(�0.15 V versus SHE) generated higher cathodic current than electrodes preenriched
on acetate or at lower potential (�0.15 V versus SHE). The technique of switching
bioanodes to biocathodes for the start-up of MECs looks promising. However, previous
studies have not investigated the effects a switch from anodic to cathodic conditions
have on an electrode’s microbial community. The first goal of this study was to
investigate if the microorganisms enriched on a bioanode also dominate when the
electrode is switched into a biocathode or if a new microbial community develops, as
well as to compare the microbial communities on biocathodes preenriched as bioan-
odes and on biocathodes started without preenrichment.

Moving to the biofilm level, the interface between the electrode material and the
microorganisms in BESs can affect the performance and efficiency of biocathodes.
Recently, it was shown that surface topography and chemistry impact the interaction,
such as direct/indirect electron transfer between electrodes and microorganisms, and
it was suggested that composite materials that combine high conductivity with good
biocompatibility, for instance, metallic backbone with a carbon coating, lead to higher
production efficiency (17). Several different electrode materials were investigated by
Mohanakrishna et al. (18) in a single-chamber MEC. They suggested that VITO-CoRE
(cold-rolling polymer-bound electrode) was effective as a biocathode for acetate
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production. The production of acetate has also been studied by Zhang et al. (19) using
different modified carbon cloths and Sporomusa ovata as the sole microorganism in the
cathode chamber. They suggested that carbon cloth modified by cyanuric chloride
increased acetate production up to 7-fold compared to untreated carbon cloth. Carbon
has been used as biocathode material in different studies, since it is inexpensive and
biocompatible. Most of the previous research investigated different types of carbon
electrodes during relatively short time spans. However, there is a lack of knowledge
about the long-term performance of different types of carbon biocathodes. The other
goal of this study was therefore to compare three types of carbon electrodes (carbon
felt, graphite foil, and graphite rods) during long-term operation of biocathodes.

In the experiment, two microbial electrolysis cells (MEC1 and MEC2) were operated
for over 1 year. Each reactor contained duplicate electrodes of the three tested carbon
materials. Two start-up strategies were tested for the enrichment of CO2-reducing
biocathodes. In MEC1, the electrodes were preenriched as acetate-oxidizing bioanodes
by controlling the electrode potential at �0.2 V versus SHE. Then, the potential was
lowered to �0.65 V versus SHE to convert the electrodes into biocathodes. In MEC2, the
electrodes were operated as biocathodes at �0.65 V versus SHE from the start of the
experiment. To inhibit methanogens, 2-bromoethanesulfonate was added to the reac-
tors 1 month before the end of the experiment. This allowed us to investigate the
transition from methanogenic to acetogenic biocathodes. The microbial community
composition of the preenriched bioanodes and biocathodes was investigated using
high-throughput sequencing of the V4 region of the 16S rRNA gene (20). Acetogens
were expected to play a key role on the biocathodes (especially after the inhibition of
methanogens). Therefore, community changes were also assessed using terminal re-
striction fragment length polymorphism (TRFLP) targeting the formyltetrahydrofolate
synthetase (FTHFS) gene, which is used as a marker gene for acetogens using the
Wood-Ljungdahl pathway (21). The biocatalytic activities of the electrodes were com-
pared using electrochemical techniques and analysis of the dissolved and gaseous
reaction products.

RESULTS
Overall current production in both MECs. Figure 1 shows the total current

produced by MEC1 and MEC2. In MEC1, at the potential of �0.2 V versus SHE, the
electrodes were working as anodes, and a positive current was generated. The negative
current in both MECs represents the current produced when the electrodes were

FIG 1 Current generation with time in MEC1 and MEC2. The positive current in MEC1 represents the
current when the anodes were controlled at �0.2 V versus SHE. The negative current in both MECs
represents the current when cathodes were controlled at �0.65 V versus SHE. Dashed lines indicate
when normal operation was stopped and CV tests were carried out.
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controlled at �0.65 V versus SHE and they were working as cathodes. The increase in
current in MEC1 after 6 days shows the biological activity on the surface of the anodes.
Microorganisms began to oxidize acetate and deliver electrons to the electrodes. Drops
in current in MEC1 occurred when acetate was consumed in the nutrient medium.
When this occurred, the medium was replaced (Fig. 2). The current reached around 2.5
A/m2 before the potential was switched to �0.65 v versus SHE in MEC1. After lowering
the potential, the current dropped to 0.016 � 0.007 A/m2 for approximately the next
170 days. This showed that the microorganisms dominating on bioanodes were not
capable of operating as biocathodes when the potential was switched. About 170 days
after the potential switch, the cathodic current increased to around 0.6 A/m2, and for
the rest of the experiment, it fluctuated between 0.6 A/m2 and 3.6 A/m2, which showed
that biocathodes had been enriched.

In MEC2, the cathodic current was initially 0.0078 � 0.0077 A/m2. Bioelectrochemical
activity was observed to increase after approximately 83 days, when the cathodic
current reached around 0.1 A/m2. For the next 120 days, the current increased to
approximately 0.6 A/m2 and fluctuated between 0.6 A/m2 and 3.3 A/m2 until the end
of the experiment. Occasional drops in current generation happened when the refer-
ence electrode malfunctioned. Another reason for temporary drops in current was the
cyclic voltammetry (CV) tests, which can have an effect on the activity of the electrodes
due to variation in the potential applied to the MECs during the tests (22).

Individual assessment of electrodes. Disconnection and CV tests were carried out
to investigate the individual performance of each electrode in both MEC1 and MEC2.
Disconnection tests were done by measuring the current generation before and after
disconnecting one electrode from the potentiostat. The difference between total
current generation before and after disconnecting the electrode showed the individual
current production for that specific electrode. Three tests were done 138, 245, and 414
days after starting the MECs. Figure 3 shows the results of the disconnection tests from
the different biocathode materials in MEC1 and MEC2. On days 138 and 245, the

FIG 2 Schematic time plan for MECs. Arrows represent different actions that took place during the experiment.
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graphite foil and carbon felt electrodes produced more current than the graphite rod
electrodes. However, on day 414 at the end of the study, all electrode materials
produced a similar current. It should be noted that the current densities shown in Fig.
3 were calculated based on the projected surface areas of the electrodes. However, the
carbon felt has a significantly higher actual surface area because it consists of a large
number of intertwined carbon fibers.

The results from the CV tests for MEC1 are shown in Fig. 4. The first two tests were
carried out before lowering the potential. The CV test after 71 days showed an increase
in current at �0.2 V versus SHE. This type of anodic peak is usually seen in CV tests with

FIG 3 Disconnection tests for measuring current production by the individual electrodes in MEC1 and MEC2. Top, three
electrodes that were installed from top of the MECs (graphite foil, carbon felt, and graphite rod from top); bottom, duplicates
that were installed near the bottom.

FIG 4 Six different CV tests for MEC1. The first two tests were done before switching the potential from �0.2 to
�0.65 V versus SHE, and the other four tests were done after switching the potential. One graphite foil electrode
was removed from MEC1 on day 313 due to technical problems.
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acetate-fed bioanodes (e.g., 23) and indicates that acetate is being oxidized bioelec-
trochemically. The graphite foil electrode showed a higher and more distinct anodic
peak than the other electrode materials. Directly after switching the potential, after 81
days of incubation, the CV tests still showed some catalytic waves. An anodic peak at
around �0.2 V versus SHE indicated that the acetate-oxidizing biofilm still responded
to the CV. There are also some cathodic peaks, and the onset of H2 evolution, at the
potential of �1 V versus SHE, appears to be slightly shifted to a more positive potential
than the CV tests from day 1. However, only a very low cathodic current (0.016 � 0.007
A/m2) was observed when the electrodes were controlled at �0.65 V versus SHE (Fig.
1). From day 250 and onwards, the CV tests have a different shape, showing several
reduction peaks. The onset of H2 evolution is markedly shifted from �1 V versus SHE
to a more positive potential, especially on days 325 and 404. Reduction peaks were
observed at potentials of �0.24 V, �0.4 V, and �0.6 V versus SHE. The final CV test, at
404 days after incubation, was carried out after inhibition of methanogens with
2-bromoethanesulfonate, and this showed that an acetogenic biofilm developed on
rod electrodes, which produced significantly higher cathodic current at �0.5 V versus
SHE than the methanogenic biofilm before inhibition.

Figure 5 shows six different CV tests for MEC2. On day 81, sustained cathodic current
generation had begun when the cathode was controlled at �0.65 V versus SHE, and a
distinct reduction peak is observed around that potential in the CV. As time progresses,
the H2 evolution peak is more and more clearly shifted toward a more positive
potential. Similar to MEC1, several peaks appear in the voltammograms, indicating the
presence of several redox-active components with different redox potentials on the
electrode surfaces. Except for day 404, the graphite felt and graphite foil electrodes had
a steeper increase in cathodic current peaks, which corresponds to the higher current
densities generated by these two electrode materials than with the graphite rod
electrodes in MEC2 during the initial phase of the experiment (Fig. 3). The final CV tests,
at day 404, showed a clear biological response despite the methanogens being
inhibited.

Methane and acetate production. During the experiment, methane was produced
in the cathode chamber as the only noticeable gas. Figure 6 shows the results for the
period between day 335 and day 349. The methane production is compared with the
theoretical methane production.

FIG 5 Six different CV tests for MEC2. Two graphite foil electrodes were removed from the MEC on day 271 due
to technical problems.
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The methane accumulation in MEC1 was approximately 0.1 mol/m2 · day. The
methane concentration was around 50% of the theoretical methane calculated based
on the average current flow during the 2-week period. The methane production in
MEC2 was approximately 0.075 mol/m2 · day, which was approximately 38% of the
theoretical production. The methane production in MEC1 was higher than in MEC2 due
to the higher current generated in MEC1. However, in both MECs, the methane
production was less than the theoretical value, which can be explained by systematic
gas losses either from the reactors or during sampling and analysis. Microbial growth
can also partly explain the discrepancy between the theoretical and measured values.
However, methanogens are only expected to use 8% of the electrons for assimilation
(24); thus, gas loss was likely the major reason. Furthermore, total organic carbon (TOC)
and high-performance liquid chromatography (HPLC) analysis showed there was no
dissolved organic carbon produced during the 2-week period, which confirms that
systematic gas losses occurred in the reactors. Similar methane production rates were
measured for both MECs in other 2-week periods (see Fig. S3 in the supplemental
material).

Figure 6 also shows the acetate production for both MECs between day 388 and day
401 after the addition of 10 mM 2-bromoethanesulfonate to the nutrient medium.
MEC1 and MEC2 produced acetate at a rate of 0.218 mol/m2 · day (0.82 mM/day) and
0.204 mol/m2 · day (0.61 mM/day), respectively. In both MECs, the acetate production
curve had a slope similar to that of the theoretical acetate production curve. This
showed that almost 100% of the current was converted to acetate in both cells; thus,
the losses through the membrane were negligible. Theoretical acetate production was
calculated based on current generation in the reactors. The acetate production rate
was slightly higher in MEC1 than in MEC2 due to the slightly higher current that was
produced during the 2-week period. Hydrogen gas was produced up to a maximum of
0.26 mmol and 0.04 mmol in MEC1 and MEC2, respectively, after 4 days, when the
inhibitor was added for the first time. Then, the concentration of hydrogen decreased
to nondetectable levels after 5 days.

FIG 6 Methane (top) and acetate (bottom) production over a 2-week period in MEC1 and MEC2. The theoretical production refers to the methane or acetate
that should be produced from the current which flowed through the MEC. Experimental production refers to the methane or acetate that was measured in
the experiment.
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Microbial community analysis. Figure 7 shows the relative abundances of the 20
most abundant operational taxonomic units (OTUs) in the MECs, based on 16S rRNA gene
sequences. The inoculum contained a diverse community of bacteria distributed among
the phyla Spirochaetes, Bacteroidetes, and Proteobacteria. The community on the bioanodes
in MEC1, after 71 days of operation, had shifted considerably to a community dominated
by Geobacter sp. (�40%) on all electrode materials. On the biocathodes, after 363 days of
operation, the most abundant sequences were affiliated with the genus Methanobacterium
(phylum Euryarchaeota), with a relative abundance over 50% in both MEC1 and MEC2,
before adding the methanogen inhibitor 2-bromoethanesulfonate. Even after 30 days of
2-bromoethanesulfonate treatment, Methanobacterium was the second largest OTU. After
2-bromoethanesulfonate addition, Acetobacterium sp. (phylum Firmicutes) was the most
abundant group of bacteria, with over 40% relative abundance. Apart from the dominating
OTUs on the bioanodes and biocathodes, many bacterial phyla were present at a lower
relative abundance (less than 5%). Also, these less-abundant OTUs were different in
abundance over time. Ordination analysis showed that the inoculum, anodes, and cathodes
formed three distinct clusters. The communities on the cathodes before and after the
addition of 2-bromoethanesulfonate were also somewhat separated from each
other (Fig. S1).

TRFLP analysis targeting the FTHFS gene showed distinct shifts in the microbial com-
munity similar to those for the whole bacterial community in a comparison of the bioan-
odes and the biocathodes before and after the addition of 2-bromoethanesulfonate. Out of
12 different TFRs, 5 TFRs (132, 232, 328, 448, and 528 bp) were exclusive for the bioanodes,
and the remaining 7 TFRs (80, 108, 128, 212, 226, and 404 bp) were exclusive for the

FIG 7 Relative abundances of the 20 most abundant 16S rRNA gene sequences in the bioanodes, biocathodes before and after adding 2-bromoethanesulfunate
(BES), medium at the end of the experiment, and inoculum. LA refers to abundances of �0.1%. *, electrodes that were placed in MEC1 after removing bioanodes.
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biocathode. Two TRFs (128 and 212 bp) only occurred on the biocathodes after the addition
of 2-bromoethanesulfonate. The TRFs 632 and 636 bp (which represent the uncut frag-
ment) were observed in all sample groups (Fig. S2).

DISCUSSION
Successions in microbial community composition. The hypothesis at the start of

this study was that the enrichment of bioanodes in MEC1 would facilitate the start-up
of biocathodes. However, when the potential was switched from �0.2 V to �0.65 V
versus SHE in MEC1, only a very low cathodic current was observed for about 170 days.
This was despite the fact that in MEC1, when the electrodes were initially operated as
bioanodes fed with acetate, the microbial community was dominated by Geobacter sp.
at a relative abundance of �40%. Both Geobacter spp. and Desulfovibrio spp., which
were also abundant on the bioanodes, have been shown previously to catalyze
hydrogen production on biocathodes. However, previous studies with these microor-
ganisms used cathode potentials from �0.7 to �1 V versus SHE, which are lower than
the �0.65 V versus SHE used in our study (9, 25). The difference in results could possibly
also be explained by differences at the species level, e.g., different species of Geobacter
and Desulfovibrio were enriched in other studies compared to the present study. This
might explain why the bioanodes did not generate cathodic current.

On an anode, Geobacter sp. can generate electricity by transferring electrons directly
to a solid electrode, in the absence of an electron shuttle (26), via pili (27, 28). Previous
studies have shown that Geobacter spp. are highly selected for in acetate-fed bioanodes
(29–32). Other electrogenic microorganisms detected in our anode biofilms included
Desulfovibrio sp. (2.5 to 4.4%) and potentially bacteria within Desulfuromonadaceae (0
to 4.8%) and Sulfurospirillum (0.7 to 4.8%). Desulfovibrio spp. are often found on
bioanodes (33), and previous research has shown that pure cultures of Desulfovibrio
desulfuricans can generate current in microbial fuel cells by direct electron transfer (34).
Desulfuromonas spp. are also known to transfer electrons to anode surfaces (26), and
Sulfurospirillum spp. have been observed at high abundances on biocathodes, where
they may be involved in electron transfer (10).

Acetogens were expected to play a key role on the biocathodes, as they are capable
of reducing CO2, and several acetogens have previously been shown to be electro-
chemically active (35). TRFLP of the key acetogen gene FTHFS showed a distinct shift
when the electrodes were converted from anodes to cathodes. The five TRFs observed
on the bioanodes were completely absent on the biocathodes. Instead, distinct cathode
biofilm communities developed that were highly similar in MEC1 and MEC2 (Fig. S1 and
S2), indicating that the selective forces shaping the specific cathode communities were
in fact profound, given the different paths taken for the two MECs, from the founding
seed sludge community to mature biocathodes. At present, these TRFs are difficult to
identify, as no database exists exclusively for the FTHFS gene. In the seed sludge, only
a fraction (�0.3%) were archaea, and virtually no methanogens were detected, despite
a sequencing depth exceeding 2,000 reads per sample. Despite this, OTUs identified as
Methanobacterium spp., which are known as hydrogenotrophic methanogens (36),
were dominating the biocathodes at relative abundances of 54 to 97% in MEC1 and
MEC2, and CH4 was identified as the only generated product in both reactors. In many
MECs, Methanobacterium spp. and Methanobrevibacter spp. dominate the microbial
communities (13, 37–39). Previously, Cheng et al. (13) showed that both a pure culture
of Methanobacterium palustre and a mixed culture dominated by that archaeon could
produce methane by reducing carbon dioxide, using a cathode as electron donor.
Other studies have also found that Methanobacterium spp. and mixed cultures of
hydrogenotrophic methanogens can produce methane either through direct electron
transfer from the cathode or indirectly via hydrogen (37, 39, 40). Compared to the
archaeal communities, the function of the bacterial communities on the biocathode is
not as straightforward. However, just as for the methanogenic archaea, specific bacteria
different from those in the inoculum and the anode (MEC1) proliferated on the cathode
in both MECs. Even though the role of these bacteria is not clear, they most likely have
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multiple roles for the overall function and therefore the methane production on the
cathodes, as recently indicated (38). For example, less-abundant members of microbial
communities may be important for shuttling electrons from the cathode surface to the
methanogens, e.g., by catalyzing H2 generation.

The biocathodes in both MECs generated current densities varying between 0.6
A/m2 and 3.6 A/m2. This is comparable to the results of a previous study by van
Eerten-Jansen et al. (41), which reported average current densities of about 2.9 A/m2

generated by methane-producing graphite felt biocathodes enriched at a potential of
�0.7 V versus SHE. Although the current densities in MEC1 and MEC2 eventually
reached similar levels, the biocathodes enriched from bare electrodes at �0.65V versus
SHE in MEC2 started up significantly faster than the biocathodes preenriched as
bioanodes in MEC1. The reason for this could be that the specific microbial community
enriched on the bioanodes in this study was not capable of cathodic current generation
at �0.65 V versus SHE, and a complete transformation of the microbial community on
the electrode surfaces was needed before current generation could commence. This is
in contrast to some previous studies which have shown that preenrichment of bioan-
odes facilitated biocathode start-up (7, 15, 42).

When 2-bromoethanesulfonate was added to inhibit methanogens, the Methano-
bacterium spp. decreased in relative abundance, and Acetobacterium sp. increased in
relative abundance from 0.1 to 13.5%, before inhibitor addition, to 29 to 77% at 32 days
after the addition. Other studies of biocathodes operated with 2-bromoethanesulfonate
as an inhibitor have also found Acetobacterium spp. in the microbial communities (10,
43, 44). For example, Su et al. (43) found that the biocathode community was domi-
nated by a relative of Acetobacterium woodii. Nevin et al. (35) tested the bioelectro-
chemical activity of several acetogenic bacteria, including three Sporomusa spp., two
Clostridium spp., and Moorella thermoacetica, and showed that these groups were
capable of accepting electrons from a cathode and produce organic acids. Interestingly,
Acetobacterium woodii was found to be unable to directly use electrons from the
cathode surface (11, 35). Acetobacterium spp. are, however, known to produce acetate
by oxidizing hydrogen and reducing carbon dioxide (45). Two new FTHFS gene TRFs
(128 and 212 bp) emerged after methanogens were inhibited in the reactors. In silico
digestion of the FTHFS gene of Acetobacterium woodii (accession no. NC_016894.1)
showed a fragment different from those obtained in the experiment TRFLP. Thus, the
OTU enriched on the biocathodes after the addition of 2-bromoethanesulfonate likely
did not represent this species but rather other Acetobacterium spp. or other acetogens.

Mechanisms of CH4 and acetate production. Electron transfer from the cathode
surface to the microorganisms producing methane and acetate could theoretically take
place either via direct transfer to the microbial cell or via an intermediate, such as
hydrogen and acetate. The results from this study suggest that hydrogen was involved
as an intermediate. The dominating microorganisms under both CH4-producing
(Methanobacterium spp.) and acetate-producing (Acetobacterium spp.) conditions are
known hydrogenotrophs. When the methanogen inhibitor was added to the reactors,
there was no noticeable change in current generation. If the Methanobacterium spp.
had directly accepted electrons from the cathode surface, inhibiting its activity should
have resulted in lower current production before a new electrochemically active species
had established on the cathode surface. However, since no reduction in current
occurred, the Methanobacterium spp. most likely produced CH4 via an intermediate,
such as H2. In both MECs, the increase in current at around �1 V versus SHE (Fig. 4 and
5) corresponds to the hydrogen production reaction. The current peak at �1 V versus
SHE increased over time and was shifted to more positive potentials, also observed
previously by Marshall et al. (46), which suggests that the biofilms on the surfaces of the
cathodes could catalyze hydrogen production. However, except for low levels of
hydrogen detected during the first 4 days after addition of the methanogen inhibitor,
hydrogen was generally not detected in the headspace of the reactors. This suggests
that any hydrogen produced was rapidly consumed by other microorganisms in the
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reactors. The detection of some H2 gas after methanogen inhibition supports the
hypothesis that H2 was acting as a mediator in the system. In fact, it has recently been
shown that methanogenic consumption of dissolved H2 at the cathode can prevent H2

accumulation in the headspace (47). Then, the question arises, what was catalyzing the
H2 production? Bare carbon and graphite electrodes cannot generate the current
densities observed in this study at a potential of �0.65 V versus SHE (Fig. 1). Therefore,
H2 production must have been biologically catalyzed in the reactors. Hydrogenases are
reversible enzymes that can catalyze both the oxidation and production of H2. Free
enzymes present in the culture medium (48), whole cells containing hydrogenases (25,
49), and even dead cells and cell debris (50) can catalyze H2 production on cathodes.
For example, Deutzmann and Spormann (49) showed that a coculture of Acetobacte-
rium woodii and the strain IS4, which catalyzed H2 production on the cathode, could
generate acetate at a rate of 0.14 to 0.18 mol/m2 · day at �0.5 V versus SHE. van
Eerten-Jansen et al. (41) also concluded that in biocathodes operated at �0.7 to �0.9
V versus SHE, CH4 production was mainly taking place through intermediate production
of H2 and acetate. Given the high specificity of the cathodic biofilm community and the
inability of the anodic biofilm in MEC1 to assist in the start-up of biocathodes, one may
speculate that the microbes assisting in the generation of hydrogen were in fact
specific, although it remains unknown which community members provided the
activity.

The CV tests showed that the catalysis on the biocathodes improved over time.
Under normal operation conditions, the biocathodes were operated at �0.65 V versus
SHE. However, in the last CV tests, cathodic current started to increase at �0.24 V versus
SHE in both MECs (Fig. 5). This suggests that it may be possible to increase the
operation potential of the biocathodes and thereby decrease the input energy required
to run the system. Indeed, Pisciotta et al. (15) operated biocathodes at a potential of
�0.439 V versus SHE. The last CV was carried out on day 404 when methanogens were
inhibited and acetogens dominated the electrodes. This CV showed the strongest
biological response, with a large reduction peak at about �0.5 V versus SHE. The
change in the CV on this occasion compared to the previous tests could be because of
the change in microbial composition when the methanogens were inhibited and
acetogens took over.

Electrode material. Three electrode materials, graphite foil, carbon felt, and graph-

ite rods, were tested in this study. All materials had the same projected surface areas
in the reactors. Graphite foil has a very smooth surface, so the actual surface area is
probably similar to the projected area. Graphite rods have a rougher surface, and
carbon felt consists of a large number of intertwined carbon fibers, so the actual surface
area is much larger than the projected area. Despite this difference in actual surface
area, all electrodes generated similar levels of current in the end of the study. We
speculate that the reason for this could be that biofilm covering the outer part of
carbon felt limited the diffusion of chemical components to and from the inner surfaces
of the felt. Thus, the higher actual surface area did not automatically translate into
higher current. During start-up of the reactors, the graphite foil and the carbon felt
produced current faster than the graphite rods. The CV scans from day 1 of the
experiment (Fig. 4 and 5) showed a somewhat lower cathodic current at the negative
scan limit (�1.0 V versus SHE) for graphite rods than the other two electrode materials.
This cathodic current is associated with the hydrogen evolution reaction. When the
electrodes were polarized at �0.65 V versus SHE, low levels of abiotic H2 production at
the graphite foil and carbon felt electrodes could have facilitated a more rapid
establishment of hydrogen-oxidizing biofilms on these electrodes. Ordination (Fig. S1)
showed a small difference in microbial communities between different electrode
materials. Generally, biocathodes with the same material from the same type of
electrode clustered together, e.g., graphite rods in MEC1 and graphite foil in MEC2 (Fig.
S1). This suggests that even though the most abundant members of the microbial
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communities were the same among the cathodes, differences associated with the
electrode material still existed.

MATERIALS AND METHODS
Bioelectrochemical cell. Two Plexiglas double-chamber MECs were operated as batch reactors, with

a total volume of 750 ml for each chamber (34 by 6 by 3.5 cm). Six different electrodes, with 2 graphite
foils (catalog no. 43083, 1 mm thick; Alfa Aesar), 2 carbon felts (catalog no. 43199, 3.18 mm thick; Alfa
Aesar), and 2 graphite rods (catalog no. 14738, 6.15 mm diameter; Alfa Aesar), with a projected area of
approximately 11.4 cm2 each, were installed in one working chamber of each MEC. One graphite foil, one
carbon felt, and one graphite rod electrode were installed at the top half of each MEC, and another set
of electrodes was installed at the bottom half. Three graphite rod electrodes were used as counterelec-
trodes in the other chamber of each MEC. The MECs also contained an Ag/AgCl reference electrode, with
an offset of 0.197 V versus the standard hydrogen electrode (SHE), located in the working chamber. A
nutrient medium with a total volume of 750 ml was circulated through each working chamber at a flow
rate of 50 ml · min�1. The two chambers in each MEC (working and counter) were separated by a cation
exchange membrane (CMI-7000; Membranes International, Inc.).

Inoculum and nutrient medium. The MECs were inoculated with 20 ml of a mixture of raw
municipal wastewater and anaerobic digester sludge at a ratio of 9:1 and then filled to 750 ml with a
nutrient medium containing, per liter, 0.1 g of KCl, 0.6 g of KH2PO4, 0.25 g of NH4Cl, 3 g of NaHCO3, 0.1 g
of MgCl, and 0.03 g of CaCl. A trace element and vitamin solution, as described by Marshall et al. (46),
was added (20 ml per liter) to the medium mixture. Cysteine (0.5 g per liter) was also added to the
nutrient medium as an oxygen scavenger. The medium was replaced every week during bioanode
enrichment and every 2 to 4 weeks when cathodic current started to be generated. During the
replacement process, the medium was sparged with Ar-CO2 gas (85%/15%) to prevent aerobic condi-
tions. Sodium acetate (1.62 g per liter) was added to MEC1 during the first 71 days to enrich bioanodes.
The counterelectrode chamber in both MECs contained the same nutrient medium without the trace
element and vitamin solution.

Reactor operation. The two MECs were operated with two different start-up strategies. (i) The
electrodes in MEC1 were enriched as acetate-oxidizing bioanodes by controlling the potential at �0.2 V
versus SHE for the first 71 days. Then, acetate was removed from the nutrient medium, and the potential
was decreased to �0.65 V versus SHE, which made the electrodes work as cathodes during the rest of
the experiment. (ii) MEC2 was operated by controlling the cathode potential at �0.65 V versus SHE from
the start of the experiment. Three different electrodes in MEC1 were harvested for microbial community
analysis before switching the potential. To replace these three electrodes, three new electrodes were
added to MEC1. To investigate the ability of the microorganisms to produce hydrogen, acetate, or other
volatile fatty acids (VFA), 10 mM 2-bromoethanesulfonate was added to the nutrient medium after 387
days in order to inhibit any methanogens present on the biocathodes (Fig. 2). At day 363, before adding
2-bromoethanesulfonate, a part of the cathode electrodes from both MECs was cut and stored in a
freezer for microbial analysis. Cathode samples were also cut and stored in a freezer for microbial analysis
at the end of the experiment.

Analytical methods. During MEC operation, the potential was controlled using Wenking MLab
potentiostats, and the current was recorded by the MlabSci470c sequencer multichannel potentiostat
software (version 4.7.0). VFA concentrations were analyzed using a high-performance liquid chromatog-
raphy (HPLC) system equipped with a UV detector (Shimadzu) and an Aminex HPX-87H column (Bio-Rad),
with 5 mM H2SO4 eluent pumping at 0.5 ml/min. Biogas was collected in gas bags installed at the top
of the cathode chambers and was analyzed by gas chromatography (Micro GC system; Agilent). The
production rate was measured for several 2-week periods during the experiment. At the start of each
such 2-week period, the liquid in the reactor was replaced by fresh medium, and the gas bags were filled
with 500 ml of argon-CO2 gas. Theoretical methane was calculated for both MECs over these 2-week
measurements. Theoretical methane is defined as moles of methane per projected area of the cathode
surface, which can be produced theoretically considering the current flow in the MECs (equation 1).

CO2 � 8H� � 8e� → CH4 � 2H2O (1)

The pH was measured by a pH sensor (WTW Multi 350i). The bioelectrochemical activity of the
electrodes was investigated using cyclic voltammetry (CV). CV was done with scan limits of 0.5 V and
�1.0 V versus SHE at a scan rate of 5 mV/s. All electrochemical tests were carried out with the
Wenking MLab potentiostat. The current generation of each electrode was investigated by discon-
necting the electrode from the potentiostat and measuring the drop in the current after discon-
nection. The cathode potential was controlled at �0.65 V versus SHE during the disconnection test.

Microbial community analysis. In order to analyze the microbial communities present on the
surface of the electrodes, samples were collected before lowering the potential, before adding meth-
anogen inhibitor, and at the end of the experiment (Fig. 2). DNA was extracted using the FastDNA spin
kit for soil (MP Biomedicals). DNA concentrations were measured using a NanoDrop ND-1000 spectro-
photometer (Thermo Scientific). DNA extracts were diluted to 10 ng/�l with sterile water. The 16S rRNA
genes were amplified in duplicate using forward primer 515=F (GTGBCAGCMGCCGCGGTAA) and reverse
primer 806R (GGACTACHVGGGTWTCTAAT) to amplify the V4 region sequences of the bacterial and
archaeal 16S rRNA genes (20). Dual-index labeling for primers was done according to the approach
described by Kozich et al. (51). Duplicate PCRs were carried out in a 20-�l volume using 1 �l of target
DNA, 17 �l of AccuPrime Pfx SuperMix (Life Technologies), and 1 �l of the forward and reverse primers,
respectively. The PCR was conducted using a Bio-Rad T100 thermal cycler with a program consisting of
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activation (95°C, 5 min); 30 cycles of denaturation (95°C, 20 s), annealing (50°C, 20 s), and elongation
(68°C, 60 s); and a final elongation (68°C, 10 min). The products were purified (Agencourt AMPure system;
Beckman Coulter), normalized per concentration, and pooled prior to sequencing on an Illumina MiSeq
system using the MiSeq reagent kit version 2. The sequences obtained were processed using the UPARSE
workflow (52). Merged sequences with expected errors exceeding 3 or a sequence length below 200 bp
or above 300 bp were discarded for further analysis. OTU clustering (97% similarity) with chimera filtering
was done using the cluster_otus command. A total of 189,122 read sequences were obtained for all
samples, and these clustered into 788 OTU. Subsampling to 2,000 sequences per sample was done before
analysis with R using the ampvis package (53).

The FTHFS gene was amplified with previously developed primers (21), with some modifications (54).
For the restriction reactions, the amplified FTHFS gene fragment of �635 bp was purified using the E-Gel
Safe Imager system and E-Gel SizeSelect 2% agarose gels (Invitrogen). Ten nanograms of DNA was
digested overnight with the restriction enzyme AluI (New England BioLabs), and the TRFLP analysis
protocol was as described by Müller et al. (21).

Accession number(s). Raw data files were deposited to the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database available online, with study accession no.
PRJNA412029 (SRP118808).
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