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Abstract
The selection of the best-fitting substitution model of molecular evolution is a traditional step for phylogenetic in-
ferences, including ancestral sequence reconstruction (ASR). However, a few recent studies suggested that applying
this procedure does not affect the accuracy of phylogenetic tree reconstruction. Here, we revisited this debate topic
by analyzing the influence of selection among substitution models of protein evolution, with focus on exchangeabil-
ity matrices, on the accuracy of ASR using simulated and real data. We found that the selected best-fitting substi-
tution model produces the most accurate ancestral sequences, especially if the data present large genetic
diversity. Indeed, ancestral sequences reconstructed under substitution models with similar exchangeability matri-
ces were similar, suggesting that if the selected best-fitting model cannot be used for the reconstruction, applying a
model similar to the selected one is preferred. We conclude that selecting among substitution models of protein evo-
lution is recommended for reconstructing accurate ancestral sequences.

Key words: substitution models of protein evolution, substitution model selection, molecular evolution, ancestral
sequence reconstruction, phylogenetics, protein evolution.

Introduction
Ancestral sequence reconstruction (ASR) constitutes a
powerful framework in evolutionary biology with a variety
of applications (Liberles 2007; Selberg et al. 2021). For ex-
ample, it has been used to develop vaccines based on cen-
tralized (ancestral) sequences (Kothe et al. 2006; Arenas
and Posada 2010a) and to understand the stability and
functional properties of diverse paleoenzymes such as
thioredoxins (Perez-Jimenez et al. 2011), beta-lactamases
(Risso et al. 2013), RuBisCO (Shih et al. 2016), or alcohol
dehydrogenases (Thomson et al. 2005), among others
(Merkl and Sterner 2016). These molecular reconstruc-
tions are not only of interest to evolutionary researchers,
they can also present useful applications in industrial pro-
cesses (Thomson et al. 2005) due to the biological and
physicochemical properties (i.e., high thermostability) of
the resurrected enzymes (Trudeau et al. 2016).

As for other phylogenetic analyses, probabilistic ASR
methods (i.e., maximum-likelihood) require the specifica-
tion of a substitution model of molecular evolution (Yang
2006). At the protein level, the substitutionmodel includes
the rates of change among the 20 amino acids (exchange-
ability matrix) and the equilibrium amino acid frequencies
(Arenas 2015). Traditionally, the reconstruction of ances-
tral protein sequences is based on empirical substitution
models of evolution (Thorne 2000; Arenas 2015). Despite

the serve limits of these substitution models (i.e., all sites
evolve under the same rates of change among amino acids,
which is highly unrealistic; Echave et al. 2016), their math-
ematical simplicity (i.e., assuming site-independent evolu-
tion simplifies the likelihood function; Yang 2006) favored
their establishment in phylogenetics. Empirical substitu-
tion models of evolution have been developed for diverse
taxonomic, species, and protein groups (i.e., nuclear and
mitochondrial proteins; Thorne 2000; Arenas 2015). Thus,
nearly 100 empirical substitution models of protein evolu-
tion are currently available, many have been recently devel-
oped (Ng et al. 2000; Le et al. 2017; Le and Vinh 2020; Del
Amparo and Arenas 2022) and still require efforts for their
implementation in analytical phylogenetic frameworks (i.e.,
to perform substitution model selection and phylogenetic
tree reconstruction, among others). Despite some data, the
selection of an empirical substitution model is straightfor-
ward (i.e., when there is a substitutionmodel biologically re-
lated to the study protein data), and in other times, this
selection is unclear and traditionally requires the selection
of a best-fitting substitution model (among the currently
available substitution models) using likelihood-based
methods (Yang et al. 1994; Zhang and Nei 1997; Zhang
1999; Minin et al. 2003; Lemmon et al. 2004). However, a
few recent studies found that the selection of the best-
fitting substitution model of protein evolution may
not be mandatory for phylogenetic tree reconstruction
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(Abadi et al. 2019; Spielman and Shapiro 2020; Tao et al.
2020), although other studies suggested the opposite
(Posada 2001; Minin et al. 2003; Dornburg et al. 2019).
This debate brings the question of whether the selection
among substitution models of protein evolution affects
the accuracy of protein ASR, a relevant issue already men-
tioned in Pupko et al. (2007). For this application, a few
studies suggested that substitution model selection does
not affect ASR (Williams et al. 2006; Abadi et al. 2019),
but they focused on ASR under substitution models of
DNA evolution (Abadi et al. 2019) or ignored the influence
of varying the amino acid exchangeability matrix (Williams
et al. 2006). Here, we revisited this topic by the evaluation of
the influence of selection among empirical substitution
models of protein evolution, with focus on the exchange-
ability matrix, on the accuracy of ASR using simulated
and real data. Overall, we found that the accuracy of the re-
constructed ancestral sequences enhances the application
of the selected best-fitting substitutionmodel, especially in
data presenting large genetic diversity.

Results
Evaluation of Substitution Model Selection for ASR
Based on Simulated Protein Data
We evaluated the error of reconstructing ancestral se-
quences under diverse substitution models using com-
puter simulations. We found that ancestral sequences
inferred under the true (simulated) substitution model
are more similar to the true ancestral sequences than an-
cestral sequences inferred under any other substitution
model (fig. 1 and supplementary fig. S2, Supplementary
Material online). In addition, we found that ancestral se-
quences reconstructed under a substitution model with
an exchangeability matrix similar to that of the true substi-
tutionmodel are more accurate (in terms of similarity with
the true ancestral sequences) than ancestral sequences re-
constructed under a substitution model with exchange-
ability matrix far from that of the true substitution
model (fig. 1 and supplementary fig. S2, Supplementary
Material online). Interestingly, we also found that the se-
quence identity of the data affects the influence of the sub-
stitution model selection on the reconstructed ancestral
sequences (fig. 1 and supplementary fig. S2, Supplementary
Material online). In particular, the ASR from data with low-
sequence identity (large genetic diversity) was more sensible
to the selection of the substitutionmodel than the ASR from
data with high-sequence identity. Finally, we found that in-
creasing the number of sequences (whilemaintaining genetic
diversity) of the data qualitatively produced similar ASR error
(compare fig. 1 and supplementary fig. S2, Supplementary
Material online).

Evaluation of Substitution Model Selection for ASR
Based on Real Protein Families
The studied real protein families showed that ancestral se-
quences reconstructed under different substitution

models differ (fig. 2 and supplementary fig. S5,
Supplementary Material online). In agreement with the re-
sults from simulated data, the distance between ancestral
sequences reconstructed under different substitution
models increases with the distance between the exchange-
ability matrices of the corresponding models and this
can be observed at every internal node (fig. 2 and
supplementary fig. S5, Supplementary Material online).
Interestingly, the distance between ancestral sequences re-
constructed under the best-fitting substitution model and
ancestral sequences reconstructed under any other substi-
tution model overall increased, going backwards in time
with a maximum divergence near the center of tree
(Deng et al. 2010), although with some fluctuations over
time (fig. 2 and supplementary fig. S5, Supplementary
Material online). This finding indicates that the ASR error
caused by applying a substitution model that poorly fits
with the data can affect the reconstructed sequences at
all the internal nodes, and especially sequences belonging
to internal nodes that are at a greater distance from the tip
nodes.

Concerning the number of CTL epitopes detected in the
inferred ancestral sequences of the HIV-1 env data, we
found that it varies depending on the substitution model
applied in the ASR (supplementary tables S1 and S2,
Supplementary Material online). Interestingly and in line
with our previous findings, ancestral sequences recon-
structed under substitution models with similar exchange-
ability matrices displayed a similar number of predicted
epitopes (supplementary tables S1 and S2,
Supplementary Material online).

Discussion
Selecting a best-fitting (in terms of likelihood) substitution
model of evolution, among the available set of substitution
models, and applying this model for probabilistic phylo-
genetic reconstruction is a well-established methodology.
It is based on the natural reasoning of the phenotypic con-
sequences caused by amino acid substitution events (i.e.,
>50 years ago Zuckerkandl and Pauling (1965) indicated
that “it is the type rather than number of amino acid sub-
stitutions that is decisive”) and was supported by multiple
likelihood-based phylogenetic studies for >20 years (Yang
et al. 1994; Zhang and Nei 1997; Zhang 1999; Minin et al.
2003; Lemmon et al. 2004). However, a few recent works
suggested that substitution model selection has little ef-
fect on phylogenetic tree reconstruction (Abadi et al.
2019; Spielman and Shapiro 2020; Tao et al. 2020) leading
to a debate topic in the field. With regard to ASR, a study
suggested that the selection among substitution models of
DNA evolution does not influence nucleotide ASR (Abadi
et al. 2019) and others investigated the influence of substi-
tution rate variation among sites (Yang 1994; but under
the same exchangeability matrix) on protein ASR (Pupko
et al. 2002; Williams et al. 2006) or did not quantify the
protein ASR error with computer simulations (Moshe
and Pupko 2019). At the DNA level, we believe that the
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effect of substitution model selection on the accuracy of
phylogenetic reconstructions could be reduced due to
its lower number of character states compared with amino
acids. Evaluating the influence of substitution rate vari-
ation among sites with a fixed exchangeability matrix is in-
deed relevant but still does not inform about the
phylogenetic consequences of selection among substitu-
tion models of protein evolution considering different ex-
changeability matrices. Note that the currently available
substitution models of protein evolution present differing
empirical exchangeability matrices that are required to mi-
mic diverse evolutionary patterns observed in nature
(supplementary fig. S1, Supplementary Material online;
Thorne 2000; Arenas 2015). In order to clarify this aspect,
here, we revisited this topic to find that the selection
among substitution models of protein evolution, with dif-
ferent exchangeability matrices, can seriously affect the re-
construction of ancestral sequences.

We simulated protein sequences to quantify the dis-
tance between ancestral sequences inferred under diverse
substitution models, including the true substitution mod-
el, and we found that applying the true substitution model

produces the most accurate ancestral sequences (com-
pared with ancestral sequences reconstructed under other
substitution models). Interestingly, we found that substi-
tution models with exchangeability matrices similar to
the exchangeability matrix of the true substitution model
led to more accurate ancestral sequences than substitu-
tion models with exchangeability matrices far from that
of the true substitution model. In practice, this suggests
that if the best-fitting substitution model is not available
to perform the ASR (i.e., it is not implemented in the
ASR evolutionary framework), applying a substitution
model with an exchangeability matrix as similar as possible
to the exchangeability matrix of the best-fitting substitu-
tion model is recommended. Next, we found that the in-
fluence of the substitution model on ASR is affected by
the genetic diversity of the study data. In particular, data
with large genetic diversity produce ancestral sequences
more influenced by the applied substitution model. Note
that data with large genetic diversity accumulated mul-
tiple substitution events during their evolutionary histor-
ies and thus involve a more intense contribution of the
substitution model in the likelihood function of

FIG. 1. Influence of substitution model selection on ancestral sequence reconstruction using simulated data. Distances between true ancestral
sequences and ancestral sequences reconstructed under true (black bars) and other substitutionmodels (gray bars; including from the left to the
right a model that is similar, intermediate, and far from the true model). The distances are shown in percentage. The study is based on 1,000
simulated data sets of 50 protein sequences with sequence identity 0.2 (large genetic diversity; plots on the left), 0.5 (intermediate genetic di-
versity; middle plots), and 0.8 (low genetic diversity; plots on the right). Error bars indicate 95% confidence intervals. The same results showing
ASR error (y-axis) from zero are presented in supplementary figure S3, Supplementary Material online.
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probabilistic ASRmethods (Yang 2006). Indeed, any substi-
tution model produces error and thus applying more fre-
quently a substitution model can increase error, especially
(as we demonstrate in this study) if the applied model
does not fit well with the studied data.

The ASR of real protein families performed under differ-
ent substitution models showed that the reconstructed
ancestral sequences (and also their biological properties
in terms of number of CTL epitopes) differ depending on
the applied substitution model. In particular, more distant
substitution models produced more different ancestral
sequences (with more different biological properties), in
agreement with the results from the simulated data.
Again, we found that using substitution models as similar
as possible to the selected best-fitting substitution model
is recommended when the best-fitting substitution model
cannot be used for the ASR for any reason. The influence of
the substitution model of protein evolution on ASR affects
all the reconstructed ancestral sequences, but especially
those belonging to the most internal nodes where the
ASR method has to make more complicated decisions
due to the long distance from the extant sequences.
Despite some studies suggested that the selection of the
best-fitting substitution model of evolution may not be a
mandatory task for phylogenetic tree reconstruction (see
Introduction), here we clearly found that substitution
model selection is highly recommended for the reconstruc-
tion of ancestral proteins.

As indicated in the Introduction, protein ASR is fre-
quently applied in diverse fields such as paleoenzymology
and biotechnology (e.g., Perez-Jimenez et al. 2011; Holinski
et al. 2017) and the reconstructed molecules should be as
realistic as possible to display reliable biological properties.
The observed patterns of amino acid substitution are the
consequence of diverse selection constrains (i.e., selection
on the protein function and stability; Lorenzo-Redondo
et al. 2014; Arenas et al. 2016; Duchene et al. 2016;
Echave et al. 2016; Kirchner et al. 2017; Geoghegan and
Holmes 2018; Jimenez-Santos et al. 2018; Moshe and
Pupko 2019) that can differ among taxonomic levels
(Duchene et al. 2016; Chang et al. 2020), protein families
(Rios et al. 2015; Del Amparo and Arenas 2022), and
even within protein families (Del Amparo and Arenas
2022). Here we show that these different selection pro-
cesses, mimicked with different substitution models,
should be taken into consideration to more accurately re-
construct ancestral proteins.

Materials and Methods
Analysis of the Influence of Substitution Model
Selection on ASR Using Simulated Protein Data
We simulated data to evaluate the distance between an-
cestral sequences reconstructed under the true (simu-
lated) substitution model and ancestral sequences

FIG. 2. Influence of substitution model selection on ancestral sequence reconstruction of the TRXB protein family. The figure shows the distance
between ancestral sequences reconstructed under the best-fitting substitution model (LG + I + G) and other substitution models (MtMam+ I +
G, HIVb + I + G, JTT + I +G, and Blosum62 + I +G; shown with different colors) at every internal node and as a function of the time to root. The
distances are shown in percentage. Note that all the nodes shown in the figure are internal nodes, the tip nodes are excluded because their
sequences are given (thus, they are not reconstructed).
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reconstructed under other (close or far from the true
model; supplementary fig. S1, Supplementary Material on-
line) substitution models. First, we simulated phylogenetic
trees with random topologies using the function rtree im-
plemented in the library ape of R (Paradis et al. 2004). Next,
for each simulated tree, we simulated protein sequence
evolution (we assumed a sequence length of 250 amino
acids) under a particular substitutionmodel with the func-
tion simSeq implemented in the phangorn library of R
(Schliep 2011). We applied the HIVw (Nickle et al. 2007),
JTT (Jones et al. 1992), Blosum62 (Henikoff and Henikoff
1992), and MtMam (Yang et al. 1998) substitution models
in the simulations (true models) to include representative
models of viral, nuclear, and mitochondrial proteins. We
evaluated the influence of substitution model selection
on ASR in six evolutionary scenarios of simulated data
with variable number of protein sequences (50 and 100)
and sequence identity (pairwise sequence comparisons,
0.2, 0.5, and 0.8). For each evolutionary scenario, we simu-
lated a total of 1,000 multiple sequence alignments. As a
control check, we applied ProtTest3 (Darriba et al. 2011)
to verify that the true substitution models are selected
as the best-fitting substitution models from the simulated
data. Next, for each simulated data set, we reconstructed
its ancestral sequences using the simulated phylogenetic
tree (thus, avoiding potential biases from phylogenetic
tree reconstruction) with the ML ASR method implemen-
ted in the function ancestral.pml of the phangorn library of
R. The ASR was performed under diverse substitution
models that included the true model and other models
that are close and far from the true models. In particular,
data simulated under the HIVw substitution model were
evaluated with the HIVw (true), HIVb (close to the true;
Nickle et al. 2007), JTT (intermediate), Blosum62, and
MtMam (far from the true) substitution models; data si-
mulated under the JTT substitution model were evaluated
with the JTT (true), WAG (close; Whelan and Goldman
2001), HIVb (intermediate), Blosum62, and MtMam (far)
substitution models; data simulated under the Blosum62
substitution model were evaluated with the Blosum62
(true), JTT (close), Dayhoff (intermediate), HIVb, and
MtMam (far) substitution models; and data simulated un-
der the MtMam substitution model were evaluated with
the MtMam (true), MtRev (close; Adachi and Hasegawa
1996), JTT (intermediate), Blosum62, and HIVb (far) substi-
tution models. Finally, we calculated the distance between
simulated (true) ancestral sequences and ancestral se-
quences reconstructed under each substitution model.
This distance is the sequence dissimilarity calculated as

the proportion of different amino acid states (comparing
every site) between the sequences.

Analysis of the Influence of Substitution Model
Selection on ASR Using Real Protein Families
We analyzed the prokaryotic protein families D-ala D-ala
ligases and Thioredoxins I (TRXB; table 1) as illustrative
real examples. These protein families, available from the
PFAM database (table 1), include a putative group of
homologs from many bacterial species (Bastolla et al.
2004) with extant sequences longer than 200 amino acids
that allow well-supported phylogenetic reconstructions
(Arenas et al. 2017; Arenas and Bastolla 2020) and also
have been previously analyzed with ASR (Perez-Jimenez
et al. 2011; Meziane-Cherif et al. 2012; Ingles-Prieto et al.
2013). We realigned the sequences with MAFFT (Katoh
and Standley 2013) as a prudent procedure. Next, we iden-
tified the best-fitting substitution model of protein evolu-
tion with ProtTest3 (table 1) and inferred an ML
phylogenetic tree with RAxML-NG (Kozlov et al. 2019) un-
der the best-fitting substitution model. We reconstructed
the ancestral sequences under the best-fitting substitution
model and other substitution models with close and dis-
tant exchangeability matrices (i.e., JTT, HIVb, Blosum62,
and MtMam). Finally, for every internal node of the phylo-
genetic tree, we evaluated the distance between the ances-
tral sequences reconstructed under the best-fitting
substitution model and the ancestral sequences recon-
structed under every other substitution model.

In order to provide an illustration of the biological con-
sequences of substitution model selection in ASR, we also
evaluated the predicted number of CTL epitopes in the an-
cestral sequences (reconstructed under different substitu-
tion models) of two alignments of the HIV-1 env region
obtained from Arenas and Posada (2010b). Note that an-
cestral HIV-1 envelope proteins were widely used to design
centralized vaccines against this virus (Nickle et al. 2003)
and the accuracy of ASR can be crucial to obtain ancestral
sequences with realistic immunological properties (Arenas
and Posada 2010a). The first data set was a HIV-1 group M
reference alignment with an outgroup from the Los
Alamos HIV sequence database (41 sequences, 758 amino
acids). The second data set included subtype B viruses and
an outgroup (38 sequences, 810 amino acids; Doria-Rose
et al. 2005). For each data set, we identified the best-fitting
substitution model and inferred an ML tree under the
best-fitting substitution model. Next, we reconstructed
the ancestral sequences under the best-fitting substitution

Table 1. Empirical Protein Families.

Protein Family PFAM Code Number of Sequences Sequence Length Sequence Identity Best-fitting Substitution Model

D-ala D-ala ligases (DDL) PF07478 42 399 0.40 LG+ I +G
Thioredoxins I (TRXB) PF00070 28 375 0.46 LG+ I +G

NOTE.—For each data set, the table includes name of the protein family, PFAM code, number of sequences, sequence length (number of amino acids), sequence identity
(ranging from 0 to 1), and the best-fitting substitution model selected with ProtTest3.
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model and other, similar, and different substitution mod-
els. Then, we scanned the root ancestral sequences for
known CTL epitopes with MHCPred (Guan et al. 2003).

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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