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JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on

alternative splicing, the early region encodes the large and small T antigens,

while the late region encodes the capsid structural proteins (VP1, VP2, and VP3)

and the agnoprotein. The regulatory transcription factors for JCPyV include

Sp1, TCF-4, DDX1, YB-1, LCP-1, Pura, GF-1, and NF-1. JCPyV enters tonsillar

tissue through the intake of raw sewage, inhalation of air droplets, or parent-

to-child transmission. It persists quiescently in lymphoid and renal tissues

during latency. Both TGF-b1 and TNF-a stimulates JCPyV multiplication,

while interferon-g suppresses the process. The distinct distribution of caspid

receptors (a-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and

serotonin) determines the infection capabilities of JCPyV virions, and JCPyV

entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV

undergoes lytic proliferation and causes progressive multifocal

leukoencephalopathy, while its DNA is inserted into genomic DNA and leads

to carcinogenesis in non-permissive cells. T antigen targets p53, b-catenin, IRS,
Rb, TGF-b1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial

injection of T antigen into animals results in neural tumors, and transgenic mice

develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal

and pancreatic cancers, insulinoma, and hepatocellular carcinoma.

Additionally, JCPyV DNA and its encoded products can be detected in the

brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal,

breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore,

JCPyV might represent an etiological risk factor for carcinogenesis and

should be evaluated for early prevention, diagnosis, and treatment of cancers.
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Introduction

JC polyomavirus (JCPyV) belongs to the human non-

enveloped polyomavirus family in combination of SV40 and

BK viruses. The genomic DNA homology between JCPyV and

SV40 or BK viruses is 69% or 75%, respectively, showing their

close evolutionary relationships (1). A serological study has

indicated asymptomatic JCPyV infection in 46.1% of 1-month-

old infants, 80.7% of 1- year-old infants, 85.9% of 2-year-old

children, 85.5% of 3-year-old children, and about 90% of the

adult population (2). As shown in Figure 1, JCPyV consists of a

small, circular, double-stranded DNA genome of 5,130 base

pairs and icosahedral capsids. The transcription of early and late

coding regions occurs to produce small t and large T antigens by

an interposed transcription control region. The late region

encodes the capsid structural proteins (VP1, VP2, and VP3)

by alternative splicing and a small regulatory protein

(agnoprotein). T and t antigens are responsible for DNA

replication, and the VP proteins for assemble with viral DNA

to form virions (1). JCPyV may be activated for cell lysis under

immunosuppressive conditions (e.g., HIV infection or the

transplantation of bone marrow, liver, lung or kidney), and

therefore is an established etiologic factor of demyelinating

progressive multifocal leukoencephalopathy (PML) (3–7).

Moreover, JCPyV could infect the enteric glia and cause

chronic idiopathic intestinal pseudo-obstruction (8), or result

in male lower urinary tract symptoms (9). The autoimmune

diseases of JCPyV-associated brain syndromes include multiple

sclerosis (MS), Crohn’s disease, and psoriasis, which were not

previously considered as predisposing factors for PML (10). In
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non-permissive cells (i.e., cells that do not allow viral

replication), JCPyV infection causes either abortive infection

or malignant transformation (1) (Figure 2).
The infection and replication
of JCPyV

As shown in Figure 3, JCPyV enters the human body

through the intake of raw sewage or the inhalation of air

droplets, and persists quiescently in tonsillar lymphoid and

renal tissues during latency (11). Parent-to-child transmission

is also common for its propagation (12). After asymptomatic

primary infection in childhood, the virus spreads through the

bloodstream from the primary sites of infection to secondary

sites (kidney and lymphoid tissues, peripheral blood leukocytes,

and brain tissue) (13). JCPyV DNA replication occurs primarily

in lymphoid and glial cells that contain transcription factors

specific for JCPyV (14, 15).

JCPyV infects human cells by the interaction of capsid VP

proteins with receptors on JCPyV-sensitive cells, followed by

endocytosis and nuclear transport of JCPyV virions. In the

nucleus, the viral DNA is uncoated, initiating the transcription

of the early region (16). The tissue-specific distribution of the VP

receptors (a 2, 6-l inked sial ic acid, non-sialylated

glycosaminoglycans, and serotonin) determines the different

infection capabilities of JCPyV (17–21). JCPyV infection is

dependent on the interactions between VP capsid proteins and

asparagine N-linked sialic acids or the serotonin 5-

hydroxytryptamine 2A receptor (5-HT2AR) on the cell
FIGURE 1

The genomic DNA structure of JCPyV. JCPyV has icosahedral capsids and small, circular, double-stranded genomic DNA of 5130 base pairs. It is
composed of early and late coding regions, which are transcribed in opposite directions initiated by a transcriptional control region. The early
region encodes both small and large T antigens by alternative splicing. The late region encodes the capsid structural proteins (VP1, VP2 and VP3)
by alternative splicing and a small regulatory protein, agnoprotein.
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surface. Treatment with an inhibitor of N-linked glycosylation

(tunicamycin), 5HT2AR antagonists (ketanserin and ritanserin),

or anti-5HT2aR antibody reduces JCPyV infection, while

treatment with PNGase F to remove N-linked oligosaccharides

does not influence JCPyV infection (18, 19, 22). VP1-composed

virion-like particles (VLPs) can bind to sialoglycoproteins (a1
acid-glycoprotein, transferrin receptor, and fetuin) and

glycolipids (gangliosides and lactosylceramide) (23). Exposure

to either anti-VP1 antibody or sialidase to hydrolyze sialic acid

residues can suppress viral entry into host cells. After interaction

between capsid proteins and their receptors, JCPyV binds to

caveolin-1 and undergoes eps15 and Rab5-GTPase-mediated

internalization and clathrin-dependent endocytosis (24), which

is facilitated by the interaction of b-arrestin with 5-

hydroxytryptamine receptors (25).

After the entry of JCPyV into cells, TCF-4-T-antigen

complex binds to the JCPyV promoter in U87-MG cells,

increasing the ability of the T antigen to replicate viral DNA

(26). LCP-1 also interacts with the lytic control element and

differentially regulates T antigen expression (27). Glial factor 1

(GF-1) has homology with the central region of Smbp-2 and can

bind to the promoter B-regulatory domain of JCPyV (28). Pura
interacts with T antigen to modulate T-antigen-mediated

transcriptional activation, while the Pura-BAG-1 complex

suppresses JCPyV DNA replication in glial cells (29, 30). The

terminal core kinase of the MAPK cascade (MAPK-ERK)

facilitates the transcription of the JCPyV by up-regulating the

transcription factors downstream of the MAPK cascade (i.e., c-

myc and SMAD4) and shuttling them to the nucleus (31), while

SF2/ASF (splicing factor 2/alternative splicing factor) weakens
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the transcription and alternative splicing of JCPyV genes via

direct interaction with the viral promoter (32), and retinoic acid-

inducible gene I (RIG-I) and cGMP-AMP synthase negatively

controls JCPyV replication in human astrocytes (33).

Moreover, HIV-1 induces cytokines that reactivate JCPyV to

cause PML in the brain, suggesting a direct correlation between

inflammatory cytokines and the susceptibility to JCPyV

infection (34, 35). The treatment of glial cells with IFNa and

IFNb increases the endogenous levels of C/EBPb-LIP, which
inhibits basal and NF-kB-stimulated JCPyV transcription via the

NF-kB-C/EBPb-LIP -JCPyV DNA complex (36). Both TGF-b1
and TNF-a can stimulate JCPyV multiplication and increase the

overall number of infected cells via the Smad and NF-kB
pathways, respectively (37). Tat and Fast1 can cooperate with

Smad2, 3, and 4 at the JCPyV DNA control region, stimulating

its gene transcription in oligodendroglial cells (38). JCPyV

infection significantly increases nuclear HIF-1a levels in glial

cells, which binds to and activates the JCPyV early promoter via

Smad3 and Smad4 (39). IL-1b dramatically increases JCPyV

transcription in glial cells via NF-1 binding to the JCPyV

enhancer region via the PKC pathways (40). However,

interferon-g inhibits JCPyV replication by down-regulating T

antigen expression via Jak1 signaling (41).

According to recent literatures, topoisomerase I inhibitors

(b-lapachone and topotecan) are found to inhibit JCPyV

infection in neuroblastoma cells (42). Irisolidone, an isoflavone

metabolite, negatively modulates JCPyV gene expression by

suppressing Sp1 binding in glial cells (24). The Cdk inhibitor,

R-roscovitine, suppresses the proliferation and production of

JCPyV by inhibiting the phosphorylation of T antigen (43).
FIGURE 2

JCPyV infection outcome. JCPyV infection is initiated by its binding to JCPyV-sensitive cell surfaces. JCPyV capsids undergo endocytosis via
capsid receptors (e.g., a 2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin). In permissive cells, JCPyV may be activated
for cell lysis and cause progressive multifocal leukoencephalopathy under immunosuppression (e.g., HIV infection, immunosuppressive drugs for
organ transplantation, and cancer chemotherapy). In non-permissive cells, T antigen DNA from JCPyV can be inserted into genomic DNA, and T
antigen can induce the malignant transformation of normal cells by targeting the p53, Rb, wnt, and IGF signal pathways.
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Hexadecyloxypropyl- cidofovir suppresses JCPyV replication in

fetal brain SVG cells (44). JCPyV infection can be suppressed by

nocodazole, cytochalasin D, or acrylamide in glial cells (45).

Moreover, O’Hara et al. (46) found that teriflunomide could

inhibit JCPyV infection and propagation in choroid plexus

epithelial cells and glial cells. PARP-1 inhibitor, 3-

aminobenzamide, could significantly suppress JCPyV

replication and spread (47). In contrast, both trichostatin A

(TSA) and butyrate can activate the JCPyV promoter and

hyperacetylation of this promoter in non-glial cells. The

enhancer and Sp1 element upstream of the TATA box are

necessary for TSA-mediated activation (48). Some reagents are

expected to prevent the infection and replication of JCPyV in

the future.
The functions of JCPyV-encoded
proteins

T antigen

T ant igen is a mul t i funct iona l and oncogenic

phosphoprotein essential for viral DNA replication in G2-

arrested cells via ATM- and ATR-mediated G2 checkpoint

signaling (49). It binds to and breaks DNA to unwind the

double helix and recruits helicase, ATPase, and polymerase (1,
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50). T antigen primarily targets protein complexes that have PP4

and PP1 phosphatase, v-ATPase, and E3-ubiquitin ligase

activities (51). Its N-terminal portion contains LXCXE and

J domains, which are necessary for binding and inactivating

the Rb family (52) and its N-terminal phosphorylation site at

threonine 125 is critical to T-antigen-mediated replication via

stabilizing T antigen, interaction with the Rb family members

p107 and p130 and the release of E2F from RB-E2F complex

(53). The origin-binding domain of T antigen contains a

C-terminal pocket and interacts with the major groove of

GAGGC sequences. The pocket residue increases T antigen

expression, supporting JCPyV DNA replication (54).

Reportedly, AP-1 family (c-Fos and Jun) functionally

interacts with T antigen, significantly diminishing T-antigen-

mediated replication and transcription of JCPyV genes in glial

cells. The c-Jun-binding domain for T antigen maps to the

middle portion of the protein, while the T-antigen-binding

domain for c-Jun is its basic-DNA binding region (55). In glial

cells, T antigen interacts with Pura and serine/arginine-rich

splicing factor 1 (SRSF1). T antigen promotes JCPyV gene

expression by binding to the SRSF1 promoter and weakening

SRSF1 transcription (56, 57). Pura and T antigen bind to the

JCPyV early promoter via T-antigen, ameliorating SRSF1-

mediated inhibition of JCPyV gene expression and replication

(58). P53 can interact with T antigen, blocking viral DNA

replication (59). However, neurofibromatosis type 2 could
FIGURE 3

The natural history of JCPyV. JCPyV enters the human body through the intake of raw sewage or inhalation of air droplets. It is transported to
the kidneys via B cells. It persists quiescently in the tonsil and renal tissues during latency. Upon immunosuppression, JCPyV enters the central
nervous system (CNS) and undergoes lytic proliferation, resulting in the demyelinating brain disease, progressive multifocal
leukoencephalopathy (PML). It can be excreted from the human body through the urine.
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induce proteasomal degradation of the T-antigen and suppress

T-antigen protein expression in glioblastoma cells, weakening T-

antigen-mediated regulation of the JCPyV promoter (60), and

LIP (liver inhibitory protein) expression also induced the

degradation of JCPyV T antigen in transgenic mouse tumor

cells (32, 61). The partner proteins modulate the biological

functions and protein instability of T antigen, which is

involved in carcinogenesis and subsequent progression.
Agnoprotein

The JCPyV agnoprotein shares 50–60% homology with

those of BK and SV40 viruses; however, its carboxyl-terminal

region is relatively unique. It is firstly detected on day 3 of JCPyV

post-infection, and its levels increase until the late stage of

infection, and responsible for virion release and viral

propagation (62). Agnoprotein localizes to the endoplasmic

reticulum (ER) early in infection and then the plasma

membrane late in infection (63). Agnoprotein is 71 amino

acids (8kDa) and stably forms dimers and oligomers through

its hydrophobic Leu/Ile/Phe-rich (aa 28–39) domain (64).

Residues Lys22 to Asp44 may be the transmembrane domain,

and the disulfide bond at Cys40 may trigger oligomerization

(65). Its basic amino acid residues at positions 8 and 9 determine

its viroporin activity (63). In agnoprotein, the major

amphipathic a-helix conformation spans amino acids 23–39 of

the Leu/Ile/Phe-rich region, while the minor a-helix consists of

Leu6 to Lys13 (66). Leu29 and Leu36 of the major amphipathic

a-helix are at the dimer interface, keeping the spatial structure

and protein stability (67). All three Phe residues are localized to

this amphipathic a-helix and mediate protein folding and

stability (68). Moreover, agnoprotein primarily targets 501

cellular proteins containing “coiled-coil” motifs. The

agnoprotein- host interactions were involved in protein

synthesis and degradation, cellular transport, and organelles,

including mitochondria, ER-Golgi, and the nucleus. Among the

agnoprotein partners, Rab11B, importin, and Crm-1 have been

biochemically validated (68).

In nucleus, agnoprotein promotes T antigen binding to the

viral origin with indirect interactions with DNA. It contains

several potential phosphorylation sites (ser7, ser11, and thr21)

that can be phosphorylated by PKC (69). Small t antigen (aa 82-

124) also interacts with agnoprotein and PP2A, suppressing the

PP2A-mediated dephosphorylation of agnoprotein and

promoting JCPyV replication (70). The amino-terminal of

agnoprotein can bind to YB-1 and reduce YB-1-mediated gene

transcription (71). The interaction of p53 with agnoprotein can

lead to p21 expression, causing G2/M arrest and sensitizing cells

to cisplatin via chromosome fragmentation, micronuclei

formation, and impaired double-strand DNA break repair

activity by up-regulating the expression of the DNA repair

proteins (e.g., Ku70 and Ku80) (72).
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In cytosol, agnoprotein predominantly localizes to the

perinuclear region of JCPyV-infected cells, and colocalizes

with the cellular cytoskeletal protein tubulin (73), which is co-

precipitated with phosphorylated agnoprotein (74). Suzuki et al.

(75) also demonstrated that agnoprotein could directly interact

with fasciculation and elongation protein zeta 1 (FEZ1) and

microtubules. The interaction dissociated FEZ1 from the

microtubules and inhibited FEZ1-facilitated neurite outgrowth.

Saxena et al. (76) reported that the mitochondrial targeting

sequence and dimerization domain of agnoprotein mediate

mitochondrial localization, where agnoprotein decreased the

respiration rate, mitochondrial membrane potential, and ATP

production while increasing ROS production and Ca2+ uptake.
Caspids

Major coat protein VP1 couples with a minor coat protein

(VP2 or VP3). VP2 and VP3 share DNA binding domain, VP1-

binding domain, and nuclear localization signal (NLS). The 16

carboxy- terminal and 12 amino-terminal amino acids of VP1

are essential for the assembly of VLPs. Both minor coat proteins

and the myristylation site on VP2 are important for properly

packaging the genomic DNA of JCPyV (77). Furthermore, the

cysteine residues of VP1 are dispensable for protein stability and

oligomerization (78, 79). VP1 mediates VLP entry into the

nucleus by importins a and b via its NLS (80). Point

mutations in VP1 can influence virion binding to cellular

glycan receptors and their recognition by polyomavirus-

specific antibodies (81). Mutation 186G!C (Lys!Asp) in the

VP1 gene could predispose MS patients undergoing treatment

with natalizumab to PML (82). A deletion of the C-terminal 10

bp of VP1 is closely linked to lytic infection of granule cell

neurons and atrophy in the cerebellum of an HIV/PML patient

(83). VP1 mutations that are involved binding to sialic acid cell

receptors favored PML onset (84). Hsp70 could interact with T

antigen and VP2 or VP3, which accumulates in the nucleus of

the infected cells and enhances viral DNA replication (85). VP2

binds to DNA through its DNA-binding domain between

Lys332 and Lys336 (86). As for capsid expression,

Ravichandran et al. (87) found that TGF-b1 activated MEK1/2

and subsequent phosphorylation of Smads, which bound to or

increased binding to the JCPyV promoter for VP-1 synthesis.
The signal pathways of JCPyV

Multi-omics analysis has demonstrated that JCPyV-related

carcinogenesis involves aberrant Forkhead box O, AMPK, p53,

and PI3K/Akt signaling pathways. Moreover, T antigen can

upregulate the expression of Akt, Rb, and survivin and

downregulate p21 expression, indicating that it might activate

the Akt/NF-kB/survivin pathway to block apoptosis and cause
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Rb hyper-expression and p21 hypo-expression for cell cycle

progression (88). The upregulated proteins are involved in

signaling through Cyclin-CDK, TGF-b receptor 1, fibroblast

growth factor family receptor and platelet-derived growth

factor receptor and the inflammatory responses mediated by

Cox-2 (89). T antigen might interact with ribosomal proteins,

various keratins, G proteins, apolipoproteins, ubiquitin-related

proteins, CCAAT enhancer-binding proteins, b-catenin, RPL19,
b-TRCP, and p53 in lens tumor cells (88). T antigen knockdown

could suppress glycolysis, mitochondrial respiration,

proliferation, migration, and invasion in lens tumor cells;

however, it promoted apoptosis. T antigen can also activate

the Akt/NF-kB/survivin pathway, producing an anti-apoptosis

effect and causing Rb hyperexpression and p21 hypoexpression

to mediate cell cycle progression (88). These findings suggest

that the T antigen can aggravate the cellular phenotype, possibly

by inactivating tumor suppressors, activating oncogenes, or

disrupting metabolism and cell adhesion.

As shown in Figure 4, p53 interacts with T antigen to repress

transcription from the JCPyV early promoter and JCPyV DNA

replication in non-glial cells (90, 91). The interaction between

p53 and T-antigen up-regulated the p53 downstream target

protein, p21/WAF1 (92). Additionally, E2F-1 dissociated from

the pRb-E2F-1 complex and stimulated S phase-specific genes

following the formation of a pRb-T antigen complex or Rb

phosphorylation (93). T antigen can bind to pRb2/p130, p107,
Frontiers in Oncology 06
and pRb/p105, activating the E2F transcription factor family and

promoting entry into S phase (94). As IRS1 signal pathway, T

antigen also induces the nuclear translocation of IRS-1, and IRS-

1 interacts with T antigen, which is independent of IRS-1

tyrosine phosphorylation and blocked by IRS-1 serine

phosphorylation (95). After T-antigen-mediated nuclear

translocation, IRS-1 binds to Rad51 at the site of damaged

DNA to direct DNA repair, causing accumulation of

mutations in the affected cells (96). IRS-1-Rad51 nuclear

interact ion also sensit izes JCV T-antigen posit ive

medulloblastoma cells to cisplatin and g-irradiation (97). T-

antigen requires the presence of a functional insulin-like growth

factor I receptor (IGF-IR) for transformation of fibroblasts and

for survival of medulloblastoma cell line. IGF-IR is

phosphorylated in medulloblastoma biopsies and JCV T-

antigen inhibits homologous recombination-directed DNA

repair, causing accumulation of mutations. In Wnt- b-catenin
pathway, the interaction between the central domain (residues

82–628) of T-antigen and the C-terminal residues of b-catenin
(aa 695-781) increases b-catenin levels and its nuclear entry,

resulting in the upregulation of its downstream genes (c-myc,

VEGF, and Cyclin D1). T antigen binds to the F-box proteins b-
transducin repeat-containing protein-1 and 2 (bTrCP1/2) and
recruits Rac1 to form the T antigen-Rac1-b-catenin complex

that suppresses the ubiquitin- dependent degradation of b-
catenin by proteasomes (98–100). T antigen downregulates
FIGURE 4

The biological function and signal pathways of the JCPyV T antigen. JCPyV T antigen binds to bTrCP1/2 protein to cause ubiquitin-mediated
degradation of b-catenin, and binds to b-catenin to enhance its protein stability and facilitate its entry into the nucleus. Nuclear b-catenin
promotes S-phase transformation by up-regulating c-myc and Cyclin D1 protein expression. T antigen interacts with p53 and neurofibromatosis-
2 (NF-2) for the proteasome-mediated degradation of T antigen. The binding of T antigen to phosphorylated Rb protein results in the separation
of Rb-E2F, resulting in an abnormal cell cycle. T antigen can promote the translocation of the insulin receptor substrate 1(IRS1) to the nucleus,
induce cell cycle evolution, and participate in DNA repair. In addition, T antigen up-regulates the expression and phosphorylation of IRS1 and
IGF1 receptor (IGF-1R), promoting cell proliferation and disrupting normal cell activity by binding to the transcription factor AP-1. The DNA
binding domain of T antigen can bind to the AP2 sequence in the BAG3 promoter and CPG binding protein promoter of transcriptional
regulatory methylation and regulate the expression of BAG3. T antigen can also stimulate the expression of transaldolase-1 (TALDO1) and
hexokinase-2 (HK2) to induce glycolysis.
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BAG-3 expression to inhibit apoptosis by blocking AP2 binding

to the BAG3 promoter. Bag3 interacts with the T antigen,

inducing its autophagic degradation (101). Additionally, T

antigen binds to and activates the survivin promoter,

upregulating its expression and mediating the nuclear

translocation of suvivin via the T-antigen-survivin complex

(102, 103). In contrast, T antigen can arrest G1, sustain G2,

and block ROS induction and cytotoxicity during glucose

deprivation. T antigen can also stimulate the expression of

transaldolase-1 and hexokinase-2 (104).
The association between JCPyV
and carcinogenesis

In transformed cells, JCPyV can cause anchorage-dependent

growth, rapid division, prolonged life span, increased ploidy,

unstable multicentric chromosomes, centric and acentric rings,

dysregulated genomic stability and DNA repair, and increased

micronuclei formation (105–107). Intracranially inoculated

JCPyV caused glioblastoma in juvenile owl monkeys (108), grade

3-4 astrocytoma in adult owl monkeys (109), undifferentiated

neuroectodermal tumors in the cerebrums of newborn Sprague-

Dawley rats (110), cerebellar medulloblastoma, plexus tumors,

medulloblastoma, and thalamic gliomatosis in hamsters (111),

and neuroblastoma in the abdominal cavity, pelvis, mediastinum,

and neck region of Syrian hamsters (112). Padgett et al. (113)

demonstrated that malignant brain tumors developed in Syrian
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golden hamsters during a 6.5-month observation period following

intracerebral inoculation of different JCPyV strains into newborns.

The Mad-2 strain caused cerebellar medulloblastomas, whereas the

MAD-3 strain induced extracranial neuroblastomas. In contrast, the

Mad-4 strain produced pineal gland and cerebellar tumors.

The spontaneous tumors in the transgenic mice of JCV T

antigen can provide direct evidences for the oncogenic role of

JCPyV as shown in Table 1. The transgenic mouse with the early

encoding region of the archetype strain was generated using its

own promoter and developed neural crest tumors, such as

primitive neuroectodermal tumors, adrenal neuroblastomas,

medulloblastomas, pituitary tumors, glioblastomas, and

malignant peripheral nerve sheath tumors (114). Krynska et al.

(115) established the same transgenic mice and observed primitive

tumors originating from the cerebellum and adjacent brain stem

that were grossly and histologically similar to human

medulloblastoma and primitive neuroectodermal tumors.

However, Gordon et al. (92) used the same promoter to

generate transgenic mice overexpressing T antigen, which

developed large, solid pituitary masses. Shollar et al. (116)

established transgenic mice expressing T-antigen under the

control of the Mad-4 promoter and observed pituitary tumors

by one year of age. Krynska et al. (93) found that transgenic mice

harboring T antigen could develop massive abdominal tumors of

neural crest origin. In our group, a transgene with the K19

promoter was generated and pulmonary tumors with T-antigen,

p53, and CK19 expression and EGFR mutation were observed

(117). We also established T antigen-expressing transgenic mice
TABLE 1 The JCPyV T antigen-induced spontaneous tumor in the transgenic mice.

Author and
reference

Promoter name Tissue and cellular
specificity of promoter

Cancer types

Gordon et al. (92) viral own promoter of
Mad1

no Pituitary tumors

Krynska (93) viral own promoter of
Mad1

no Abdominal tumors of neural crest origin d

Del Valle et al. (114) viral own promoter of
Mad1

no primitive neuroectodermal tumors, medulloblastomas, adrenal neuroblastomas,
pituitary tumors, malignant peripheral nerve sheath tumors, and glioblastomas

Krynska et al. (115) viral early region of
Mad1

no primitive invasive tumors originating from the cerebellum and the surrounding brain
stem

Shollar et al. (116) viral control region of
the Mad-4 promoter

no pituitary tumors, solid masses around the salivary gland, the sciatic nerve, and
peripheral nerve sheath tumors

Noguchi et al. (117) cytokeratin 19
promoter

gastric stem-like cells lung adenoma and adenocarcinoma

Gou et al. (118) a-crystallin A
promoter

lens epithelium lens tumors

Zheng et al. (119) Albumin promoter hepatocyte Hepatocellular carcinoma

villin promoter intestinal epithelium colorectal cancer

cytokeratin 19
promoter

gastric stem-like cells gastric cancer

PGC promoter gastric chief cells gastric cancer, breast cancer

Pdx1 promoter pancreas and duodenum pancreatic adenocarcinoma, insulinoma, vater’s cancer, gastric tumors
PGC, pepsinogen C; Pdx1, pancreas/duodenum homeobox protein 1.
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using a-crystallin A and observed lens tumors that were positive

for T antigen, N-cadherin, p53, and b-catenin. Enlarged eyeballs

were observed, and the tumors invaded the brain (118).

Additionally, we generated CAG-loxp-LaZ-loxp T antigen

transgenic mice with T antigen activation induced using

matching tissue-specific cre transgenic mice. Gastric poorly-

differentiated carcinoma was observed in gastric stem-like and

chief cells following T antigen overexpression. Moreover,

spontaneous hepatocellular and colorectal cancers developed in

Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal

epithelium)/T antigen transgenic mice. Gastric, colorectal, and

breast cancer were observed in PGC (Pepsinogen C)-cre/T antigen

mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric

adenoma, and duodenal cancer were detected in Pdx1-cre/T

antigen mice. There was alternative splicing of T antigen mRNA

in all target organs of these transgenic mice and various cells

transfected with pEGFP-N1-T antigen. It has been suggested that

the JCPyV T antigen might induce gastroenterological

carcinogenesis in a cell-specific manner (119).

It is important to detect and compare JCPyV DNA in cancer

and adjacent normal tissues using either molecular or morphological

approach. JCPyV detectionmight determine the etiology for JCPyV-

related cancer. The correlation of JCPyV T antigen with

carcinogenesis and subsequent progression was summarized in

Table 2. Although JCPyV DNA was found in ependymomas and

choroid plexus papilloma (138), Kutsuna et al. (120) found that

glossitis and tongue dysplasia had significantly lower copies of

JCPyV than tongue cancer. They observed T antigen DNA and

protein in the nuclei of tongue cancer cells but not in normal or

dysplastic epithelia. JCPyV DNA and T antigen were found in

adenoid cystic carcinomas samples of the trachea, paranasal sinuses,

and oral cavity by PCR and immunohistochemistry respectively

(121). JCPyV DNA was more frequently detected in esophageal

carcinomas than in normal, benign, or premalignant esophageal

samples (122). JCPyV T antigen load is also higher in gastric cancer

than in normal mucosa (123). Indeed, its DNA and protein were

detected in the nuclei of gastric cancer cells. Moreover, T-antigen

DNA is correlated with differentiation and the methylation of p14

and p16 in this cancer (124).

In colorectal cancer, the positivity rate of T antigen is

decreased from colorectal adenocarcinoma to adenoma to

mucosa (125, 126). Nosho et al. (127) reported that T antigen

could inactivate wild-type p53, resulting in chromosomal

instability. It was positively correlated with p53 expression,

p21 loss, nuclear b-catenin, LINE-1 hypo-methylation and

hyper-expression, and low MSI (microsatellite instability)

levels. Link et al. (128) found that T antigen enhanced the

migration and invasion of colorectal cancer cells via Akt and

MAPK signaling. Indeed, T antigen could be detected by IHC in

primary colorectal cancers and their corresponding liver

metastases. The interaction between T-antigen and b-catenin
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and the nuclear detection of b-catenin in T-antigen-positive

colorectal cancer cells demonstrates dys-regulation of the Wnt

pathway (15, 129). Ripple et al. (130) found that T antigen and

b-catenin were co-localized in the nuclei of colorectal cancer

cells, resulting in the activation of TCF4-dependent promoters

and the transcription of TCF4 downstream targets (e.g. c-myc,

VEGF and Cyclin D1).

In the respiratory cancer, the positivity rate for the JCPyV T

antigen in the respiratory system is lower in normal lung tissue than

in tumors; T antigen DNA is strongly observed in lung

adenocarcinoma (131). One study found a lower JCPyV copy

number in normal lung cancer than in lung tumors (132).

Moreover, the copy number was lower in lung adenocarcinomas

compared to squamous, small, or large cell carcinomas. Lung

cancers with a high JCPyV copy number were characterized by

high proliferation and low b-catenin-mediated cell adhesion (132).

In urinary tract neoplasms, JCPyV has also been detected in

renal pelvic urothelial carcinoma and renal cell carcinoma (133).

Shen et al. (134) found that 90.1% of the urothelial carcinomas

and all the renal cell carcinomas that they evaluated were

positive for JCPyV using nested PCR. Prostate cancer is more

susceptible to JCPyV infection than benign prostate hyperplasia.

Tumors with both high prostate-specific antigen levels and

high Gleason scores were associated with a high risk of

JCPyV infection.

In addition, we reported that the positivity rate and

expression levels of T antigen were lower in breast cancer than

in normal breast tissue (135), in line with hepatocellular and

pancreatic cancer (136). T antigen DNA positivity was inversely

associated with E-cadherin expression and triple-negative breast

cancer but positively associated with lymph node involvement

and ER and PR expression. JCPyV copies were negatively linked

to tumor size and E-cadherin expression in breast cancer but

positively associated with histological grading. Additionally, we

for the first time found that JCPyV was less detectable in cervical

epithelium than dysplasia and carcinoma (137). We also

observed T antigen DNA and protein in hepatocellular,

pancreatic, breast and cervical cancer cells using in situ PCR

and immunohistochemistry (134–136).
Conclusions and perspective

JCPyV enters eukaryotic cells and is inserted into genomic

DNA. It induces tumorigenesis with tissue specificity by

targeting the p53, b-catenin, IRS, Rb, TGF-b1, PI3K/Akt, and
AMPK signal pathways. Pathological examination and animal

experiments have demonstrated that the JCPyV T antigen might

induce tumorigenesis in neural and gastroenterological systems

and breast. Thus, JCPyV might be an etiological risk factor for
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carcinogenesis and should be emphasized in tertiary prevention

and treatment of cancer.

Because JCPyV infection rate reaches 80%, we should try our

best to prevent the entry of JCPyV into the human body through

the sewage and air droplet. In addition, it is better to block the

endocytosis and nuclear transport of JCPyV virions by receptor

antagonists. Finally, the agents to block the JCPyV infection or

inhibit the JCPyV-related signal pathway should be developed to

prevent and treat JCPyV-related cancers. In the future, we can

realize the early diagnosis, finding and treatment of JCPyV-

related cancers.
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TABLE 2 The correlation of JCPyV T antigen with carcinogenesis and subsequent progression.

Author
and
references

Cancer type DNA
profile

Protein
profile

Clinical and prognostic significances

Kutsuna
et al. (120)

Oral squamous
carcinoma

high nd ns

Hämetoja
et al. (121)

adenoid cystic
carcinoma of the oral
cavity and the airways

nd nd ns

Del Valle
et al. (122)

Esophageal squamous
carcinoma

high nd ns

Murai et al.
(123)

Gastric cancer high nd ns

Ksiaa et al.
(124)

Gastric cancer high nd positively associated with elder age, differentiation, hypermethylation of p14 and p16 and poor
prognosis.

Hori et al.
(125)

Colorectal cancer high high ns

Shavaleh e t
al (126).*

Colorectal cancer high ns ns

Nosho et al.
(127)

Colorectal cancer high nd negatively associated with proximal location, high grade, family history of colorectal cancer, and
mucinous component and was associated with p53 expression, high CIN score, Cyclin D1 expression,
LINE-1 hypomethylation, and BRAF mutation

Link et al.
(128)

Colorectal cancer high nd positively associated with clinical staging and liver metastasis

Vilkin et al.
(129)

Colorectal cancer nd nd positively associated with hMLH1 hypermethylation

Ripple et al.
(130)

Colon cancer nd high negatively associated with b-catenin expression**

Abdel-Aziz
HO (131)

Lung cancer high nd positively associated with lymph node metastasis, p53 and nuclear b-catenin expression, and high in
adenocarcinoma than squamous carcinoma

Zheng et al.
(132)

Lung cancer high high positively associated with ki-67 and no membrane b-catenin expression, and high in adenocarcinoma
than squamous carcinoma, small and large cell carcinoma

Antje et al.
(133)

Renal clear cell
carcinoma

nd nd ns

Shen et al.
(134)

Prostate cancer high high positively associated with PSA level and Gleason’s scores

Zheng et al.
(135)

Breast cancer low low negatively correlated with tumor size, E-cadherin expression and triple-negative breast cancer, but
positively correlated with lymph node metastasis, histological grading and ER and PR expression.

Zheng et al.
(136)

Hepatocellular
carcinoma

low high ns

Zheng et al.
(136)

Pancreatic cancer low high ns

Zheng et al.
(137)

Cervical cancer high nd ns
nd, not detection; ns, not significant; ER, estrogen receptor; PR, progestogen receptor; PSA, prostate-specific antigen; *meta-analysis; **protein level.
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