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INTRODUCTION 
 

To date, the treatment of sepsis, a disease of host 

immune disorders caused by bacterial infection, an 

array of therapeutic targets applied in clinical practice 

notwithstanding, still fails to yield an ideal outcome 

[1, 2]. Endotoxin, also known as LPS, is an important 

component of the cell wall of Gram-negative bacteria 

and an essential inflammatory factor in the body [3]. 

Studies have confirmed that a small amount of 

endotoxin can induce a series of inflammatory reactions 

in the human body, leading to septic shock or even 

death of patients in severe cases [4]. Hence, sepsis 

triggered by endotoxin has become a world-wide 

medical challenge which consequently requires an 

excavation of a therapeutic agent that can ensure a 

substantial interception of the stimulation from LPS to 

the body’s immune system.  
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ABSTRACT 
 

Objective: This study is to assess the therapeutic effect of graphene oxide (GO) loaded with AWRK6 on endotoxin-
induced sepsis. 
Method: AWRK6/GO was prepared by GO loaded AWRK6, with the structure characterization of AWRK6/GO 
conducted by atomic force microscope (AFM) and ultraviolet spectrophotometer, the sustained release rate of 
AWRK6/GO detected by high performance liquid chromatography (HPLC), and the neutralization ability of 
AWRK6/GO to lipopolysaccharide (LPS) tested by in vitro experiments. The levels of IL-8 and TNF-α in mouse 
cells after drug intervention were detected by ELISA; a LPS mouse model was established to observe the effects 
of drug intervention on the survival cycle and survival rate of mice. 
Results: The sustained drug release rate of AWRK6/GO reached 85% within 24 hours observed under in vitro 
conditions, with an efficient neutralization effect to LPS (P < 0.01); Compared with the control group, the 
intervention of LPS succeeded in remarkably elevating the levels of IL-8 and TNF-α in the whole blood and 
macrophages of the mice (P < 0.01), whose survival cycle and survival rate consequently observed an obvious 
decline (P < 0.01); The intervention with AWRK6 or AWRK6/GO predominantly brought down the levels of IL-8 
and TNF-α in the whole blood and macrophages of mice given LPS (P < 0.01), resulting in an elevation of the 
survival rate and survival time (P < 0.01). 
Conclusion: GO loaded with cationic antimicrobial peptide AWRK6 exerts a rosy neutralization effect on 
endotoxin activity, with no obvious side effects on mice observed, which is of certain application value in the 
treatment of sepsis. 
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Antibacterial peptides, a key part of the body’s immune 

defense with disadvantages to the drug-resistance of 

pathogenic bacteria, can eliminate the pathogens by the 

disruption of the cell membrane in direct interaction 

and the regulation with the host immune system [5, 6]. 

Recent studies have shown that antimicrobial peptides 

intervention, long appreciated by its excellent anti-

inflammatory effects on the substantial inhibition of 

endotoxin activity in bacteria extermination and its 

efficacy of diminishing the production of pro-

inflammatory cytokines by inhibiting the activation of 

monocytes and macrophages [7, 8], has therefore 

become a promising antimicrobial strategy in clinical 

practice. AWRK6 (SWVGKHGKKFGLKKHKKH) is 

a new type of cationic antibacterial peptide, which is 

transformed from the antibacterial peptide dybowskin-

2CDYa (SAVGRHGRRFGLRKHRKH) with strong 

antibacterial activity [9]. Graphene, the thinnest 

nanomaterial with only one atom thickness, is the 

basic unit of many nanomaterials [10]. It has been 

proven by in-depth research to have a wide range of 

applications in many fields such as medicine and 

chemical engineering [11]. GO exerts a tremendous 

fascination on the academia with its excellent 

biocompatibility, a stable dispersity in an aqueous 

solution, and a large specific surface area that can be 

used to load small molecule drugs [12, 13]. To elevate 

the inhibition effect of AWRK6 on LPS, this study 

focuses on graphene nanoparticles loaded with 

AWRK6, and evaluates its effect in neutralizing 

endotoxin activity and treating sepsis, with an aim to 

provide a reference for the treatment of sepsis in the 

clinic. 
 

RESULTS 
 

Structural characterization of AWRK6/GO 

 

The AWRK6/GO AFM characterization, UV 

characterization, and drug release rate changes were 

shown in Figure 1A–1D. Closer inspection of  

Figure 1 presented a remarkable sustained release rate 

of AWRK6/GO 85% within 22 hours. Meanwhile, we 

identified the half-life of AWRK6/GO was 720 

minutes.  

 

The inhibitory effect of AWRK6/GO on LPS activity 

in vitro 

 

The results from Figure 2 showed that compared with 

the LPS control group, the LPS concentration in the GO 

group observed no obvious changes (P > 0.05), while 

the LPS concentration in the AWRK6 or AWRK6/GO 

group obtained an apparent decrease (P < 0.01), in 

which a greater fall of the LPS level in the AWRK6/GO 

group was found (P < 0.01). 

 

 
 

Figure 1. AWRK6/GO characterization and drug release rate (A–D). Note: (A) AWRK6/GO sample; (B) AWRK6/GO. 
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The effect of AWRK6/GO intervention on the levels 

of inflammatory factors in the whole blood and 

macrophages of LPS mice 

 

The results in Figure 3A, 3B showed that compared with 

the control group, the serum levels of inflammatory 

factors IL-8 and TNF-α in the mice treated with LPS 

were notably increased (P < 0.01); By contrast to the LPS 

control group, no evidence of apparent changes in the 

serum levels of IL-8 and TNF-α in the GO group was 

detected (P > 0.05). AWRK6 or AWRK6/GO yielded a 

markedly decline of the serum levels of IL-8 and TNF-α 

in mice (P < 0.01), in which AWRK6/GO garnered a 

more prominent result (P < 0.01). 

The effect of AWRK6/GO intervention on the 

prognosis and survival of LPS mice 

 

All mice were injected with a lethal dose of 0.5 mL of 

LPS (50 mg/kg). In the LPS control group, all mice died 

within 40 hours compared with the 56 hours of the GO 

intervention group. However, the group with AWRK6 

or AWRK6/GO intervention successfully extended the 

survival time to over 168 hours. In comparison with 

mice in the LPS control group, no significant changes 

were detected in terms of the survival period and 

survival rate of the mice treated with GO (P > 0.05), 

while the AWRK6 or AWRK6/GO yielded a desirable 

outcome regarding the long-term survival rate and 

 

 
 

Figure 2. Inhibitory effect of AWRK6/GO on LPS activity in in vitro experiments. 

 

 
 

Figure 3. The effect of AWRK6/GO intervention on the levels of inflammatory factors in the whole blood and macrophages 
of LPS mice. Note: (A) IL-8 expression level; (B) TNF-α level. 
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survival rate of the mice (P < 0.01), in which 

AWRK6/GO witnessed a greater increase than AWRK6 

(P < 0.01). See Figure 4. 

 

The effect of AWRK6/GO on the activity of liver 

cells, spleen cells and macrophages in LPS mice 

 

The results in Figure 5A–5C showed that compared with 

the control group, 10, 20 and 30 μg/mL AWRK6/GO 

exerted no significant inhibitory effect on the activity 

of mouse liver cells and lymphocytes (P > 0.05), while 

the activity of macrophages was suppressed when  

the AWRK6/GO concentration reached to 40 μg/mL 

(P < 0.05). 

 

The effect of AWRK6/GO on mouse organs and 

tissues 

 

The effects of AWRK6/GO on mouse heart, liver, spleen, 

lung and kidney tissues were shown in Figure 6A–6E, 

which was indicative of a rather hidden toxic effects of 

AWRK6/GO on the organs of mice (P > 0.05). 

 

 
 

Figure 4. The effect of AWRK6/GO intervention on the prognosis and survival of LPS mice. 

 

 
 

Figure 5. The effect of AWRK6/GO intervention on the activity of liver cells, spleen cells and macrophages in mice. Note: 

(A) Liver cell activity; (B) Spleen cell activity; (C) Macrophage activity. 
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DISCUSSION 
 

As one of the perilous diseases usually induced by 

bacterial infection, sepsis invariably gives rise to fever, 

joint swelling and pain, and systemic inflammation 

[14]. Endotoxin is one of the key substances that leads 

to the patient’s immune response by bacteria through 

invading macrophages and neutrophils, which is 

considered as one of the major causes of sepsis [15]. 

Studies have found that the binding of LPS and the 

TLR4 protein on the cell surface may induce cells to 

produce a large number of inflammatory factors [16]. 

At present, antibiotics are often used clinically to inhibit 

bacteria in patients with sepsis, though its neutralization 

effect on endotoxin toxicity were rather concealed [17]. 

That a predominant neutralization effect of AWRK6 

antimicrobial peptides on the toxicity of LPS is able to 

mitigate the inflammatory response of cells triggered by 

LPS has also been reported. AWRK6 is a new type of 

cationic antibacterial peptide, possessing an α-helical 

structure and an affinity for LPS [18]. This study 

targeted the therapeutic effect of AWRK6 on LPS-

induced sepsis, and evaluated the application value of 

GO-loaded AWRK6 in the treatment of sepsis. 

 

GO is a new type of active material that contains a large 

number of oxygen-containing functional groups, 

characterized by a positive biological activity, an 

excellent hydrophilicity and a stable dispersity in water, 

which is widely used in the chemical and medical areas 

[19]. Biodistribution analysis revealed that GO 

presented in mice brain, spleen, liver, kidney and bone 

marrow within a month after injection [20]. Eventually, 

GO materials were mostly excreted through urinary 

system, whereas a small portion of GO would be 

sequestered by spleen [21, 22]. However, no detectable 

pathological consequences in the spleen were found to 

be caused by this GO accumulation [22]. In addition, 

analyses using both bright-field TEM coupled with 

electron diffraction and Raman spectroscopy spotted 

in vivo intracellular biodegradation of GO, and the 

spectral features of GO crystals barely existed in spleen 

nine months after injection [22]. Meanwhile, GO is 

widely used in human. For example, it has been 

reported that Graphene and GO enhance ROS 

accumulation in human skin keratinocytes [23]. GO 

nanoplatelets improve anti-cancer effect of cisplatin on 

human lung cancer cells [24]. It has been found GO 

induces anti-angiogenic impact of GO in primary 

human endothelial cells [25].  

 

It was found in this study that AWRK6/GO was more 

competent in the suppression of LPS activity in an in 

vitro environment than AWRK6, while LPS was barely 

affected by GO. A larger specific surface area enables 

GO to strongly absorb substances with a small 

molecular weight, indicating no evident inhibitory 

effect on LPS by GO. Compared with AWRK6, GO in 

AWRK6/GO elevates the drug's loading capacity, 

which further enhances the inhibitory effect of AWRK6 

on LPS activity by increasing the possibility of 

interaction between AWRK6 and LPS. Several studies 

determined that GO could be engulfed by multiple cell 

types such as macrophages, natural killer cells and so 

on [26, 27]. GO could serve as an antioxidant to 

impair intracellular ROS accumulation, and attenuate 

 

 
 

Figure 6. The effect of AWRK6/GO on mouse organs and tissues. Note: (A) Heart; (B) Liver; (C) Spleen; (D) Kidney; (E) Kidney. 
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inflammatory polarization to type II macrophages [26]. 

Another study suggested that nanoformulated GO could 

stimulate neutrophile activation via inducing ROS 

formation [28]. On the other hand, Chen and colleagues 

reported no obvious cytotoxicity or significant cellular 

uptake of GO in A549 lung cancer cells at low dose, 

while higher dose of GO induced oxidative stress 

and slightly impaired the cell viabilities [29]. These 

data demonstrated that the diverse doses and 

functionalization notably altered the internalization and 

effects of GO on various cell types. Our data suggested 

that only high dose of AWRK6/GO cause slightly 

retarded viability of macrophage, yet the internalization 

of AWRK6/GO by macrophage, leukocytes and normal 

liver cells, as the inflammatory response still need to 

be explored in future studies. Moreover, the 

pharmacokinetics (PK) and pharmacodynamics (PD) of 

GO were widely studied by previous studies. For 

example, Zhang et al., reported that the GO shows a 

long blood circulation time (half-time 5.3 ± 1.2 h) [30]. 

The presence of GO in bladder gradually increases 

within 1 hour after injection and reached the maximum 

concentration after 6 hours [31]. Li and colleagues 

compared the retention of GO and GO-PEG, and found 

that GO particles retained partially in lung and mostly 

in liver and spleen, while PEG coating improves the 

biocompatibility of GO, decreasing its retention in liver, 

lung, and spleen. Yet both GO and GO-PEG were still 

detectable 3 months after injection [32]. We will 

analyze the PK and PD of GO in our system in future 

investigations. 

 

Sepsis is an inflammatory reaction that affects the 

patient’s systemic organs. A small amount of endotoxin 

can trigger a significant increase in the level of 

inflammatory factors in the body as it is highly sensitive 

to bacterial endotoxins [14]. IL-8 and TNF-α, produced 

by monocytes-macrophages, can promote the body’s 

inflammatory response and reflect the degree of 

inflammation, which are considered as vital indicators 

for the diagnosis of sepsis [33, 34]. Corresponding 

results discovered in this study that after LPS induction, 

the levels of IL-8 and TNF-α in mouse whole blood and 

macrophages observed a sharp rise with LPS induction 

but a notable decline after intervention with AWRK6 or 

AWRK6/GO. Moreover, prior studies proved that 

AWRK6 can significantly improve the levels of IL-8 

and TNF-α in LPS mice, and inhibit body inflammation 

[34]. Extended results in this study confirmed that in 

comparison with AWRK6, AWRK6/GO prominently 

drove down the level of inflammation in mouse whole 

blood and macrophages, suggesting that AWRK6/GO 

can optimize the inflammatory response in mice by 
elevating the ability to neutralize LPS. Moreover, 

HMGB1 is a nuclear protein that could be released by 

macrophages at late phase of LPS-caused inflammatory 

response [35]. In this work, we detected the early 

inflammatory response under LPS induction, which was 

represented by the levels of IL-8 and TNF-α. The 

HMGB1 levels released to blood system or in tissues at 

later phase was not detected, and would be discussed in 

future study. 
 

In this study, mice were injected with 50 mg/kg of LPS, 

and then AWRK6 or AWRK6/GO was used to evaluate 

the application value of AWRK6/GO in the treatment of 

sepsis. The results showed that compared with LPS 

control mice, both AWRK6 and AWRK6/GO garnered 

a favorable outcome in ameliorating the survival time 

and survival rate of LPS mice. It has been stated by Jin 

et al. [36] that AWRK6 has a protective bearing on 

LPS-induced liver cells in mice, and can inhibit the liver 

cell apoptosis induced by LPS in mice by participating 

in the regulation of the intracellular MAPK signaling 

pathway. That the improvement of drug efficacy was 

achieved by the loading of GO that has a low toxicity 

has been reported [37]. Zhang et al. [38] confirmed that 

the GO-loaded pro-apoptotic polypeptide drug delivery 

system effectively inhibit the proliferation of cancer 

cells. Similar results were reported in this study that 

AWRK6/GO was more efficient and effective with 

regard to the amelioration of the survival time and 

survival rate of LPS mice than AWRK6. Vivo 

experiments displayed a survival rate of mice as high as 

90% in the AWRK6/GO group seven days after the 

injection of AWRK6/GO, which was apparently higher 

than those of other groups, indicating a strong 

neutralization effect of AWRK6/GO on LPS and an 

elevation of inhibitory effect of AWRK6 on LPS 

activity in vivo. 
 

In conclusion, the AWRK6/GO complex formed by 

loading AWRK6 with GO can remarkably enhance the 

inhibitory effect of AWRK6 on LPS toxicity, prolong 

the life cycle of LPS mice, and elevate the survival rate 

of LPS mice with good biological safety. 

 

MATERIALS AND METHODS 
 

Preparation of GO 
 

Preparation: Added concentrated sulfuric acid into the 

graphene, fully stirred, slowly added potassium 

permanganate, fully stirred for 20 minutes, and 

continued stirring in a 35°C constant temperature water 

bath until the solution turned green; moved the solution 

from the 35°C water bath to the ice water bath, 

continued stirring till purple red smoke appeared, then 

continue stirring for another 30 minutes. Subsequently, 
added 4 times the volume of cold water to the solution, 

continued stirring until the solution turned brown, and 

added cold water again until the foam disappeared and 
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the solution turned orange-yellow. Rinsed the 

precipitate with 10% HCL, water and absolute ethanol, 

and stripped the graphene oxide into GO by the 

ultrasonic dispersion method and dried. 

 

Preparation and characterization of AWRK6/GO 

 

Added 3 mg of GO into 20 mL of AWRK6 solution (20 

mg/L) for a 160-minute reaction in a 30°C water bath 

shaker (130 revolutions/min). used hydrochloric acid 

and sodium hydroxide solution to adjust the pH value of 

the AWRK6 solution, filtered with a 0.45 μm water 

phase filter, and dissolved AWRK6/GO with methanol. 

 

Characterization of AWRK6/GO: AWRK6/GO was 

characterized by AFM and ultraviolet-visible 

spectrophotometer.  

 

Drug release 

 

The dialysis bag method was used to investigate the 

drug release rate in vitro. The GO nanoparticle solution 

loaded with AWRK6 was placed in 1 mL of PBS 

(pH 7.4 or pH 5.0) containing 0.1% Tween 80, put in 

a dialysis bag after it fully dispersed, and placed in a 

centrifugal tube containing 30 mL of the corresponding 

release medium. A vitro release test was performed in 

the shaker with 37°C and 100 rpm. 200 μL of release 

medium were taken after 0.5, 1, 2, 3, 4, 6, 8, 12, 24, and 

48 h, and an equal volume of fresh release medium was 

supplemented. The drug concentration in the release 

medium was determined by HPLC, and the cumulative 

release amount was calculated. 

 

Chromatographic conditions: Diamonsil C18 (250 mm 

× 4.6 mm, 5.0 μm) chromatographic column was used 

to detect the solution, with a column temperature of 

30°C; the volume ratio of mobile phase acetonitrile-

water solution was 30 to 70; the volume flow was 

1 mL/min; UV detection wavelength was 306 nm; 

sample volume was 10 uL; detection time was 15 min. 

AWRK6 retention time was 5.2–7.5 min. The formula 

for calculating drug loading and encapsulation 

efficiency (LC) was as follows: 

 

EE% = Wt/Ws × 100% 

LC% = Wt/Wo × 100% 

 

Note: Wt: the mass of AWRK6 contained in the 

nanoparticles; Wo: the initial dose of AWRK6; Ws: the 

total mass of the lyophilized nanoparticles. 

 

Neutralization of endotoxin by AWRK6/GO in vitro 
 

According to the treatment method, the 96-well plate 

with 10 μL LPS (final concentration 0.2 ng/mL) added 

in vitro was divided into LPS group, AWRK6 (20 

μg/mL) group, GO (20 μg/mL) group and AWRK6/GO 

(20 μg) /mL) group. 10 μL of the corresponding drug 

according to the group was added and incubated at 37°C 

for 30 min. An ELISA kit was employed to detect the 

residual LPS content in the plate. 

 

Detection of IL-8 levels in whole blood of mice 

 

The ELISA method was used to detect the levels of IL-8 

(SEKM-0046, Solarbio, China) and TNF-α (PT512, 

Beyotime, China) in the whole blood of mice. The 

blood from the heart of LPS mice in a heparinized tube 

was collected, 200 μL of heparinized mouse blood was 

added to a 96-well plate containing 25 μL LPS (final 

concentration 5 ng/mL), and 25 μL AWRK6 (20 

μg/mL), GO (20 μg/mL) and AWRK6/GO (20 μg/mL) 

were added and incubated at 37°C for 24 hours and 

centrifuged at 1200 rmp/min for 8 minutes. The upper 

layer of plasma was analyzed by ELISA for the 

inflammatory factor IL- 8 levels. The animal study was 

reviewed and approved by Linyi People’s Hospital. 

 

Detection of TNF-α level in mouse macrophages 

 

The ELISA method was used to detect the level  

of TNF-α in mouse peritoneal macrophages. The 

macrophages were inoculated in a 96-well plate at 

2 × 105 cells/well, and 25 μL of AWRK6 (20 μg/mL), 

GO (20 μg/mL) and AWRK6/GO (20 μg/mL) and 25 

μL LPS (final concentration 5 ng/mL) were added and 

incubated in a constant temperature incubator at 37°C 

for 6 hours; The ELISA method was used to detect the 

content of TNF-α in cells (PT512, Beyotime, China). 

 

Observation of the effect of AWRK6/GO on the 

survival rate of LPS mice 

 

Construction of a mouse model of endotoxin sepsis: 

0.5 mL of LPS with a concentration of 50 mg/kg was 

injected intraperitoneally into mice to construct a 

mouse model. LPS mice were randomly divided into 

LPS control group, AWRK6 group, GO group and 

AWRK6/GO group. The AWRK6, GO and 

AWRK6/GO groups were injected with AWRK6, GO 

or AWRK6/GO at 10 mg/kg, respectively. The survival 

status of the mice was recorded every 8 hours, and the 

observation was continued for 7 days. 

 

Biosafety evaluation of AWRK6/GO 

 

The toxicity of AWRK6/GO in the liver cells, splenic 

lymphocytes and peritoneal macrophages of mice was 
determined by CCK-8 test. Mice hepatocytes, spleen 

lymphocytes and peritoneal macrophages (1 × 104 

cells/well) in the logarithmic growth phase were planted 



 

www.aging-us.com 19874 AGING 

in 96-well plates, and AWRK6/GO (20 μg/mL) was 

added with concentrations of 10, 20, 30, 40 μM. After 

24 hours, 10 μL of CCK-8 reaction solution was added 

to each well, and incubated in a constant temperature 

incubator for 4 hours. The absorbance at 450 nm on the 

microplate reader was detected. 

 

The visceral tissues of mice injected with the drug 

AWRK6/GO for 20 days were examined by immuno-

histochemistry, and the pathological changes of the 

mice’s organs were observed. Immunohistochemical 

method: Mice injected with different drugs into the 

abdominal cavity were killed by cervical dislocation, 

and the heart, liver, spleen, lung and kidney tissues were 

collected. The tissues of mice were rinsed with PBS 

solution of pH 7.4, placed in 10% neutral formalin 

solution, and fixed at 25°C for 24 hours; the tissue 

samples were dehydrated by gradient concentration of 

ethanol, placed in xylene for 20 minutes until it became 

transparent, and embedded in paraffin at 60°C for 

2 hours. The paraffin-embedded tissues were cut into 

sections with a thickness of 5 μm, extended in a 42°C 

water bath until they became transparent, loaded on a 

glass slide, heated an oven at 75°C for 1 hour and 

dewaxed with xylene till they became transparent; 

100%, 95%, and 85% gradient concentration of ethanol 

was used for rehydration; hematoxylin was added 

dropwise onto the section for nuclear staining for 10 

min, and rinsed with distilled water. After the sections 

were differentiated in hydrochloric acid-ethanol 

solution for 30s, they were rinsed again with distilled 

water and placed in 1% ammonia water to return to blue 

for 30 minutes; the sections were stained with 0.5% 

eosin staining solution for 3 minutes, rinsed with 

distilled water, dehydrated with 85%, 95% and 100% 

ethanol in sequence, and dealcoholized in xylene; 

neutral balsam was used for mounting. 

 

Cell lines 

 

Mouse peritoneal macrophages were isolated from 

C57BL/6 mice aged 6 to 8 weeks. In short, sterile 3% 

thioglycollate medium (1 ml) was intraperitoneally 

injected after a 4-day prelavage with 10 mL PBS, the 

macrophages were then elicited by thioglycolate. Mouse 

hepatocytes and spleen lymphocytes were obtained 

following a reported protocol [39]. All cells were 

maintained in RPMI-1640 medium added with 10% 

FBS (Hyclone, USA), 100 U/mL penicillin and 

100 U/mL streptomycin (Sigma, USA), and cultured in 

a humidified 37°C incubator filled with 5% CO2.  

 

Data analysis 

 

The experiments involved in this study were carried out 

independently three times, and the data obtained were 

processed by SPSS 20.0 and graphed by GraphPad 

Prism 7. The measurement data were analyzed by 

variance analysis. A t-test was used for the difference 

between the two groups, and Bonferroni test was for 

the difference between multiple groups, recorded as 

the mean ± standard deviation. A difference was 

considered statistically significant when a p value was 

less than 0.05. 
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