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Abstract Mitotically active, growth-arrested cells and
proliferatively senescent cultures of human fetal lung
fibroblasts (WI-38) were exposed to six different
oxygen tensions for various lengths of time and then
analyzed to determine the responses of their antioxidant
defense system. Glutathione (GSH) concentration in-
creased as a function of ambient oxygen tension in early
passage cultures; the effect was larger in exponentially
growing cultures than in those in a state of contact-
inhibited growth arrest, but was absent in senescent
cells. Conversely, the activity of glutathione disulfide
reductase was greater in growth-arrested cultures than in
mitotically active cells irrespective of oxygen tension.

Glucose-6-phosphate dehydrogenase was lowest in log-
phase cells exposed to different oxygen tensions for 24 h
and in senescent cells. Both hypoxia and hyperoxia
depressed selenium-dependent glutathione peroxidase
activity in early passage cultures, while the activity of the
enzyme progressively declined with increasing oxygen
in senescent cells. The GSH S-transferase activity was
unresponsive to changes in ambient oxygen tension in
either young or senescent cultures. Manganese-
containing superoxide dismutase (MnSOD) activity
was unaffected by oxygen tension, but was elevated
in young confluent cultures as compared with cultures
in log-phase growth. MnSOD activity was significantly
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higher in senescent cultures than in early passage
cultures and was also responsive to increased oxygen
tension in senescent cultures. Copper–zinc-containing
superoxide dismutases activity was not affected by
oxygen tension or the passage of time, but it declined in
senescent cultures.
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Introduction

At concentrations exceeding atmospheric level, oxy-
gen is toxic to all organisms (Stogner and Payne
1992; Patel et al. 2003; Auten and Davis 2009). In
fact, sub-atmospheric concentrations of oxygen are
toxic at a cellular level (Balin et al. 1984, 2002b).
Numerous studies have demonstrated oxygen toxicity
in a broad spectrum of intact organisms as well as in a
variety of cell culture models (for reviews, see Davies
1999, 2000; Greabu et al. 2008). An examination of
the phenomenon at a cellular level reveals that
specific points in cell cycle are oxygen sensitive
(Balin et al. 1978; Rancourt et al. 2002). Both aerobic
and anaerobic metabolism can be modulated pro-
foundly by changes in ambient oxygen concentration
(Balin et al. 1976). Aging of intact organisms is
widely believed to be influenced by by-products of
oxygen metabolism such as oxygen-centered free
radicals and other non-radical reactive oxygen species
(ROS; Allen and Balin 2003a).

Aging of cells in a culture environment manifests
as limited proliferative capacity. Proliferative lifespan
appears to be partly determined by loss of telomere
DNAwith each successive round of mitosis (Harley et
al. 1990; Allsopp and Harley 1995). However, it has
been reported that the rate of telomere shortening in
various types of cells is affected by oxidative stress
and hyperoxia (von Zglinicki et al. 1995, 2000;
Parrinello et al. 2003). Furthermore, the proliferative
capacity of various types of human cells can be
modulated by changes in the ambient oxygen tension
(Balin et al. 2002a).

The underlying causes of oxygen toxicity have not
been clearly established. A widely held view is that

oxygen toxicity arises from increased oxygen free
radical generation in cells (Beckman and Ames 1998;
Mattar and Haffor 2009), and it has been observed
that exposure to hyperoxia accelerates the accumula-
tion of oxidative by-products such as lipofuscin (von
Zglinicki et al. 1995), which would seem to support
the hypothesis.

Aerobic cells have antioxidant defenses that re-
move ROS before they can inflict damage. These
include superoxide dismutases (SOD) that remove
superoxide radicals (O2

.-) and produce hydrogen
peroxide (H2O2; Allen 1998), and catalase and
peroxidases that remove H2O2 (Keogh et al. 1996).
The family of seleno-proteins referred to as GSH
peroxidases (GPx) remove both H2O2 (Modrick et al.
2009) and lipid peroxides (Ran et al. 2006; Arsova-
Sarafinovska et al. 2009). The most prominent of
these, GPx-1, can metabolize both organic and
inorganic substrates (Arsova-Sarafinovska et al.
2009). Enzymic defenses that remove highly reactive
hydroxyl radicals (HO.) have never been identified,
but non-enzymatic antioxidant defenses, such as
tocopherol, urate, carotenoids, ascorbate, and gluta-
thione (Keogh et al. 1996; Allen and Balin 2003a),
can remove ROS including HO. by reacting directly
with them. Non-enzymic antioxidants can also break
chain oxidation reactions (Beckman and Ames 1998).
Of course, if ROS are the primary catalysts of oxygen
toxicity, then antioxidant defenses should increase in
response to increasing oxidant production resulting
from elevated ambient oxygen tensions.

A variety of environmental factors, including ROS,
are believed to contribute to senescence via mechanisms
independent of telomere shortening, particularly in
human cells (Cristofalo et al. 2000, 2004). The prolifer-
ative capacity of various types of human cells can be
modulated by changes in the ambient oxygen tension
(Balin et al. 2002a). The effects of oxygen on growth
are also mediated by some culture-specific factors such
as seeding density (Balin et al. 1984, 2002a).

The toxic effects of oxygen may be mediated by
the balance between ROS generation and antioxidant
response and may be influenced not only by the age
of cultures, but also by their level of mitotic activity.
The purpose of this study was to assess the influence
of oxygen tension on the antioxidant defenses of fetal
lung fibroblasts (WI-38) in both actively growing and
quiescent growth states as well as in proliferatively
senescent cultures.
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Methods

Cell lines Human diploid embryonic lung fibroblast
cell strains WI-38 were obtained from Dr. Vincent J.
Cristofalo of the Lankenau Center for Medical
Research, Wynnewood, PA, USA.

Cell culture Cells were grown in Dulbecco’s modified
Eagle’s medium (1 g/l glucose: Gibco Laboratories,
Grand Island, NY, USA). Immediately before use, the
medium was supplemented with L-glutamine (2 mM;
Flow Laboratories, Rockville, MD, USA) and fetal
bovine serum (10% vol/vol; KC Biologicals). Anti-
biotics were not used. Cultures were grown at 37°C in
75-cm2 sealed polystyrene flasks (No 3024; Falcon
Labware, Oxnard, CA, USA) containing 40 ml
medium 0.54 ml/cm2 and with a gas phase volume
of 233 cm3. The cells were released from the plastic
with trypsin (0.25%; Flow Laboratories) in Ca2+-
and Mg2+-free Hanks’ balanced salt solution (M.A.
Bioproducts, Walkersville, MD, USA). After sus-
pension in medium containing 10% FBS, cell
number was determined with a Coulter Counter
(Coulter Electronics, Hialeah, FL, USA), and cells
were then inoculated into appropriate vessels at a
density of 104 cells/cm2.

Population doublings (PD) were calculated by
comparing cell counts per vessel at seeding with
counts at confluence (Cristofalo et al. 2000). The
percentage of labeled nuclei was determined auto-
radiographically (Cristofalo et al. 2000) and moni-
tored for mycoplasma contamination by the methods
of Schneider and Stanbridge (1975) and by incubation
of cells andmedia on selective agar (Flow Laboratories).
All young cultures had completed less than 60% of
their proliferative lifespan and were free of myco-
plasma contamination by these criteria. Cell viability
was determined using Trypan Blue dye exclusion
(Freshney 1994).

Senescent cells Cells were deemed senescent when
the population failed to double 4 weeks and three
refeedings after seeding. In the studies reported here,
enough cells were collected to seed T175 tissue
culture vessels for experimental analysis of the effects
of oxygen tension. Senescent cells were seeded and
maintained in medium equilibrated with 5% oxygen.
After 7 days, cultures were refed with medium that
contained 0.5% serum and transferred to the different

oxygen tensions. Cultures were harvested for analysis
after 48-h exposure.

Antioxidant defenses: cell culture Cultures used to
study antioxidant defenses in log phase were seeded
at 104 cells/cm2 in T175 flasks, grown for 3 days in
an atmosphere containing 5% CO2, 5% O2, and 90%
N2. The gas phase of the cultures was equilibrated
with gas mixtures containing 5% CO2, 0%, 5%, 20%,
35%, 50%, or 95% O2, and the balance N2, and
transferred to one of six incubators (Heraeus, Tekmar
Co., Cincinnati, OH, USA) maintained electronically
at the oxygen tension used to equilibrate the flask.
Each incubator was equipped with a Clark oxygen
electrode and a CO2 thermal conductivity detector to
maintain the desired percentages of atmospheric
oxygen and carbon dioxide. Incubators were calibrated
each day by withdrawing a sample of gas and
measuring the partial pressure of oxygen and carbon
dioxide with a blood gas analyzer (model 113;
Instrumentation Laboratory, Inc., Lexington, MA,
USA). Cultures in log-phase growth were harvested for
analysis at 24 or 48 h. Cultures grown for measurement
of antioxidant defenses in stationary phase were seeded
at 104 cells/cm2 in T175 flasks and grown to
confluence in an atmosphere containing 5% CO2, 5%
O2, and 90% N2. When cultures had reached a
stationary growth phase (7 days), they were refed with
fresh medium that contained 0.5% fetal bovine serum
and the gas phase equilibrated with gas mixtures
containing 5% CO2, 0%, 5%, 20%, 35%, 50%, or
95% O2 with the balance N2. Cultures were harvested
for analysis after 24-, 48-, 72-, 96-, or 168-h exposure.
In all cases, a blood gas analyzer was used to determine
the oxygen content of the flasks before harvest.

Biochemical analysis

Superoxide dismutase activity Superoxide dismutase
activity was determined by a modification of the
positive assay of Misra and Fridovich (1977) as
previously described (Allen et al. 1995). Cells were
suspended in 16.6 mM potassium phosphate buffer,
pH 7.8, sonicated for 15 s, and then centrifuged at
20,000×g for 30 min. The supernatants were dialyzed
overnight against 50 mM potassium phosphate buffer,
pH 7.0. A 100-µl aliquot of homogenate (containing
between 100 and 200 μg protein) was added to a
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cuvette that contained 0.25 ml riboflavin (100 µM in
16.6 mM potassium phosphate buffer, pH 7.8); to this
was added 1.65 ml of a 0.24 mM solution of o-
dianisidine. The absorbance of the samples was then
determined. The cuvettes were then illuminated 2 min
with two 15-W Sylvania black lights, and the
absorbance was read immediately. The difference in
absorbencies before and after illumination minus a
blank was proportional to SOD activity. In order to
determine manganese-containing superoxide dismu-
tase (MnSOD) activity, homogenate was added to a
reaction mixture that contained 1.5 mM KCN (which
inactivates copper–zinc SOD (Cu/Zn SOD)) about
5 min prior to illumination. The dianisidine assay was
sensitive to the protein content of samples; the effect
was linear at low protein concentrations, but unde-
tected at higher protein concentrations. Therefore, an
amount of bovine albumin equal to the average
protein content of the samples was routinely added
to all of the blanks. Also, addition of cyanide (to
distinguish MnSOD) significantly increases the back-
ground change in absorbance; however, the color
change observed with 1 unit MnSOD (minus the
appropriate blank) was identical with or without
cyanide. Hence, one unit of activity was taken to be
the amount of SOD that yields a color change above
background equal to the magnitude of the change
observed in the blank used for total activity.

Glutathione (GSH + GSSG) The level of total
glutathione was determined by the cycling method
of Tietze (1969). In this procedure, homogenate
(deproteinized with 10% perchlorate and neutralized
with K3PO4), glutathione disulfide (GSSG) reductase,
NADPH, and 5,5′-dithiobis-2-nitrobenzoic acid were
mixed in a cuvette and the color change monitored at
412 nm. A standard curve was constructed with known
amounts of GSSG and used to calculate the concen-
tration of glutathione present in the homogenates. An
attempt was made to determine GSSG concentration
by first eliminating GSH with 2% 2-vinylpyridine
according to the method of Griffith (1980) and then
repeating the above assay. However, the concentration
of GSSG in the fibroblast cell lines examined was low
and often below the detection limits of the assay.

GSSG reductase A slight modification of the method
of Carlberg and Mannervik (1985) was used to
determine GSSG reductase (GR) activity. Homoge-

nate was added to a solution of 200 mM potassium
phosphate buffer containing 0.2 mM NADPH and
2 mM GSSG. The rate of color loss monitored at
340 nm is proportional to GSSG reductase activity.

Glucose-6-phosphate dehydrogenase Glucose-6-
phosphate dehydrogenase (G-6-PD) activity was
quantified according to the method of Deutsch
(1980), which is based on the formation of NADPH.
Maleimide (1 mM) was added to block competing
reactions. NADPH formation was determined spec-
trophotometrically at 340 nm.

GSH peroxidase (GPx-1) This assay couples the
oxidation of GSH by GSH peroxidase to the oxidation
of NADPH by GSH reductase as previously described
(Keogh et al. 1996). The assay mixture contained
50 mM Tris HCl, pH 7.6; 1 unit/ml GSSG reductase,
0.25 mM GSH, 0.2 mM NADPH, and 3 mM KCN to
increase stability. The reaction was initiated by the
addition of 50 μ1 of a 12 mM H2O2 solution. This
method detected predominantly type 1 GPx activity.
One unit of activity is equal to consumption of 1 μM
NADPH/min (monitored at 340 nm). Due to the
relatively low GPx activity observed in fibroblasts,
we report activity in milliunits.

GSH S-transferases Activity of S-transferases was
determined using 1-chloro-2, 4-dinitrobenzene (CDNB)
as a general substrate (Hazelton and Lang 1983). The
assay mixture consisted of 50 μl of homogenate,
100 μl of 50 mM GSH, and 450 μl of CDNB (to a
final concentration of 1.25 mM). The rate of increase
in absorbance at 340 nm was used to calculate
activity using 9.6 mM−1 cm−1 as an extinction
coefficient. Units of activity are expressed as
nmol min−1 mg protein−1.

ROS generation The rate of ROS generation was
determined using 2′,7′-dichlorofluorescin diacetate
(DCFH-DA). Because it is non-polar, cell membranes
are permeable to DCFH-DA (Bass et al. 1983); once
in cells, the compound is desacetylated to DCFH.
DCFH is polar and is thus trapped in cells. DCFH is
oxidized predominantly by H2O2 to the highly
fluorescent 2′,7′-dichlorofluorescein (Bass et al.
1983; Chiou and Tzeng 2000). The oxidation of
DCFH to DCF has been widely used to determine
H2O2 generation by flow cytometry and direct
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visualization techniques (Rothe and Valet 1990, 1994;
Carter et al. 1994). However, the indicator is not
entirely specific to H2O2 (Liochev and Fridovich
2001); therefore, we shall refer to this measurement as
ROS rather than H2O2 generation.

DCFH-DA was initially solubilized in 250 μl
DMSO and then added to 150 ml phenyl red,
serum-free MEM. WI-38 cells were seeded in a black
96-well viewplate (Perkin Elmer, Waltham, MA,
USA) at 10,000 cells per well. The cells were washed
once with phenyl red, serum-free MEM and then
treated with 100 μl of DCFH-DA containing medium.
The plates were incubated at 37°C for 1 h. Following
incubation, the cells were washed once with the wash
buffer and read (ex 494, em 518) with a Victor 2 Plate
Reader (Perkin Elmer). Filters used were ex 485
(Perkin Elmer Filter 11440022) and em 535 (Perkin
Elmer Filter 11440023). Protein in the samples was
determined using Bradford protein assay reagent
(Biorad). The reagent was diluted 1:5 with ultrapure
water and filtered prior to treating samples. The
Victor 2 plate reader was used to determine
absorbance at 595 nm. Standard curves were
prepared for each assay from known concentrations
of DCF and protein.

Statistics All measurements were performed on
triplicate samples in each experiment, and all
experiments were repeated at least twice. Data were
compared using analysis of variance (ANOVA).
Least significant difference (LSD) was used to
distinguish subgroups. In all cases, p≤0.05 was
inferred to indicate significance.

Results

Superoxide dismutases

Copper–zinc SOD The average activity of copper–
zinc SOD (Cu/Zn SOD) was relatively constant at
1.6 U/mg protein regardless of ambient oxygen
tension or the duration of exposure. The activity of
this enzyme was also independent of the growth state
of the cells. Senescent cultures exhibited decreased
Cu/Zn SOD activity of 0.7 U/mg protein. As in the
case of early passage cells, the activity of this enzyme
was not affected by increased oxygen tension.

Manganese superoxide dismutase The manganese-
containing form of superoxide dismutase is mitochon-
drial and thus is pivotal to the removal of O2

-..
MnSOD was unaffected by oxygen tension in any of
the groups of young cultures examined in this study
(Fig. 1); however, growth state and proliferative age
strongly influenced the activity of this enzyme. Log-
phase cultures were statistically similar at all of the
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Fig. 1 MnSOD activity in WI-38 cultures exposed to different
oxygen tensions for various periods of time. Mitotically active
cultures were grown 3 days at under an ambient oxygen tension
of 38 mm Hg then refed and transferred to the different oxygen
tensions for 24 or 48 h (24 Log and 48 Log; upper panel). Non-
growing cultures were grown to saturation density under 5%
oxygen, refed with medium that contained 0.5% serum, and
then transferred to different oxygen tensions. The non-
proliferating, confluent (C) cultures were harvested and
analyzed after 24, 48, 72, 96, and 168 h (24 C, 48 C, 72 C,
96 C, and 168 C; lower panel). Senescent cultures were
harvested after 48-h exposure to different oxygen tensions (see
“Methods”)
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oxygen tensions examined (ANOVA, LSD, p≥0.7 in
all cases; Fig. 1, upper panel), but they exhibited
significantly lower MnSOD activity than growth-
arrested cultures maintained at corresponding oxygen
tensions (ANOVA, LSD, p≤0.00001 in all compar-
isons). It was also observed that, in growth-arrested
cultures, MnSOD activity accumulated with the
passage of time, albeit the relationship was not linear
(Fig. 1, lower panel). Confluent (C), growth-arrested
cultures exposed to different oxygen tensions for 24 h
(24 C) exhibited significantly greater MnSOD activity
than similar cultures exposed for 48 h (48 C) at
oxygen tensions of 9 and 242 mm Hg (ANOVA,
LSD, p=0.00002 and p=0.01, respectively; Fig. 1,
lower panel). The cultures maintained at other oxygen
tensions in the 24 C group also tended to exhibit
greater MnSOD activity than the corresponding
cultures in the 48 C group, but the differences were
not statistically significant. Growth-arrested cultures
exposed to different oxygen tensions for 72 h (72 C)
exhibited significantly greater MnSOD activity than
observed in the 24 C or 48 C groups at all oxygen
tensions (p≤0.02 in all cases) except 41 mm Hg
where the 24 C group was similar (ANOVA, LSD, p=
0.5) and 354 mm Hg where both 24 and 48 C were
similar to 72 C (ANOVA, LSD, p≤0.5 in both cases).
Growth-arrested cultures exposed for 96 h (96 C)
exhibited greater MnSOD at 9 (ANOVA, LSD, p=
0.000001), 242 (ANOVA, LSD, p=0.003), and
628 mm Hg oxygen (ANOVA, LSD, p=0.0008) than
cultures in the 72 C group exposed to similar oxygen
tensions. Cells maintained under different oxygen
tensions for 168 h (168 C) exhibited significantly greater
MnSOD activity than cultures maintained at
corresponding oxygen tensions for shorter periods of
time (ANOVA, LSD, p≤0.0001 in all cases; Fig. 1,
lower panel). Since oxygen tension failed to stimulate
enzyme activity in early passage cultures, it is inferred
that MnSOD activity passively accumulated in quies-
cent cultures. Cultures of senescent cells exhibited
higher MnSOD activity than proliferatively younger
cultures at all oxygen tensions (ANOVA, p<0.0001 in
all cases). MnSOD activity was also induced by
hyperoxia in senescent cultures (pO2=633 nm;
ANOVA, p<0.001 in all comparisons with other
oxygen tensions; Fig. 1, lower panel).

Glutathione Large volumes of medium surround cells
in culture. Because cell membranes are partially

permeable to oxidized glutathione (GSSG), it diffuses
from cells into the relatively large volume of medium
that surrounds them, leaving only extremely low
concentrations of GSSG in normal cells. The concen-
tration of GSSG was often near or below the limit of
detection of the assay. Consequently, nearly all of the
glutathione present in cells is in the reduced form
(GSH). For the remainder of this discussion, we will
refer to total glutathione as GSH.

In young cells, the concentration of GSH increased
as a function of the ambient oxygen concentration;
however, the effect was much more pronounced in
log-phase cultures (Fig. 2, upper panel).

Hence, the greatest increase in GSH concentration
was observed in log-phase cultures exposed to different
O2 partial pressures for 24 h (24 Log), and the next
greatest was observed in log-phase cultures exposed to
different O2 partial pressures for 48 h (48 Log). The
relative response to ambient oxygen tension was
diminished in stationary phase (non-dividing) cultures.
The least responsive cells were those in stationary
phase cultures exposed to different oxygen tensions for
only 24 h (24 C; see Fig. 2, lower panel). In all cases
except the growth-arrested cultures exposed for 24 h
(24 C), the GSH concentration present in cells main-
tained at 9 mm Hg was significantly lower than the
concentration of GSH found in cells maintained at
oxygen tensions of 131 mm Hg or greater (ANOVA,
p<0.03 in 48 C group and p<0.00001 in all other
cases). Cultures of proliferating cells maintained at
oxygen partial pressure of 9 mm Hg for 24 h (24 Log)
also tended to exhibit lower GSH than cultures
maintained at 41 mm Hg oxygen than at 131 mm Hg
oxygen (ANOVA, p=0.00001). Conversely, confluent,
growth-arrested cultures maintained under oxygen
partial pressures of 9, 41, 131, and 242 mm Hg for
24 h (24 C) exhibited statistically similar concentrations
of GSH (Fig. 2, lower panel). Furthermore, in all of the
experiments in which it was examined (three experi-
ments), the concentration of GSH was significantly
lower (p≤0.001 in all cases) in growth-arrested cultures
maintained at an oxygen partial pressure of 131, 242,
324, or 648 mm Hg for only 24 h (24 C) than in
confluent cultures maintained at these oxygen tension
for longer periods (Fig. 2, lower panel). These data
suggest that proliferating cultures produce more GSH as
the oxygen tension increases than cultures of non-
dividing cells and that GSH concentration is lowest
immediately after cultures reach confluence and the cells
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enter a state of proliferative quiescence. Senescent
cultures exhibited lower GSH concentrations at 247,
359, and 633 nm O2 (ANOVA; p<0.001 in all com-
parisons with younger cultures; Fig. 2, lower panel).
The results clearly indicate that unlike the results
observed in early passage cultures, GSH concentration
was not directly dependent on ambient O2 concentra-
tion in senescent cultures (Fig. 2, lower panel).

GSSG reductase (GR) reduces GSSG to GSH using
electrons obtained from NADPH. In vivo, the enzyme

plays an important role in maintaining redox balance.
We examined whether GR activity could contribute to
the large differences in GSH concentration that
existed between actively growing and confluent,
growth-arrested cultures by comparing both groups
of actively growing cultures (24 Log and 48 Log)
with the first two groups of growth-inhibited cultures
(24 C and 48 C; Fig. 3). In contrast to GSH
concentration (Fig. 2), GR activity was lower in log-
phase cells. Although increasing the O2 tension
appeared to stimulate GR in growing cultures, there
was no such effect in mitotically quiescent cells.
Preliminary studies revealed no significant differences
between mitotically quiescent cultures and senescent
cells (at 134 nm Hg oxygen tension), and no further
comparison of oxygen effects was made for senescent
cultures. On the basis of these results, we infer that
the changes in GSH concentration in both mitotically
active and quiescent cells were independent of GR
activity in all of the cultures examined.

Glucose-6-phosphate dehydrogenase (G-6-PD) is an
enzyme in the pentose shunt that is sensitive to
feedback activation by GSSG (Eggleston and Krebs
1974; Legan et al. 2008). It is important for proper
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maintenance of GSH concentration in cells because it
is involved in the synthesis of NADPH, the co-factor
of GSSG reductase.

G-6-PD activity was greater in cells maintained
under an oxygen tension of 324 mm Hg than in
cells maintained at 9 mm Hg oxygen. The increase
was statistically significant in the 48 Log (ANOVA,
p=0.002; Fig. 4, upper panel), 72 C (AVOVA, LSD,
p=0.003; Fig. 4, lower panel), 95 C (AVOVA, LSD p=
0.02; Fig. 4, lower panel), and 168 C (AVOVA, LSD
p=0.02; Fig. 4, lower panel) groups. G-6-PD activity
also tended to be greater in growth-arrested cells

maintained under an oxygen partial pressure of
648 mm Hg as compared to cultures maintained
under 9 mm Hg oxygen in several of the groups, but
the effect was less consistent than was observed in
cells maintained under 324 mm Hg oxygen (Fig. 4,
lower panel).

Significant elevations of G-6-PD at 648 mm Hg
oxygen were observed in cultures from the 48 Log
(ANOVA, LSD, p=0.04), 24 C (ANOVA, LSD, p=
0.02), 72 C (ANOVA, LSD, p=0.002), and 168 C
(ANOVA, LSD, p=0.00002) groups. G-6-PD tended
to be lower in log-phase cells than in non-growing
cultures. For example, G-6-PD activity was significantly
lower in proliferating cultures exposed to different
oxygen tensions for 24 h (Log 24) than in any other
group of cultures (ANOVA, LSD, p≤0.0001 in all
comparisons; Fig. 4, upper panel). The effect was far
less pronounced in the Log 48 group, which exhibited
similar G-6-PD activity to the 168 C group at 9, 41, and
324 mm Hg oxygen. The Log 48 group also exhibited
higher activity than the 24 C group when maintained
under 242 mm Hg oxygen. Nevertheless, the extremely
low levels of G-6-PD in the Log 24 group and the fact
that the Log 48 group exhibited activity that was
relatively low as compared to most non-growing
cultures suggested that the activity of the enzyme tended
to become elevated as cells reached confluence and
ceased to divide. Senescent cultures exhibited signifi-
cantly lower (ANOVA, p<0.001; Fig. 4, lower panel)
G-6-PD at all oxygen tensions except 14 and 46 nm O2,
where activity was similar between senescent cultures
and cultures maintained at these oxygen tensions for
168 h (168 C). Activity was similar between the 24 C,
96 C, and senescent cultures at 633 mm Hg oxygen
tension (ANOVA, p<0.09; p<0.1 respectively).

Glutathione peroxidase (GPx-1) Selenium-dependent
GPx-1 plays an important role in the removal of H2O2

from cells. This is particularly true in fetal lung
fibroblasts because they tend to have relatively low
levels of catalase activity. Also, the KM of catalase is
high (Nicholls et al. 2001), which probably neces-
sitates the involvement of other enzymes such as GPx-1
to effectively remove H2O2. Additionally, GPx-1 can
remove lipid peroxides. The enzyme requires GSH as a
co-factor. In general, GPx-1 activity was higher in
cultures maintained at either 41 or 131 mm Hg oxygen
as compared to cultures maintained under an oxygen
partial pressure of 9 mm Hg (Fig. 5).
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Fig. 4 G-6PD activity in WI-38 cultures exposed to different
oxygen tensions for various periods of time. Mitotically active
cultures were grown 3 days under an ambient oxygen tension of
5% then were refed and transferred to the different oxygen
tensions for 24 or 48 h (24 Log and 48 Log; upper panel).
Mitotically quiescent cultures were obtained by allowing them
to grow to saturation density under 38 mm Hg oxygen for
7 days. The resulting stationary phase, confluent cultures (C)
were refed with medium that contained 0.5% serum and then
transferred to different oxygen tensions for 24, 48, 72, 96, or
168 h (24 C, 48 C, 72 C, 96 C, and 168 C; lower panel).
Senescent cultures were harvested after 48-h exposure to
different oxygen tensions (see “Methods”)
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The difference was statistically significant in
mitotically active cultures maintained at 9 and
41 mm Hg oxygen for 24 h (ANOVA, LSD, p=
0.005), growth-arrested cultures maintained under
oxygen partial pressures of 9 and 131 mm Hg for
72 h (ANOVA, LSD, p=0.01) and in growth-arrested
cultures maintained under oxygen tensions of 9 and
41 mm Hg for 96 h (ANOVA, LSD, p=0.03). There

was also a tendency for high oxygen tension to slightly
decrease GPx-1 activity. For example, actively grow-
ing cultures maintained at different oxygen tensions for
24 h exhibited a progressive loss of GPx-1 activity at
oxygen tensions greater than 41 mm Hg. Furthermore,
GPx-1 activity was significantly diminished at partial
oxygen pressures of 324 and 648 mm Hg (ANOVA,
LSD, p=0.001 and 0.00002, respectively) as com-
pared to activity present under 41 mm Hg oxygen. A
similar pattern was observed in all of the groups.
Specifically, GPx-1 activity was lower in cells
maintained at 324 and 648 mm Hg oxygen than in
cultures maintained under 41 mm Hg oxygen in the
48 Log (ANOVA, LSD, p=0.0003, 0.001, respective-
ly) and 24 C groups (ANOVA, LSD, p=0.04, 0.007,
respectively). GPx-1 activity was significantly lower
in the cultures of the 48 C group maintained at
648 mm Hg as compared to cultures maintained at
41 mm Hg oxygen. GPx-1 activity was lower in the
72 C group in cultures maintained at oxygen partial
pressures of 242, 324, and 648 as compared with
cultures maintained at 131 mm Hg oxygen (ANOVA,
LSD, p=0.003, 0.007, 0.002, respectively). GPx-1
activity was also significantly lower in the 96 C and
168 C groups maintained at oxygen partial pressures
of 242, 324, and 648 as compared with cultures
maintained at 41 mm Hg oxygen (ANOVA, LSD, p=
0.0008, 0.0002, 0.00006 and p=0.02, 0.003, 0.00001,
respectively). On the basis of these observations, we
infer that elevated oxygen tension decreased GPx-1
activity. Activity was significantly greater at 9 and
41 mm Hg oxygen in senescent cells than in the 72 C
group (ANOVA, p<0.0001 in both cases). However,
GPx-1 activity declined steadily in senescent cultures
as oxygen tension was increased (Fig. 5, lower panel).
At 648 mm Hg oxygen partial pressure, senescent
cells exhibited GPx-1 activity that was significantly
lower than all other groups except 72 C and 168 C
(ANOVA, p<0.08; p<0.9 respectively).

Glutathione S-transferase The S-transferases are a
family of enzymes that detoxify toxic substances by
conjugating them with GSH. The most abundant S-
transferase, ligandin, probably accounts for most of
the activity we observed using CDNB as the
substrate. Our results revealed that S-transferase
activity was unaffected by oxygen tension and did
not accumulate with the passage of time. The average
activity of CDNB responsive S-transferase activity
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panel). Senescent cultures were harvested after 48-h exposure
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was 215.9±40.6 mU/mg protein. We observed no
significant differences in any of the activities
recorded. S-transferase activity was slightly, though
not significantly higher in senescent cells at 291±
48.8 mU/mg protein but, as in the case of young
cultures, the activity of the enzyme was unresponsive
to changes in ambient oxygen tension.

ROS generation In log-phase cultures, ROS levels
were greatest at low oxygen tension (9 mm Hg;
Fig. 6a). Addition of buthionine sulfoximine (BSO),
which inhibits GSH synthesis, induced highly signif-
icant increases in ROS concentration at 9, 242, and
628 mm Hg O2.

Conversely, ROS concentration was generally
higher in contact-inhibited stationary phase cultures,
but addition of BSO produced little effect. The
greatest ROS concentration in stationary phase cul-
tures was observed at 131 mm Hg O2, whether or not
cells were pretreated with BSO.

Discussion

In this study, we examined the influence of oxygen on
the antioxidant enzyme responses of normal human
fibroblasts. The results reveal that GSH concentration
was consistently stimulated by increased oxygen
tension. The effect was larger in exponentially
growing cultures than in those that were in a state of
contact-inhibited growth arrest. The activities of
enzymes involved in maintenance of GSH concentra-
tion such as GR and G-6-PD failed to correlate with
GSH concentration. G-6-PD activity was lower in 24
Log than in confluent cultures, but was lowest in
senescent cultures. Both hypoxia and hyperoxia
depressed GPx-1 activity in proliferatively young
cells, while GPx-1 activity declined progressively as
a function of oxygen tension in senescent cells.
Oxygen tension did not influence the activity of the
CDNB-sensitive S-transferases in any of the cultures.
MnSOD was elevated in young non-proliferating
cultures as compared with actively growing cells; it
also accumulated with the passage of time, but
failed to respond to changes in ambient oxygen
tension. Conversely, MnSOD activity was much
more elevated in senescent cultures and could be
stimulated by high oxygen partial pressure. Cu/Zn

SOD activity was constant in all of the cultures
regardless of growth state or ambient oxygen
tension. Cu/Zn SOD activity was diminished in
senescent cultures; it remained insensitive to ambient
oxygen tension.
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oxygen tensions for 24 h. The cells were washed once with
phenyl red, serum-free MEM and then treated with 100 μl of
DCFH-DA containing medium. The plates were incubated at
37°C for 1 h. Following incubation, the cells were washed once
with the wash buffer and read (ex 494, em 518) with a Victor 2
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reader was used to determine absorbance at 595 nm. Each point
is an average of eight determinations
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Of the antioxidant defenses examined, GSH was
clearly the most responsive to changes in ambient
oxygen concentration, and the response was greatest
in actively growing cultures. GSH concentration has
been reported to increase in other types of cells, such
as hepatocytes, when they are stimulated to divide
(Huang et al. 1998). Furthermore, large increases in
GSH in response to hyperoxia have also been
observed in vivo (Rister and Wustrow 1985; Langley
and Kelly 1993) and in vitro (Allen and Balin 2003b).
The increase in GSH concentration that we observed
was particularly important in view of the relative lack
of change of other antioxidant defenses. GSH is
sometimes viewed as reacting too slowly to protect
against free radicals (Winterbourn and Metodiewa
1999; Jones et al. 2003); however, the observation
that hyperoxia greatly increases GSSG in the intact
lung tissues of human newborns suggests that it reacts
either directly with oxygen or with oxygen-centered
reactive species (Vento et al. 2002). It should be noted
that in fetal guinea pig lung, other sulfhydryl-
containing compounds such as N-acetylcysteine pro-
tected against hyperoxic damage without significantly
increasing GSH concentration above the level induced
by the hyperoxia (Langley and Kelly 1993). Presum-
ably, this effect is additive with GSH concentration.

GSH concentration was lowest in log-phase cul-
tures maintained at 9 mm Hg oxygen and ROS
concentration was highest in these cells as compared
with other cultures in log-phase growth. Also, GSH
concentration was generally lower and oxidant con-
centration higher in contact-inhibited, growth-arrested
cultures. The fact that the increase in GSH in log-
phase cultures in response to increased O2 was greater
than observed in non-proliferating cultures may partly
account for the failure of high oxygen tensions to
produce large increases in ROS concentration. This
hypothesis was further supported by the observation
that inhibition of the GSH response with BSO
resulted in a large increase in ROS concentration in
log-phase cells, but not in stationary phase cultures,
where the response of GSH to ambient oxygen
tension is smaller. The decrease in GSH concentration
observed in senescent cells maintained at oxygen
tensions greater than 20% may partly explain the
observation that MnSOD responded to high oxygen
tension in these cells, but not in cultures that had
increased GSH concentration in response to increas-
ing oxygen tension.

In these studies, more fetal bovine serum was
included in the growth medium than in the medium
used to maintain stationary phase (10% as compared
to 0.5% see “Methods” section), and this may have
affected GSH results. Merely adding medium that
contains 10% serum to growth-arrested cells tempo-
rarily doubles GSH concentration at 20% oxygen,
although no effect is observed in senescent cells.
Nevertheless, non-proliferating confluent cultures
refed with medium containing 0.5% serum exhibited
similar levels of GSH as cells maintained in 10%
serum after 24-h exposure to 20% oxygen.

The large change in GSH concentration in re-
sponse to elevation in oxygen tension may have also
influenced other antioxidant capacities. For example,
our result revealed no change in the CDNB-reactive
form of the GSH S-transferases; however, the kinetics
of the S-transferases is strongly dependent on the
concentration of GSH. In the assay mixture, activity
was proportional to GSH concentrations up to 4 mM.
Similar observations have been reported in other
organisms (van Hylckama Vlieg et al. 1999). In our
standard assay, the 5 mM GSH concentration was in
excess, and thus, GSH was never a limiting factor in
the reaction. In intact cells, GSH concentration varied
by more than an order of magnitude between hypoxic
and hyperoxic environments and was well below the
concentration that gave a plateau in S-transferase
activity in vitro. Thus, while the amount of S-
transferase protein was relatively constant, it is
probable that S-transferase activity in intact cells
varied dramatically as the ambient oxygen tension
(and GSH concentration) was increased.

G-6-PD and GR activities both appeared to be
independent of GSH concentration although the
maintenance of GSH concentration is strongly depen-
dent on these enzymes in vivo. The most probable
explanation for this apparent discrepancy is the
artificially low level of GSSG that remains in tissue
culture cells. It is in fact the oxidized form of
glutathione that activates both of these enzymes
(Eggleston and Krebs 1974; Carlberg and Mannervik
1985). Since cell membranes are permeable to GSSG
and since, in the culture environment, a large volume of
medium surrounds the cells, simple diffusion keeps
cellular GSSG at artificially low levels as compared to
cells in intact tissues. Thus, cellular responses dependent
on GSSG concentration should to some extent differ
between in vivo and in vitro cellular environments.
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We previously determined that catalase activity in
fetal fibroblasts is very low and that it is strongly
inhibited under hyperoxic conditions (Balin et al.
2002b). Due to its low activity and its relatively high
KM (Nicholls et al. 2001), catalase is probably not a
significant factor in the removal of peroxides from
proliferatively young cells. GSH peroxidase activity is
also relatively low in human cells, but it exhibits a
much lower KM than catalase, which may increase its
importance in elimination of endogenously produced
hydrogen peroxide. Indeed, overexpression of GPx-1
has been found to increase resistance to oxygen
toxicity (Ho and Howard 1992; Faucher et al. 2003;
Modrick et al. 2009), and GPx activity is often
stimulated by hyperoxia in the tissues of intact
animals (White et al. 1988; Taylor and Bray 1991;
Knickelbein et al. 1996). In young cultures, GPx-1
activity was suppressed by both hypoxia and hyper-
oxia. This suggests that at lower levels of oxygen
(131 mm Hg), GPx-1 activity is inducible. Above
242 mm Hg oxygen, it decreased probably because of
inactivation. The inhibition of H2O2 metabolizing
enzymes by hyperoxia is consistent with increased
superoxide generation since GPx contains several
sensitive –SH groups needed for activity (Flohé
1982) that can be oxidized by superoxide (Blum and
Fridovich 1985).

GPx activity declined as a function of ambient
oxygen tension in senescent cells; however, catalase
activity is elevated more than 3-fold in WI-38 cells
that have senesced (Allen et al. 1999). This suggests
that catalase may have a more significant role in the
protection of senescent cells. Senescent cultures also
produce 3-fold more H2O2 and 60% more superoxide
than young cells (Allen et al. 1999), which further
supports the hypothesis that lower GPx-1 activity in
late passage cells results from inactivation rather than
a decline in synthesis.

Hyperoxia has frequently been reported to increase
SOD activity in animal tissues after prolonged
exposure (Kimball et al. 1976; Housset and Junod
1982; Freeman et al. 1986; Webster et al. 1987;
Taylor and Bray 1991; also see Allen and Balin 1989
for review). Increases in Cu/Zn SOD activity have
Taylor and Bray 1991 also been reported in some
types of human cell culture, such as human umbilical
vein endothelial cells exposed to hyperoxia (Jornot
and Junod 1992); however, neither form of SOD
responded to variations in oxygen tension in the early

passage WI-38 cultures examined. MnSOD activity
was affected by growth state, proliferative age, and
time. The fact that SOD activity was not induced by
hyperoxia in young cell cultures raises the question of
whether it is unable to respond due to factors in the
culture environment or if oxygen toxicity in these
cells is more dependent on factors other than
increased superoxide generation. Previous studies
have demonstrated that addition of the superoxide
generating herbicide paraquat to medium increases
MnSOD activity in both normal and virally trans-
formed WI-38 cells (Allen and Balin 2003b), indicat-
ing that a significant increase in superoxide will
stimulate SOD activity. The observation that oxygen
fails to increase the activity of SOD in WI-38 cells
even though SOD activity is clearly responsive to
other treatments that increase superoxide generation
leads us to infer that the toxicity of elevated partial
pressures of oxygen are ameliorated at least partly by
responses of other antioxidant defenses. Of course, in
the case of WI-38 cells, the possibility remains that
other factors that contribute to oxygen toxicity also
block signaling pathways that lead to the induction of
SOD activities. We previously observed that inhibition
of GSH synthesis in WI-38 cells under normoxic
conditions was sufficient to cause a modest increase in
MnSOD activity (Allen and Balin 2003b). An exam-
ination of steady-state levels of ROS using DCF
formation revealed greater concentrations of ROS in
log-phase cultures maintained under lower oxygen
tensions. This observation suggests that the electron
transport chains of mitochondria are sufficiently
reduced to produce oxidants only at lower oxygen
tensions. At higher oxygen tensions, electrons may
be stripped from cytochromes with the result that
they exist in a predominantly oxidized state and thus
generate fewer radicals (Boveris and Cadenas 1982;
Forman and Boveris 1982). A complete analysis of
hyperoxia on mitochondrial function was beyond the
scope of this study but will be presented elsewhere.

Several studies have demonstrated a strong and
nearly immediate effect of oxygen on the cell cycle of
WI-38 cells (Balin et al. 1976, 1978, 1984; Balin and
Pratt 2002). The observation that oxygen tensions that
dramatically affect cell growth fail to induce the
antioxidant defense enzymes suggests that the effects
of oxygen on cell growth are the result of specific
cellular interactions rather than random free radical
interactions with cell components.
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The results of this study revealed that GSH
concentration changed dramatically in human fetal
fibroblasts exposed to hyperoxia, while other antiox-
idant defenses tended to be relatively unresponsive
under the conditions used. Several of the antioxidant
defenses were far more responsive to growth state or
proliferative age than to the ambient oxygen environ-
ment. The fact that the tissue culture environment
tended to artificially decrease GSSG may account for
the failure of some antioxidant defenses to respond to
hyperoxia. The results of this and previous studies
collectively demonstrate that antioxidant defense
levels are more strongly modulated by growth state
than by oxygen tension and that senescent cells,
which exhibit an impaired GSH response, tend to be
more oxidized than young cultures.
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