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CARGEL Bioscaffold improves cartilage
repair tissue after bone marrow stimulation
in a minipig model
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Abstract

Purpose: To gain knowledge of the repair tissue in critically sized cartilage defects using bone marrow stimulation
combined with CARGEL Bioscaffold (CB) compared with bone marrow stimulation (BMS) alone in a validated animal
model.

Methods: Six adult Göttingen minipigs received two chondral defects in each knee. The knees were randomized to
either BMS combined with CB or BMS alone. The animals were euthanized after 6 months. Follow-up consisted of
histomorphometry, immunohistochemistry, semiquantitative scoring of the repair tissue (ICRS II), and μCT of the
trabecular bone beneath the defect.

Results: There was significantly more fibrocartilage (80% vs 64%, p = 0.04) and a trend towards less fibrous tissue
(15% vs 30%, p = 0.05) in the defects treated with CB. Hyaline cartilage was only seen in one defect treated with CB
and none treated with BMS alone.
For histological semiquantitative score (ICRS II), defects treated with CB scored lower on subchondral bone (69 vs.
44, p = 0.04). No significant differences were seen on the other parameters of the ICRS II. Immunohistochemistry
revealed a trend towards more positive staining for collagen type II in the CB group (p = 0.08). μCT demonstrated
thicker trabeculae (p = 0.029) and a higher bone material density (p = 0.028) in defects treated with CB.

Conclusion: Treatment of cartilage injuries with CARGEL Bioscaffold seems to lead to an improved repair tissue and
a more pronounced subchondral bone response compared with bone marrow stimulation alone. However, the
CARGEL Bioscaffold treatment did not lead to formation of hyaline cartilage.
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Introduction
Cartilage lesions are common and do not heal spontan-
eously due to the avascular and aneural nature of the tis-
sue. Cartilage lesions can lead to pain and early
osteoarthritis [1]. Bone marrow stimulation techniques
(BMS) such as microfracture (Mfx) is the preferred
treatment option for small, symptomatic cartilage lesions
in the knee [2]. The rationale behind BMS is to allow
bone marrow mesenchymal stem cells to migrate to the

lesion and to induce and facilitate a repair response.
This treatment is surgically time-efficient, inexpensive,
and have good short-term outcome. The repair response,
however, consists primarily of fibrocartilage and fibrous
tissue, which does not possess the same biomechanical
properties as hyaline cartilage and is therefore more sus-
ceptible to wear causing deterioration of the early results
[3]. While BMS can be a good treatment option for very
small lesions augmentation is needed for larger lesions.
The most common strategy for augmentation of BMS is
to combine the procedure with cell-free scaffolds that
may facilitate cartilage repair biomechanically and bio-
logically. Numerous products have been introduced to
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the market, but early literature on their use is of limited
quality [4].
Cartilage repair by Mfx is initiated by bone

marrow-derived cells found in the blood clot, which
fills the defect following penetration of the subchon-
dral bone. Differences in blot clot stability may ex-
plain differences in repair tissue outcomes. CARGEL
Bioscaffold (CB) (formerly BST CarGel; Smith &
Nephew) is a chitosan-based biomaterial used as an
adjuvant to bone marrow stimulation. It has mostly
been used with a mini-arthrotomy, but it has also
been proposed for arthroscopic techniques [5]. The
purpose of the chitosan scaffold is stabilization of the
bone marrow clot in the cartilage lesion after bone
marrow stimulation to allow formation of improved
repair tissue [6–8]. CB combined with Mfx has
proven safe and has shown superior repair tissue
quantity and quality compared to Mfx after 5 years
[9–11]. CB has also been used for cartilage lesions in
the hip where it has also shown safety of use and su-
perior patient outcomes compared with Mfx alone
[12]. Furthermore, use of CB has been suggested to
be a cost-saving alternative to Mfx due to greater im-
provements in the induction of cartilage repair tissue
with hyaline characteristics [13]. However, clinical
studies are limited in characterizing the biological and
morphological characteristics of the repair tissue,
which is one of the main predictors of long-term out-
come. Animal studies of CB have mainly been con-
ducted in smaller animal models where there is a
tendency to spontaneous healing of cartilage defects
[7, 8, 14–17].
The aim of this study was to investigate and compare

the morphological and histological effects of a combin-
ation of BMS and CB with BMS alone in chondral de-
fects in the knees of Göttingen minipigs. The hypothesis
was that treatment with CB would improve repair tissue
quality compared with BMS.

Materials and methods
Experimental design
Six skeletally mature male Göttingen minipigs (weighing
38.4 kg, range 36.4–43.6 kg; aged 19.4 months, range
18.9–21.1 months) were included in the study. Two cy-
lindrical chondral defects were created in the trochlea of
each knee with a diameter of 6 mm, which has been
shown to be a critical size defect in Göttingen Minipigs
[18]: One defect in the medial trochlear facet and one
defect in the lateral trochlear facet. The defects of each
knee were randomized to treatment with either marrow
stimulation or marrow stimulation in combination with
CB (Smith & Nephew, Hørsholm, DK). The animals
were euthanized after 6 months. Follow-up consisted of
μCT, histomorphometry, semiquantitative scoring of

histology (International Cartilage Repair Society [ICRS
II]), and immunohistochemistry.
The study was conducted according to the Danish Law

on Animal Experimentation and approved by the Danish
Ministry of Justice Ethical Committee (J.nr. 2017-15-
0201-01343).

Surgery
The Göttingen mini-pig animal model has previously
been described in detail [19–21]. Animals were premedi-
cated with Zoletil Mix 1 mL/10 kg (tiletamin 2.5 mg/mL,
zolazepam 2.5 mg/mL, torbugesic 0.5 mg/mL, ketaminol
2.5 mg/mL, and rompun 2.5 mg/mL; Virbac, DK). Gen-
eral anesthesia and local analgesia were achieved with
Etomidate (Hypnomidate, 0.25 mL/kg; Janssen Pharma-
ceuticals), sevoflurane (3%; AbbVie), fentanyl (0.175 mL/
kg/h, Hameln Pharmaceuticals), and Lidocaine (Xylo-
caine 10mL, 20 mg/mL; Astra Zeneca). Preoperative
prophylactic antibiotics were used (penicillin procaine,
0.03 mL/kg; Ceva Sante Animale, France).
Access to the knee joint was gained through the patel-

lar ligament. The trochlea was exposed, and two chon-
dral defects with a diameter of 6 mm were created using
a skin biopsy punch and a curette. One defect was made
in the distal, medial trochlea, while the other was made
in the lateral trochlea, 0.5 to 1 cm proximal to the first
defect. This was done in all knees, and both defects in
each knee were treated with the same method. The de-
fects were thoroughly debrided by use of a curette, and
the calcified cartilage layer was carefully removed in
order not to damage the subchondral bone.
In the BMS group, four holes (depth 5 mm, diameter

1 mm) were drilled into the subchondral bone, and
bleeding from the bone marrow was observed. In the
group with marrow stimulation combined with CB, bone
marrow stimulation was performed as described above.
The defect was then dried using a small swab (Fig. 1a).
Meanwhile, the CB was prepared according to manufac-
turer’s instructions with 4.5 mL of autologous venous
blood, drawn from the ear vein. The leg was positioned
to ensure a horizontal position of the defect. The CB
was then injected, and the defect filled entirely with care
taken not to overfill the defect (Fig. 1b+C). The clot was

Fig. 1 a shows the defects after debridement, drilling and drying. b
shows application of the CARGEL. c is immediately after
the application
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allowed 15 min to stabilize and the knee was put
through 40 full range of motion movements followed by
visual inspection to ensure the clot was still in place.
After treatment, the patella ligament, subcutaneous

tissue and skin were sutured, and subcutaneous lido-
caine was injected for pain management. The animals
were treated postoperatively with Finadyne 5% (Flunixin
meglumin, 1.1 mg/kg, oral paste, Intervet, Denmark) for
5 days and were allowed immediate weight-bearing and
full-range of motion postoperatively. Trained animal
keepers, supervised by a veterinarian, closely observed
each animal thrice daily. After 6 months the animals
were euthanized using Pentobarbital (0.4 mL/kg) and
osteochondral blocks of 1 cm × 1 cm × 1 cm around the
defect were cut for further analyses.

Preparation of specimens
The samples were prepared as previously described in
detail [22]. In brief, samples were dehydrated in ethanol
of increasing concentration (70%–96%) and cleared in
isopropanol and xylene. The samples were then embed-
ded in methyl methacrylate (MMA).

μCT
The MMA embedded osteochondral blocks were
scanned in a desktop μCT scanner (Scanco μCT 35;
Scanco Medical, Brüttiselen, Switzerland) with an iso-
tropic voxel size of 10 μm, X-ray voltage of 55 kV,
current of 145 μA, and an integration time of 800 ms in
high resolution mode (1000 projections/180°). The tra-
becular bone was analyzed by drawing a 2-mm-high cy-
lindrical VOI (volume of interest) with a diameter of 6
mm in the trabecular bone beneath the defect using a
custom-made computer program running under Linux
[23]. The VOI was imported into the software provided
with the scanner (IPL version 6.5). The 3D data sets
were low-pass filtered using a Gaussian filter (σ = 1.3,
support = 2) in order to remove noise before segmenta-
tion with a fixed threshold filter (threshold = 510.3 mg
HA/cm3).
Analyses included bone volume fraction (BV/TV), tra-

becular thickness (Tb.Th), trabecular number (Tb.N),
trabecular separation (Tb.Sp), connectivity density (CD),
structure model index (SMI), and bone material density
(ρ).

Histologic evaluation
The MMA embedded osteochondral blocks were cut
into 7-μm-thick sections by use of a hard tissue micro-
tome (Reichert Jung Polycot). All samples were stained
with hematoxylin and eosin, safranin O, toluidine blue
and immunohistochemically stained for collagen type I
or II. All evaluations were done by a single, blinded as-
sessor with experience in experimental cartilage repair.

Histomorphometry
The morphological characteristics of the repair tissue
were quantitatively evaluated by means of histomorpho-
metry as described by Foldager et al. [24]. Each defect
was halved, and sections were cut for every 350 μm,
yielding 7 sections per defect. A 5 × 5 point counting
grid was superimposed onto each section at × 10 magni-
fication (newCAST software; Visiopharm), and 50% of
the defect was counted according to tissue type (hyaline
cartilage, fibrocartilage, fibrous tissue, bone, or vascular
tissue) as previously described in detail using
hematoxylin and eosin staining with polarized light to
accentuate collagen fibers [22]. Hyaline cartilage was de-
fined as rounded cells in lacunae within a hyaline matrix,
fibrocartilage as rounded cells in lacunae within a fi-
brous matrix and fibrous tissue as elongated cells in a fi-
brous matrix.
Metachromasia on safranin-O staining was further-

more analyzed on a single, central section per defect and
the percentage of repair tissue with metachromasia was
determined [8, 17].

Semiquantitative scoring
Blinded evaluation of a central section of each defect by
use of the ICRS II histological score was performed. In
the ICRS II score, the sections are evaluated with a vis-
ual analog scale from 0 (severely abnormal) to 100 (nor-
mal) compared to normal hyaline cartilage. There are 14
categories: tissue morphological characteristics, matrix
staining, cell morphological characteristics, chondrocyte
clustering, surface architecture, basal integration, forma-
tion of a tidemark, subchondral bone abnormalities, in-
flammation, abnormal calcification, vascularization,
surface assessment, deep zone assessment, and overall
assessment [20]. Safranin O and toluidine blue staining
was used for the ICRS II evaluation.

Immunohistochemistry
Immunohistochemical staining was performed on cen-
tral sections with polyclonal rabbit antibodies for colla-
gen type I (Abcam, Ab 34,710, Cambridge, UK) and
collagen type II (Neomarkers, MS 306-P0, Fremont, CA)
was performed as previously described using a Dako
Autosatiner (Dako Universal Staining System, Carpin-
teria, CA) [25]. Negative staining controls were labeled
with rabbit serum (Dako, X0902) or mouse IgG isotype
control (Thermo Fisher Scientific, Camarillo, CA), re-
spectively. For labeling streptavidin-horse radish perox-
idase and aminoethyl carbazole was used according to
the manufacturer’s instructions (Dako). The sections
were counterstained with Mayer’s hematoxylin. A visual
analog scale (0–100) was used to evaluate the percentage
of positively stained repair tissue for collagen type I and
II for each sample [20]. The amount of positively stained
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tissue was ranged in quartiles from 0 to 25%, 25–50%,
50–75% or 75–100%.

Statistical analysis
Sample size was determined by power analysis based on
overall ICRS II score as primary endpoint. Based on re-
cent studies we expected that BMS without enhance-
ment would score 10 points and enhanced BMS would
score 30 points. SD for the ICRS II score was expected
to be 15 points. Power was set to 80%, α = 0.05 and β =
0.2. With these assumption nine treatment units per
study group was needed. We decided to include 12 units
per group to account for possible animal dropout.
For measures of cartilage repair (histomorphometry

and histology (ICRS score)), a mixed-effect model was
fitted to the data, with pig and knee (left or right) treated
as random effects, and treatment (BMS or CB) and de-
fect site (proximal/lateral or distal/medial) as fixed ef-
fects. A p-value of less than 0.05 was considered
significant. Each category from the ICRS II score was an-
alyzed separately. μCT data was compared using un-
paired t-tests. The number of samples in each quartile of
positive collagen staining was analyzed using Fisher’s
exact test. Two-tailed p-values less than 0.05 were con-
sidered significant. Statistical analysis was performed
using STATA version 15.0 (StataCorp, College Station,
TX, USA) and Prism 7 (GraphPad Software, Inc.).

Results
All animals went through 6months follow-up and there
were no per- or postoperative complications.
Repair tissue was irregular and opaque and was easily

distinguishable from the native cartilage in both treat-
ment groups (supplementary Fig. 1 + 2). One defect/spe-
cimen from each group was lost due to theft while being
transported for μCT.

μCT
Defects treated with CB had significantly thicker tra-
beculae (170 μm vs. 150 μm, p = 0.029) and the bone had
significantly higher bone material density (861 mg HA/
cm3 vs. 845 mg HA/cm3, p = 0.028) indicating that the
bone was more mineralized (Table 1 and Fig. 2).
There were no statistically significant differences in

the other measured parameters (bone volume fraction
(BV/TV), trabecular number (Tb.N), trabecular separ-
ation (Tb.Sp), connectivity density (CD), and structure
model index (SMI)).

Histomorphometry
Histomorphometric analysis revealed significantly more
fibrocartilage (80% vs 64%, p = 0.039) and a trend to-
wards less fibrous tissue in the defects treated with CB
(15% vs 30%, p = 0.052) (Fig. 3). Hyaline cartilage was

only seen in one defect treated with CB and none
treated with BMS alone. No significant differences were
seen for bone (2% vs 5%, p = n.s. (not significant)), or
marrow (3% vs 1%, p = n.s.). No significant differences
were seen between proximal, lateral and distal, medial
defects. On single slides centrally in the defects there
were no significant differences in metachromasia on
safranin-O staining between the two treatment groups
(47% vs 37%, p = n.s.).

Semiquantitative scoring
Complete or almost complete filling was found histologi-
cally in all defects. Best, average and worst examples of
both treatments are shown in Fig. 4. In general, ICRS II
scores were good for chondrocyte clustering and abnor-
mal calcification/ossification even though two defects in
the BMS group had small osteophytes in the repair tis-
sue area (Fig. 5). No significant differences were seen be-
tween proximal, lateral and distal, medial defects for any
categories. Cartilage and subchondral bone histology
were altered for both groups as observed on tissue
morphology, matrix staining, cell morphology, surface
architecture and tidemark formation. There were no dif-
ferences between the overall assessments. “Subchondral
bone abnormalities/marrow fibrosis” (44 vs. 69, p =
0.043) scored significantly lower in defects treated with
CB. All defects had altered subchondral bone seen as
small osteophytes or an irregular subchondral bone
plate. Alterations in the subchondral bone plate ranged
from almost complete restoration to intense remodeling
with fibrovascular infiltration in the marrow space. Six
of 11 defects treated with CB had pronounced changes
in the subchondral bone, while this was only seen in one
defect treated with BMS alone. Three defects in the CB
group, in three different minipigs, had infiltration of fat
into the defect area (Fig. 6). There was a trend towards a
lower score on “Basal integration” in defects treated with
CB, however, the difference was not statistically signifi-
cant (53 vs 71, p = 0.069). Basal integration ranged from
almost full basal integration to very little basal integra-
tion. There were no significant differences in any other

Table 1 μCT data ± standard deviations. * and bold =
parameters with significant differences. BMS = bone marrow
stimulation

Parameter BMS BMS + CARGEL

Bone volume fraction (BV/TV) 0.471 ± 0.01 0.499 ± 0.07

Connectivity density (CD) (1/mm3) 29.67 ± 6.87 26.17 ± 3.78

Trabecular number (Tb N) (1/mm) 3.198 ± 0.17 3.101 ± 0.40

Trabecular thickness (Tb Th) (mm)* 0.148 ± 0.01 0.168 ± 0.01

Trabecular spacing (Tb Sp) (mm) 0.272 ± 0.03 0.285 ± 0.04

Bone material density (mg HA/cm3)* 845.4 ± 5.61 861.4 ± 9.59

Structure model index (SMI) −1.710 ± 0.13 −2.155 ± 1.02
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subscales of the ICRS II score (Fig. 5). Inflammation and
vascularization were not seen in any defect. There was a
slight trend towards more matrix staining (56 vs 36, p =
0.184) and better tissue morphology (36 vs 27, p = 0.151)
in the CB group.

Immunohistochemistry
Most defects in both groups had < 50% positive staining
for collagen type I or II (Fig. 7, 8, and 9). There was a
trend towards less staining for collagen type I and more
staining for collagen type II in defects treated with CB,
however this was not statistically significant (p = 0.11
and p = 0.08, respectively).

Discussion
The main findings of this study are that addition of
CARGEL Bioscaffold to bone marrow stimulation led to
a significant increase in fibrocartilage and a trend to-
wards reduced fibrous tissue in the cartilage repair tis-
sue. In addition, the subchondral bone had thicker
trabeculae and higher mineralized bone tissue in defects
treated with CB and BMS. CB seemed to improve repair
tissue and induce a more pronounced subchondral

remodeling. However, hyaline cartilage was not pro-
duced. Most ICRS II parameters and immunohistochem-
ical stainings did not differ between the two treatment
groups.
Only one other large animal study has been conducted

with this chitosan hydrogel [8]. In that study a higher
defect filling and a higher percentage of hyaline repair
tissue in the CB group compared with a microfracture
only group was found using an ovine model. In that
study, however, it was assumed that tissue staining pink
or red with safranin O was hyaline cartilage. Hoemann
et al. reported 86% hyaline cartilage in the CB group and
71% in the microfracture group, which is in stark con-
trast to < 1% hyaline cartilage found in the repair tissue
of both groups in the present study. We included single
section histologic analysis using safranin-O to allow for
comparison with the study by Hoemann et al. and found
proportions of hyaline cartilage closer to what was re-
ported in that study (47% and 37%) [8]. In the present
study, however, we found no statistically significant dif-
ferences between the groups. The limited fraction of
hyaline cartilage in the present study is in line with other
animal studies on cartilage repair [26–28]. In the present
study we used polarized light and H&E staining to quan-
titatively determine whether the repair tissue was hyaline
cartilage, fibrocartilage or fibrous tissue. Use of polarized
light was not described by Hoemann et al. and this may
have led to an insufficient distinction between fibrocarti-
lage and hyaline cartilage [8, 24].
It is also noteworthy that Hoemann et al. observed the

best repair on the femoral condyles, whereas the trochlear
defects, as used in our study, had significantly less hyaline
repair tissue [8]. Another study conducted on New Zea-
land White Rabbits also reported more hyaline tissue after
6.5 months in defects filled with CB compared to BMS
and thrombin. Here tissue staining red or pink was also
assumed to be hyaline cartilage. Defects treated with CB
also scored higher on the O’Driscoll score than the control
group [17]. No differences were seen between proximal/

Fig. 2 a shows a μCT image of a defect treated with BMS alone showing almost completely restored subchondral bone plate. b shows a defect
treated with CB with pronounced subchondral remodeling

Fig. 3 Mean fraction of hyaline tissue, fibrocartilage, and fibrous
tissue (+ standard error of mean (SEM)) in the cartilage repair tissue.
n = 11 for each group. BMS = bone marrow stimulation. Grey bar =
CARGEL Bioscaffold + BMS, black bar = BMS only.* = p < 0.05

Hede et al. Journal of Experimental Orthopaedics            (2020) 7:26 Page 5 of 11



lateral and distal/medial defects. Shear forces on the repair
tissue may theoretically differ at these sites and a study on
BioCartilage showed differing outcome on distal and prox-
imal defects on the lateral trochlear ridge in an equine
model [29]. Therefore, site (medial or lateral) was
accounted as a fixed effect in the mixed model analysis.
However, because we found no differences between prox-
imal/lateral and distal/medial defects, the results from all
defects were counted together.
Clinical studies on CB have also showed an improve-

ment in repair tissue quantity and quality on MRI and
histological evaluation of biopsies of repair tissue, al-
though a significant improvement in patient outcome
after 5 years has not been seen [9, 10, 30].
A varying degree of remodeling was seen in subchon-

dral bone beneath the defects. Subchondral remodeling

was pronounced in 6 of 11 defects treated with CB,
whereas it was mild in all other defects, except for one,
treated with BMS. Remodeling of the subchondral bone
is a known possible “side effect” to cartilage repair tech-
niques such as BMS as well as autologous chondrocyte
implantation (ACI) and involves both bone overgrowth
and development of intralesional cysts [31, 32]. This can
lead to subchondral edema, lack of graft integration and
treatment failure. Remodeling of the subchondral bone
is often seen in animal models of cartilage repair and is
most likely due to a combination of osteoclast activation,
altered mechanical loading and access of the synovial
fluid to the subchondral bone [33–36]. A larger degree
of subchondral remodeling in the CB treated defects
may be due to a larger bioactive response of the sub-
chondral bone due to the chitosan in the CB scaffold. A
study on CB reported that the addition of CB to BMS
delayed maturation and ossification of chondrogenic foci
in drill holes [7]. The authors argued that this may be
due to the increased recruitment of neutrophils and al-
tered macrophage activation in drill holes beneath chito-
san implants [6, 37]. Inflammation has been reported to
delay callus formation in fracture repair models [38], but
delayed healing may promote regeneration by progenitor
cells and thereby hinder development of fibrous scar tis-
sue, thus leading to a better and more mature repair tis-
sue [39]. Similarly, a study by Chen et al. compared
different types of BMS in a rabbit model and found that
increased subchondral bone activation and remodeling
improved cartilage repair [33]. This is also in line with
the findings in the present study where we found an in-
creased subchondral bone activity and a better repair tis-
sue with CB treatment compared with BMS alone. It is

Fig. 4 Safranin O staining; scale bars: 1000 μm. Magnification 12.5-fold. Defects treated with CB (A-C) and BMS (D-F). Images represent best (left),
average (middle) and worst (right) repair. A larger extent of subchondral remodeling is seen in the CB treated defects, whereas there also seems
to be a higher degree of metachromasia in CB treated defects

Fig. 5 Mean International Cartilage Repair Society (ICRS) II scores (+
standard error of mean (SEM)). n = 11 for each group. Higher scores
indicate better tissue. BMS = bone marrow stimulation. Grey bar =
CARGEL Bioscaffold + BMS, black bar = BMS only. * = p < 0.05
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possible that with longer follow-up the subchondral
bone and cartilage repair tissue would have improved
further.
The μCT analysis revealed thicker trabeculae in the

CB group. The above-mentioned study by Marchand
et al. of CB in New Zealand White Rabbits reported
thicker trabeculae in defects with more residual holes
after BMS [17]. Contrary to the findings in the present
study, trabecular thickness was higher in the control
group compared with CB, but the control group also
had more residual drill holes after drilling. It can be
speculated whether the thicker trabeculae is caused by a
direct response elicited by the CB or whether it is an in-
direct response to the altered mechanical loading due to

the pronounced alteration of the subchondral bone seen
in more than half of the CB treated defects in our study
[40]. The differences in the subchondral bone and subse-
quently the thicker trabeculae found in our study may
be a result of faster bone turnover rates in New Zealand
White Rabbits compared with Göttingen Minipigs [41].
The higher bone material density, however, points to-

wards more mature bone in the spongiosa beneath the
subchondral bone plate in the defects treated with CB.
CB is a liquid before stabilization of the clot and has ac-
cess to the bone and bone marrow through the drill
holes. Residual chitosan may adhere to the calcified car-
tilage and bone and influence bone repair through in-
creased cell recruitment [6, 8, 16].

Fig. 6 Safranin O staining; scale bar 200 μm. Magnification 50-fold. Infiltration of marrow (arrows), seen as fat, into a CB treated defect

Fig. 7 Graph showing quartiles of positive collagen I (left) and collagen II (right) staining. Grey bar = CARGEL Bioscaffold + BMS, black bar = BMS
only. The y-axis represents the number of samples with the quartile of positive staining. In normal hyaline cartilage low amounts of collagen type
I and high amounts of collagen type II is seen. BMS = bone marrow stimulation
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Adipose tissue was present in three defects treated
with CB. Adipose tissue has not been mentioned in any
of the previous literature on CB [7, 8, 14, 15, 17, 30, 33,
34, 37, 42–45]. The presence of adipose tissue in the re-
pair tissue area is of course an unwanted response to
BMS. It has occasionally been seen in animal models of
BMS [15, 37]. So, whether the presence of adipose tissue
was related to CB is impossible to conclude. MSCs from
the bone marrow are defined by their ability to undergo
differentiation into different cell types such as chondro-
cytes, adipocytes, or osteocytes depending on humeral
environment and this may explain the fat infiltration
[46]. Chitosan has been shown to influence fat metabol-
ism when used as dietary supplement and this effect

could perhaps also be exerted by local application as in
the present study [47].
A trend towards more collagen type II (indicative of

hyaline cartilage) and less collagen type I (indicative of
fibrous tissue/bone) was seen in CB treated defects.
However, no significant differences were seen in the im-
munohistochemical stainings for collagen type I and II.
The trend was, however, in line with the histomorpho-
metric results showing more fibrocartilage in the CB
treated defects. Staining for collagen type II generally
correlated well with the metachromasia seen on Safranin
O stained sections. While immunohistochemical staining
for collagen type I and II can be an important tool in the
analysis of cartilage repair tissue, limitations exist with

Fig. 8 Collagen I staining; scale bar 1000 μm. Magnification 12.5-fold. Defects treated with CB (a-c) and BMS (d-f). Images represent 0–25% (left),
25–50% (middle) and 50–75% (right) positive collagen I staining

Fig. 9 Collagen II staining; scale bar 1000 μm. Magnification 12.5-fold. Defects treated with CB (a-c) and BMS (d-f). Images represent 0–25% (left),
25–50% (middle) and 50–75% (right) positive collagen II staining
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regards to immunohistochemistry as a loss of antigenic-
ity may occur and weak staining may be seen [48, 49].
This limited our ability to quantify the amount of posi-
tive staining accurately and was the reason for using
quartiles. This, naturally, reduced the chances of finding
significant differences. That most defects stained < 50%
positive for collagen type II was in line with other stud-
ies with BMS in minipigs [20, 36, 50]. Some of the repair
tissue did not stain positively for either collagen type I
or type II and this may indicate the presence of an im-
mature repair tissue containing other combinations of
collagens [51, 52].
A strength of the study was that it was performed in a

validated large animal model with comprehensive inves-
tigation of repair tissue quality and subchondral bone re-
sponse including μCT, histomorphometry, histology, and
immunohistochemistry. The existing literature on CB is
primarily based on rabbit models, whereas literature on
large animal models is sparse. With larger animal
models, as the porcine, joint size and gait characteristics
more closely resembles the human, but costs are signifi-
cantly increased [18, 53, 54].. This offers great transla-
tional value, but also adds limitations due to the costs.
Nevertheless, using a validated, large animal model these
comprehensive repair tissue analyses can deliver data
that are not possible to obtain in clinical studies. The
treatment tested has already been used in the clinic for a
few years and has proven safe and shown promising re-
sults with regards to patient outcome, repair tissue qual-
ity, and quantity [9, 12, 30]. The present study therefore
adds to the understanding of the promising clinical out-
comes with findings of increased fibrocartilage tissue
formation and more repair tissue-supportive subchon-
dral bone remodeling. It must though again be empha-
sized that no true hyaline cartilage was observed in
repair tissues. Furthermore, large variations were seen in
outcome on several parameters. This is often seen in
large animal studies and may be an inherent limitation
of large animal studies and is important to take into ac-
count when determining the number of animals/defects
pr. treatment group in in vivo studies [21, 22, 28, 35, 50,
53]. Great variations in outcome with cartilage repair
treatments is also seen in the clinical setting, but here it
can, to some degree, be explained by patient (age, sex,
BMI) and lesions (site, size) demographics.
Limitations to our study are that we only had one time

point of evaluation making us unable to observe the
temporal changes and degradation of the scaffold. The
repair tissue may furthermore require more than 6
months for maturation [18]. The choice of only a single
time point was mainly cost related. The follow-up period
of 6 months is naturally significantly shorter than that
used in clinical studies, but is considered sufficient for
organized cartilage repair in minipigs [55, 56]. Other

studies have, however, pointed towards changes in the
biological repair between 6 and 12months [18, 57].
Other limitations of the study include a lack of mechan-
ical testing, which could have provided insight into the
biomechanical properties of the repair tissue and the
lack of immobilization after surgery as recommended in
the clinic. Rehabilitation is highly important clinically
with reduced loading of areas of repair recommended.
However, immobilization is not possible in Göttingen
minipigs [20, 58]. This may lead to an overload of repair
tissue and a reduced healing response. An untreated
control group was not included as the defects were of
critical size, which are well-documented to fill with
mainly fibrous tissue in Göttingen minipigs [18, 19, 56].
In conclusion, use of CARGEL Bioscaffold in combin-

ation with bone marrow stimulation did not lead to for-
mation of hyaline cartilage but does seem to induce an
improved repair tissue and a more pronounced subchon-
dral bone remodeling compared with bone marrow
stimulation alone, which may be a predictor for im-
proved repair tissue.
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