
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Contents lists available at ScienceDirect 

Bioorganic Chemistry 

journal homepage: www.elsevier.com/locate/bioorg 

Short communication 

Synthesis, optimization and characterization of silver nanoparticles using 
the catkin extract of Piper longum for bactericidal effect against food-borne 
pathogens via conventional and mathematical approaches 
Hui Huanga,1, Kuizhong Shanb,1, Jingbing Liuc, Xiaoxin Taod, Sivalingam Periyasamye,  
Siva Durairajf, Ziyu Jiangc,⁎, Joe Antony Jacobg,⁎ 

a Department of Respiratory Diseases, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, China 
b Department of Oncology, The Second People’s Hospital of Kunshan, Kunshan 215300, China 
c Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China 
d Department of Oncology, Liyang People’s Hospital, Liyang 213300, China 
e PG and Research Department of Microbiology, Jamal Mohamed College, Khajanagar, Tiruchirappalli, Tamil Nadu 620020, India 
f PG & Research Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu 620005, India 
g Nanosynthesis Unit, Nanome Consulting, Salem, Tamil Nadu 636008, India   

A R T I C L E  I N F O   

Keywords: 
Piper longum 
Catkins 
AgNPs 
XPS 
XRD 
Antibacterial 

A B S T R A C T   

Inspired with an increasing environmental awareness, we performed an eco-friendly amenable process for the 
synthesis of silver nanoparticles (AgNPs) using the catkins of Piper longum as an alternative approach with the 
existing methods of using plant extracts. The fabrication of nanoparticles occurred within 10 min. This was 
initially observed by colour change of the solution. UV–visible spectroscopic studies (UV–Vis) were performed 
for further confirmation. The analysis elucidated that the surface plasmon resonance (SPR) was specifically 
corresponding to AgNPs. Fourier transform infrared spectrophotometry (FTIR) studies indicated that poly-
phenols could possibly be the encapsulating agents. The size and shape of the nanoparticles was analysed using 
Transmission electron microscopy (TEM). The nanoparticles were predominant spheres ranging between 10 and 
42 nm at two different scales. The formation of elemental silver was confirmed further by X-ray photoelectron 
spectroscopy (XPS) and X-ray powder diffraction (XRD). GC-MS analysis was used to identify the possible en-
capsulates on the nanoparticles. The antibacterial effect of the biosynthesized AgNPs was tested against two 
gram-positive (Bacillus cereus and Staphylococcus aureus), and five gram-negative (Escherichia coli, Proteus mir-
abilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhi) bacteria. Outcomes of the study 
suggest that these pathogens were susceptible to the AgNPs. This is the first ever international report on cor-
relating the antibacterial effect of silver nanoparticles using mathematical modelling with a conventional an-
timicrobial assay. The results indicate that nanoparticles of silver synthesized using catkin extract of P. longum 
can be exploited towards the development of potential antibacterial agents.   

1. Introduction: 

Due to the gaining interest in studies of nano-range of 1–100 nm for 
biomedical applications, the biosynthesis of AgNPs using valuable 
medicinal plant extracts has considerably increased [1–3]. However, 
the synthesis of nanoparticles with the desired quality is one of the most 
important aspects of modern nanotechnological approaches [4]. 

There have been a number of studies describing the different 

methods for metal nanoparticle synthesis involving reductions per-
formed by chemical, electrochemical, photochemical and other means  
[5–7]. But it has been reported that biological methods are superior to 
chemical ones in terms of economic feasibility and environmental 
safety. Biosynthesis of AgNPs by microorganisms is a recently well 
thought exploitation [8]. Though it has levelled a considerable success, 
the use of plant-based materials has gained much attention rather than 
microorganisms for green synthesis of metal nanoparticles because of 

https://doi.org/10.1016/j.bioorg.2020.104230 
Received 10 April 2020; Received in revised form 3 August 2020; Accepted 8 August 2020    

⁎ Corresponding authors at: Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese 
Medicine, Nanjing 210028, China. 

E-mail addresses: johnnyfly528@163.com (Z. Jiang), joeantonyjacob@gmail.com, joeantonyjacob@hotmail.com (J.A. Jacob). 
1 These authors contributed equally to this work. 

Bioorganic Chemistry 103 (2020) 104230

Available online 26 August 2020
0045-2068/ © 2020 Published by Elsevier Inc.

T

http://www.sciencedirect.com/science/journal/00452068
https://www.elsevier.com/locate/bioorg
https://doi.org/10.1016/j.bioorg.2020.104230
https://doi.org/10.1016/j.bioorg.2020.104230
mailto:johnnyfly528@163.com
mailto:joeantonyjacob@gmail.com
mailto:joeantonyjacob@hotmail.com
https://doi.org/10.1016/j.bioorg.2020.104230
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bioorg.2020.104230&domain=pdf


limited toxicity, less time and the added advantage of available natural 
capping agents. Moreover, it reduces the cost of isolation of micro-
organisms and enhancement of culture media for microbe assisted 
biosynthesis and uses several sources of reductants such as leaves, 
flowers and catkins [2,9–13]. 

P. longum (Piperaceae, long pepper) is cultivated almost all over 
India and is known to possess antimicrobial activities [14,15]. It is an 
active ingredient of Kabasura Kudineer, a traditional siddha formula-
tion with non-toxic, drug-like properties and enhanced bioavailability. 
It is used to treat viral fevers and respiratory infections. A recent in silico 
study indicates that the binding efficacy of this formulation is sig-
nificant with the spike protein of COVID-19 [16]. 

AgNPs have been reported for their antibacterial, anti-biofilm and 
antiviral properties at limited concentrations [17–21]. Management of 
infections in medicine to several other industries is critical and an al-
ternative for chemical agents has become a necessity. Disinfection has 
become a critical parameter for pandemics such as COVID-19 and col-
loidal silver can be used in intensive care units of hospitals as novel 
standard for prophylactic treatment of ventilator acquired pneumonia. 
Silver nanoparticles alone or in combination with existing antibiotics 
are suitable and efficient antimicrobial agents [22–24]. Pharmaceuti-
cally valuable molecules could be retained after bioreduction by the 
biosynthesized AgNPs that might have potential application in ther-
apeutics [25]. Silver nanoparticles are used widely in packaging in-
dustries to increase the shelf-life of food products pertaining to their 
antimicrobial effects [26–29]. 

Therefore, considering the importance of medicinal value of P. 
longum, its catkin extract was used to synthesize AgNPs by the reduction 
of silver ions and to exploit its antibacterial efficacy. The results in-
dicate that AgNPs could be efficient antibacterial agents. 

2. Experimental section: 

Catkins of P. longum were collected and shade dried at room tem-
perature for a period of 7 days. Silver nitrate (AgNO3) was purchased 
from Qualigens Fine Chemicals, Mumbai, India (99.9% pure). 

2.1. Preparation of catkin extract 

Desired amounts of the finely ground catkin powder (5, 10 and 15 
gm) were added to desired volume of menstruum used (100 mL of 
sterile deionised water) and stirred well. The resulting mixture was then 
heated at 60 °C for 10 min to produce a galenical. This solution was 
then allowed to cool and further filtered using Whatman paper No. 1. 
The hydrosol obtained was used for further experimentation following 
previous reports with slight modifications [30]. 

2.2. Synthesis of AgNPs 

For the bioreduction process to occur, catkin broth was mixed with 
AgNO3 and incubated at varying temperatures and varying concentra-
tions of catkin and AgNO3. Initially, 5 mL of 5%, 10% and 15% catkin 
extracts were added to 95 mL of 10-3 M AgNO3 solution individually 
and allowed for thermal reduction to occur at temperatures ranging 
from 30 ◦ to 95 °C. Later, the concentrations of AgNO3 (1.5–2.5 mM) 
were varied, setting 5% catkin extract as the standard. After the re-
duction of 1.5 mM AgNO3 by the 5% P. longum catkin extract, AgNPs 
were separated from the solution by centrifuging at 10000 rpm for 
20 min. The pellet was re-dispersed in 25 mL of fresh deionised water 
and centrifuged at 10000 rpm for 20 min as before for three times after 
being replaced with fresh deionised water every time. The final pellet 
after centrifugation and resuspension in fresh water was used for fur-
ther analysis [31]. The control nanoparticles were synthesized by 
treating glucose as a reductant with silver oxide (1 mM) as the pre-
cursor following the same procedure [32]. 

2.3. Characterization of the synthesized nanoparticles 

UV–visible spectroscopic analysis was done by using Hitachi double 
beam equipment (Model Lambda 35) spectrophotometer. For FTIR 
measurements, Spectrum RX 1 instrument was used. TEM analysis was 
performed using Tecnai 10 instrument for characterizing the size and 
shape of the synthesized AgNPs at 100 and 200 nm scales. XPS analysis 
was performed with Omicron ESCA Probe spectrometer. GC-MS ana-
lysis was performed using Agilent GC 7890A / MS5975C instrument 
using Agilent DB5MS capillary column. The crystalline nature of AgNPs 
was studied using Phillips PW 1830 model XRD instrument. 

2.4. Antimicrobial studies 

Antibacterial activity of nanoparticles were tested against Bacillus 
cereus (MTCC 1272), Escherichia coli (MTCC 1687), Klebsiella pneumo-
niae (MTCC 530), Proteus mirabilis (MTCC 425), Pseudomonas aeruginosa 
(MTCC 1688), Salmonella typhi (MTCC 531) and Staphylococcus aureus 
(MTCC 96) cultures procured from the Microbial Type Culture 
Collection Centre (MTCC), Institute of Microbial Technology (IMTECH), 
Chandigarh, India. Since disk diffusion is the common standard for 
bacterial sensitivity test, standard disks of 6 mm were purchased from 
HIMEDIA (Mumbai, India), impregnated with nanoparticles (50 μl), 
placed on LB agar medium, seeded with the test pathogens and in-
cubated at 37 °C. The sensitivity of bacterial cultures was measured in 
triplicate after 24 h [33,34]. 

3. Results and discussion 

3.1. Colour change 

Colour change in solutions incubated with precursors and re-
ductants could be considered an initial confirmation for the synthesis of 
nanomaterials [35]. A pale brown colour was observed after catkin 
extract and AgNO3 were mixed and incubated. This is due to the ex-
citation of SPR vibrations after incubation as indicated in Fig. 1A  
[36–38]. Although the colour change was observed at 30 °C and 60 °C, 
prominent changes were observed in 90 °C and 95 °C. Therefore, in-
cubations at 90 °C and 95 °C were considered for further study for rapid 
synthesis. 

3.2. UV–Vis analysis 

3.2.1. Effect of temperature, reductant and precursor concentrations 
The characteristic SPR of silver nanoparticles at 5% (434 nm), 10% 

(427 nm) and 15% (439 nm) catkin broth concentrations were observed 

Fig. 1A. Colour change on incubating 1.5 mM AgNO3 and 5% catkin broth 
together as a solution at varying temperatures (30 °C, 60 °C, 90 °C, 95 °C). 
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keeping 1.5 mM AgNO3 concentration as a standard [39]. To involve 
minimal reactants, 5% catkin extract was used for further analysis. The 
SPR peaks for solutions tried using 5% catkin broths as standard with 

varying concentrations of the precursor AgNO3 in the range of 
1.5–2.5 mM were 435 nm (1.5 mM), 427 nm (2 mM) and 430 nm 
(2.5 mM). The study also analysed the incubation of the precursor and 

Fig. 1B. UV– visible spectra of the synthesized AgNPs at varying AgNO3 and catkin broth concentrations incubated at 90 °C and pH 7.  

Fig. 2A. FTIR measurements of the catkin extract.  
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reductant at temperatures ranging between 30 °C, 60 °C, 90 °C and 95 
°C. The peaks were consistent in the range between 420 nm and 440 nm 
(Fig. 1B). According to previously published reports, the nanoparticles 
in the range of 410–450 nm have been known to be spherical [40,41]. 
The particles with the SPR range of around 450 nm have been known to 
be in the size range of 2 to 100 nm [42,43]. 

3.2.2. Optimization of synthesis and characterization by UV–Vis analysis 
Though the synthesis was observed at other catkin extract and 

AgNO3 concentrations as predicted by all UV–Vis observations in this 
study, they were not characterized further because, the above-men-
tioned optimized concentration and pH provides an eco-friendly ap-
proach to the maximum, with minimal reactants (Fig. 1B). Further-
more, it is of interest to note that the reduction of silver ions completed 

within 10 min of incubation, indicating the rapid biosynthesis of 
AgNPs. Therefore, to use limited reactant conditions such as tempera-
ture and also involve rapid synthesis, the hydrosol prepared by in-
cubating 1.5 mM AgNO3 and 5% catkin extract at 90 °C was considered 
to be optimized and used for further studies rather than 95 °C. 

Since the particle sizes were miniature and the usage of harmful 
reactants were avoided, 5% catkin extract and 1.5 mM AgNO3 con-
centration were preferred at pH 7 and 90 °C for further characterization 
and antimicrobial studies. Regarding stability, the synthesized nano-
particles were kept for three months at 4 °C in a refrigerator for stability 
analysis. The AgNPs were stable for more than three months. This was 
proven as the UV–vis peak remained the same reflecting the SPR for 
AgNPs when tested even after the period of three months. The anti-
bacterial effect also remained the same after the described period. 

3.3. FTIR analysis 

FTIR analysis performed to identify the functional groups for de-
termination of capping agents indicates that sharp absorption peaks 
were located at 3404 cm−1, 2077 cm−1, 1637 cm−1 and 675 cm−1 in 
the catkin extract (Fig. 2A). Similar peaks were retained at 3401 cm−1, 
2076 cm−1, 1637 cm−1 and 669 cm−1 were observed in the hydrosol 
containing nanoparticles obtained at 90 °C (Fig. 2B). Similar peaks were 
observed for hydrosols at 60 °C and 95 °C (Supplementary Information 
1). The new peaks observed for samples at 90 °C around 3912 cm−1 and 
3777 cm−1 could be due to overtones and combination bands in the 
mid IR region and the moisture content in the sample [44]. The peaks at 
3401 and 3404 cm−1 in both solutions indicates free OeH stretches 
related to alcohols and phenols [45]. The absorption peaks at 
1637 cm−1, 667 and 669 cm−1 are assigned close to that of native 
proteins [46]. The peaks around 2076 and 2077 cm−1 could be at-
tributed to alkynes [47]. These results indicate that the polyphenols and 
proteins in the catkin extract have acted as reducing, capping and 
stabilizing agents, for the nanoparticles, as predicted by the FTIR peaks. 

Fig. 2B. FTIR measurements of the AgNPs synthesized using 1.5 mM AgNO3 and 5% catkin broth incubated at 90 °C and pH 7.  

Fig. 3. TEM image of the biosynthesized AgNPs at 200 nm scale.  
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They might also have acted as agents for elevated antimicrobial activity 
as compared to the nanoparticles synthesized by chemical means  
[48–53]. 

3.4. TEM analysis 

TEM is a widely used microscopic technique for the characterization 

of nanomaterials based on their size and morphology [54]. It was in-
ferred from TEM analysis that the catkin extract derived nanoparticles 
were predominantly spherical in shape with varying sizes ranging from 
26 to 42 nm at the 200 nm scale (Fig. 3). Previous reports using electron 
microscopy indicate that the sizes of biosynthesized silver nanoparticles 
range between 20 and 50 nm [55–58]. 

Fig. 4. XPS survey spectra of the synthesized AgNPs.  

Fig. 5. XRD pattern of the synthesized nanoparticles at varying concentrations of silver nitrate (1.5, 2, 2.5 mM) and 5% catkin broth concentration.  
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3.5. XPS spectra 

Scan survey denoted strong peaks of C1s, O1s and Ag3d core levels. 
The major C1s peak occurred at 286.2 eV. This corresponds to α- 
carbon. The O1s value was centred at 529.8 eV [59]. Correspondingly, 
the two spin–orbit components Ag3d5/2 and Ag3d3/2 were observed at 
the binding energies of 368.22 and 374.28 eV, separated by 6 eV [60] 
(Fig. 4). The core values for metallic Ag lies in this range as established 
by previous studies [61–63]. 

3.6. XRD 

Comparing the hydrosols containing nanoparticles prepared at dif-
ferent concentrations, 1.5 mM clearly represents the main peak at 38.34 
which corresponds to plane 111 (JCPDS file no: 89-3722). From the 
determination of width and using Debye–Scherrer’s equation, the 
average particle size measured was 7 nm [64]. Additionally, a variety of 
peaks were produced due to the hindrance of various bioorganic agents 

or bioactive compounds possibly from the catkin extract present on the 
surface of AgNPs [56,65]. Therefore, the XRD pattern of AgNPs syn-
thesized using P. niruri reveals that the particles are crystalline in nature 
(Fig. 5). 

3.7. GC-MS analysis 

The comparative analysis of peak numbers indicates that both the 
catkin extract and hydrosol with nanoparticles constituted several si-
milar active components (Figs. 6A, 6B). The structures of these com-
pounds are presented in Fig. 6C. Although, several peaks were lost in 
this comparison, no novel peaks with established biological activity 
were observed in nanoparticle containing hydrosol. Among these con-
stituents, benzohydrazide is a lead compound with significant ther-
apeutic effects on cancer, killing of microbial pathogens and treatment 
of neurological disorders such as epilepsy [66]. Cinnamate derivatives 
are organic aromatic melatonin scavenger with potent antibacterial 
agents [67–70]. Fatty acids such as hexadecanoic acid are effective 

Fig. 6A. GC–MS chromatogram of the catkin extract.  
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against inflammatory disorders and microbial pathogens [71–73]. Ex-
tracts that constitute octadecadienoic acid, butenoic acid, propenoic 
acid and silane derivatives are known to possess antibacterial activities  
[74–78]. This analysis indicates that these constituents observed in the 
catkin extract has most probably reduced the precursor and likewise 
encapsulated the nanoparticles leading to enhanced antimicrobial ac-
tivity compared to the chemically synthesized nanoparticles. 

The mechanism of green synthesis of nanoparticles are attributed to 
the secondary metabolites, enzymes such as aspartic proteases, phy-
tochelatins and metallothioneins which are considered to be metal- 
binding ligands presented in the plant extracts. Derivatives of phenols 
such as tannins are identified to be more efficient in reduction of silver 
salts into silver nanoparticles. Concentration of reducing agents and the 
silver salt used, pH, temperature and duration of incubation are critical 
parameters for the biosynthesis to occur [79–84]. Therefore, the phy-
tochemicals identified by GC-MS, in this study, could be possible re-
ductants and/or encapsulates on the nanoparticles from the catkin ex-
tract. 

3.8. Conventional disk diffusion assay 

Bacillus cereus, Staphylococcus aureus, Escherichia coli, Proteus mir-
abilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella 
typhi are reported to be food borne pathogens [85–87]. Biosynthesized 
nanoparticles with its large surface area were tested for their anti-
bacterial activity against both gram-negative and gram-positive mi-
croorganisms. The diameter of the inhibition zone (mm) around the 
disks impregnated with AgNPs against test strains was measured after 
the incubation period. 

Comparative analysis of the overall zone of inhibition indicates a 
percentage increase of 16.4% between the test nanoparticles and con-
trol nanoparticles. P. mirabilis was the most and S. aureus the least 
susceptible to the test nanoparticles. The control nanoparticles showed 
increased activity against K. pneumoniae and minimal activity against P. 
aeruginosa (Fig. 7). Existing data for sensitivity to vancomycin, the most 
effective antibiotic against multiple drug resistant microbes, was used 
to compare with test nanoparticles [33]. The sensitivity of these 

Fig. 6B. GC–MS chromatogram of the silver nanoparticles containing hydrosol.  
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microorganisms to vancomycin (30 μg) does range between 7 and 
25 mm, according to previous studies. In our study, the nanoparticle 
solution loaded at 50 μl per disk were one half equivalent to activity of 
vancomycin according to existing reports [88–91]. The zone of inhibi-
tion is significantly similar to the previously published reports [92,93]. 

The elevated antibacterial effect of nanoparticles against gram-ne-
gative bacteria in comparison to gram-positive bacteria could be 

attributed to the thickness of gram-positive bacterial cell wall (30 nm). 
The cell wall thickness of gram-negative bacteria lies in between 3 and 
4 nm [94]. Another rationale behind enhancement of antibacterial ef-
fect of biologically synthesized AgNPs could be the particle size. AgNPs 
of size less than 50 nm are considered effective antibacterial agents as 
elucidated in this study [95,96]. 

Although the chemically synthesized nanoparticles indicated con-
siderable zones of inhibition, the biologically synthesized nanoparticles 
inhibited the microbial growth better at the same volume of the hy-
drosol. Alkaloids, phenols, flavonoids and tannins are major con-
stituents of piper fruits and could be probably responsible for the an-
tibacterial efficacy of the same [97]. The possible encapsulation of 
phytochemicals of the catkins on AgNPs might be responsible for the 
enhanced antimicrobial activity compared to glucose derived AgNPs  
[98]. 

This antibacterial effect elucidates that larger surface area of the 
nanoparticles acts better on the bacterial cells and this is by membrane 
and its charge related aspects [99,100]. Finding its use in thousands of 
products for human appliances, silver nanoparticles penetrate bacterial 
cell wall, interact with their genetic material and impair cell division. 
This causes changes in biological processes such as respiration, thereby 
leading to cell death. According to the inhibition zones observed in this 
study, these nanoparticles could be considered effective bacteria-in-
hibitory agents. Therefore, the mechanism of antibacterial effect of 
AgNPs primarily relies on the release and electrostatic attraction of 
silver cations to the negative charge on the bacterial cell wall surface 
and permeate through it based on the thickness of peptidoglycan layer. 
This can result in interactions of these nanoparticles with sizes less than 
100 nm with DNA and protein leading to denaturation which can 

Fig. 6C. Structures of compounds identified in common between catkin extract and silver nanoparticles containing hydrosol using GC–MS.  

Fig. 7. Mean zone of inhibition (mm) of seven different pathogens generated by 
AgNPs synthesized using glucose and catkin extract of Piper longum (5%). The 
disc diameter was 6 mm. All experiments were performed in triplicate. The 
results were expressed as mean  ±  SEM. 

Table 1 
Sensitivities of food-borne pathogens to silver nanoparticles. Mean zone of inhibition (mm) of AgNPs synthesized using catkin extract of P. longum (5%) against seven 
different pathogens. The disc diameter was 6 mm. The average of percentage increase in antibacterial activity among the 7 tested strains was 16.4%. The table also 
represents the percentage of increase in activity and the coefficient of mean deviation of the nanoparticles. The coefficient of mean deviation was calculated by 
dividing the mean deviation using the average.        

Organism PL-AgNPs Coefficient of Mean Deviation Glu-AgNPs Coefficient of Mean Deviation % of increase in activity  

S. aureus 10.97  ±  0.17 0.0101 10.03  ±  0.08 0.01107 8.56 
S. typhii 11.97  ±  0.26 0.00928 9.97  ±  0.18 0.01114 16.70 
K. pneumoniae 13.97  ±  0.35 0.00795 12.03  ±  0.09 0.009233 13.89 
P. mirabilis 15.07  ±  0.70 0.0147 11.03  ±  0.43 0.01611 26.80 
P. aeruginosa 11.03  ±  0.29 0.0161 9.03  ±  0.15 0.01968 18.13 
B. cereus 12.07  ±  0.35 0.0184 11.07  ±  0.12 0.01405 8.29 
E. coli 12.93  ±  0.24 0.01202 10.03  ±  0.15 0.01771 22.43 
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eventually lead to cell death by the production of reactive oxygen 
species [101–110]. 

3.9. Mathematical modelling: 

The Karl Pearson’s Co-efficient of Correlation, which usually exists 
between +1 and −1, among the tested nanoparticles was 0.7064. The 
calculated Pearsonian R value was indicative of a positive correlation (0 
to +1) between the activity of biological and chemically synthesized 
nanoparticles [111]. P. mirabilis was the most deviated for both che-
mical and biosynthesized nanoparticles as calculated by the percentage 
of increase in activity between the both test agents and therefore, 
identified to be the most susceptible organism. Co-efficient of mean 
deviation determines that catkin derived AgNPs was most effective 
against B. cereus, whereas, chemically derived nanoparticles were most 
effective against P. aeruginosa in comparison to the other microbes 
(Table 1). Therefore, the mathematical modelling supports the inter-
pretation that the biosynthesized nanoparticles were more efficient in 
comparative antimicrobial effect with glucose derived nanoparticles. 

4. Conclusion 

Food products become unsuitable for consumption after spoilage by 
microorganisms. Silver nanoparticles are used widely in food-packaging 
industries to prevent food-spoilage. In the present study, the catkin 
extract of P. longum was used for the optimized synthesis of AgNPs. The 
synthesized nanoparticles were characterized using UV, FTIR, TEM, 
XPS, GC-MS and XRD. Since, this study reports the antibacterial activity 
of the biosynthesized AgNPs against seven different food-borne gram- 
negative and gram-positive microorganisms, this study seems sig-
nificant for the antibacterial testing of nanoparticles intended for an-
timicrobial applications. All the tested microorganisms were susceptible 
to the synthesized nanoparticles even after three months of synthesis 
and storage. The catkin-derived nanoparticles are economical and have 
an additional benefit of the natural capping agents compared to the 
nanoparticles synthesized using glucose. Hence, this rapid, eco-friendly 
and cost-effective method for the synthesis of AgNPs could be exploited 
for the development of beneficial medical appliances in food-packaging 
industries as evidenced by conventional disk diffusion and mathema-
tical approaches. 
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