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Abstract: Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and
universal system for protecting cells and the whole body from various types of stress. Among Hsps,
the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role.
These proteins are molecular chaperones that restore the native conformation of partially denatured
proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular
trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high
levels in the central nervous system (CNS) of various animals and protect neurons from various
types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral
studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These
proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades
associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In
addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps
transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose
levels are increased in neurons under stress and during memory formation. Thus, stress activates
the molecular mechanisms of memory formation, thereby allowing animals to better remember
and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential
in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting
exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in
animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant
Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic
injury and neurodegenerative disorders.

Keywords: molecular chaperones; Hsp70; heat shock factor 1 (HSF1); stress; memory formation;
long-term potentiation; ischemic injury; neurodegenerative disorders

1. Introduction

The ability of organisms to survive in constantly changing environmental conditions,
to reproduce, and to occupy new ecological niches largely depends on the functioning
of the nervous system, which is critical for the input of new information, its processing,
and motor response necessary for rapid avoidance of danger. Rapid behavioral responses
may help to reduce or completely prevent environmental stressors, such as temperature
increases, dehydration, changes in the chemical composition of aquatic organisms, and
predator attacks [1]. Successful reactions to avoid dangerous influences are based on
memory [2–4]. The ability to remember and form conditioned reflexes to avoid danger has
been shown for a wide variety of organisms, such as nematodes, molluscs, crustaceans,
Drosophila, and mammals [4–10]. Notably, the formation of memory occurs in parallel with
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the activation of the metabolic systems in the response to stress, i.e., an adaptive response
that protects individual cells and the whole organism from various stress factors. The
adaptive response to stress also protects the synaptic network (the memory substrate) from
the damaging effects of different stress factors and during neurodegeneration processes in
aging or proteinopathies [11].

The most universal system of protection from any stressful influence is represented by
a group of genes encoding so-called “heat shock proteins” (Hsps) or stress proteins. These
proteins provide a certain degree of cell resistance to hyperthermia, hypoxia, oxidative
stress, toxins of various types, radiation, etc. [12]. A group of proteins with a molecular
weight of 70 kDa (HSP70) plays a special role in ensuring the survival of the cell in
stressful conditions and maintaining normal metabolism. Hsp70 plays an important role in
protecting nerve cells during ischemia and neurodegenerative diseases. The experimental
data available at the moment allow us to postulate the crucial role of Hsp70 in memory
formation, nervous system development, and maintaining the functioning of the nervous
system during aging.

2. Materials and Methods

A comprehensive literature review was conducted to identify and critically evaluate
studies analyzing the possible relationships between Hsp70 and memory or neuropro-
tection. The PubMed, PubMed Central, and Scopus databases were searched for related
research articles. Selection and data collection of study were carried our form blind and
independently by all three coauthors. Keywords for searching included the following:
Hsp70, heat shock factor 1 (HSF1), stress, memory, short-term potentiation, long-term
potentiation, short-term memory, long-term memory, ischemic injury, neuroprotection,
neurodegenerative disorders, and development of nervous system. Discrimination by year
of publication was not used. Only articles already published or accepted for publication
were used for citation in the review.

In addition to the standard search in the PubMed and Scopus databases, article search
was based on work with Entrez-direct utility ( ftp://ftp.ncbi.nih.gov/entrez/entrezdirect/
accessed on 12–13 April 2021), which provides an API-like access to NCBI PubMed database.
Entrez-direct is able to fetch all articles whose titles matching a regular expression. The
data obtained is in MEDLINE format, containing all the basic metadata of article containing
abstract text and year of publication. Subsequent analysis of article metadata included
keyword extraction with Rapid Automatic Keyword extraction algorithm (RAKE), imple-
mented in Udpipe R package (https://ufal.mff.cuni.cz/udpipe accessed on 15 April 2021),
calculating keyword co-occurrence rates, and time-dependent trend analysis of normalized
keywords and MEDLINE terms frequencies. The data acquired allowed us to work with
most relevant scientific articles in this paper.

3. Mechanisms of Hsp70 Regulation and Memory Formation

The mechanism of action of Hsps is based on their ability to interact with the hydrophobic
regions of partially denatured proteins, thereby preventing their aggregation and promoting
the recovery of their native conformation. Hsp70 also mediates the correct folding and trans-
port of newly synthesized proteins under normal conditions (Figure 1) [11]. Proteins with
similar activities are called molecular chaperones. The most versatile molecular chaperones
are proteins belonging to the Hsp70 family (each member with a molecular weight of approxi-
mately 70 kDa). Hsp70 is one of the most conserved cellular proteins and is found in the cells
of all studied organisms at all stages of phylogeny [13,14]. The Hsp70 family, as well as other
families of molecular chaperones, includes a group of proteins whose synthesis is induced
by stress (inducible Hsp70) and several proteins that are synthesized mainly under normal
physiological conditions (constitutive Hsc70) [15]. Hsc70 primarily facilitates the folding and
intracellular transport of proteins, while Hsp70 is primarily involved in refolding or degra-
dation of proteins that have been partially damaged or denatured under stress conditions
(Figure 1). Notably, Hsp70 is a strong inhibitor of apoptosis [16].

ftp://ftp.ncbi.nih.gov/entrez/entrezdirect/
https://ufal.mff.cuni.cz/udpipe


Cells 2021, 10, 1638 3 of 23

Figure 1. Mechanism of action of intracellular and secreted proteins of the Hsp70 family. As an intracellular housekeeping
protein, Hsp70, in cooperation with Hsp40 and other co-chaperones, folds and sorts newly synthesized proteins in cells
under normal conditions. Under proteotoxic stress and in the case of certain mutations, misfolded proteins accumulate
in the cytosol. Hsp70, in cooperation with co-chaperone Hsp40, restores the native conformation of partially denatured
proteins and directs irreversibly damaged proteins to the ubiquitin–proteasome system (UPS) or lysosomes by autophagy.
In addition, Hsp70 in combination with Hsp110 and Hsp40 promotes the dissolution of protein aggregates, such as α-
synuclein [12,17–20]. As a secreted protein, Hsp70 is recognized by TLR2/4 and CD91 receptors and participates in the
regulation of innate immunity, similar to classical cytokines; hence, Hsp70 is often called a “chaperokin” [21–28].

The induction of heat shock protein synthesis is triggered under stress that causes
abnormal protein conformation [29]. The transcriptional induction of Hsp genes is medi-
ated by a family of transcription factors called “HSFs” (heat shock factors) [30,31]. When
the concentrations of partially denatured proteins, cAMP, and calcium ions increase in
the cytosol (due to heat shock or other types of stress), the transcription factor HSF1 is
trimerized and phosphorylated. Activated HSF1 binds to heat shock elements (HSEs)
located in Hsp promoters, resulting in a ten- to hundred-fold increase in transcription
intensity [30–33]. In mammals, constitutive Hscs are expressed with the participation of
another transcription factor, HSF2, which is active under normal conditions [34].

Some Hsps, in particular Hsp70, in addition to serving as molecular chaperones in
intracellular processes, are secreted into the intercellular space, where they play a role
in intercellular communication. Secreted Hsps are recognized by a number of pattern-
recognizing receptors (TLR2, TLR4, and others) (Figure 1). Therefore, extracellular Hsp70
was initially characterized as one of the damage-associated molecular patterns (DAMPs),
intracellular molecules that are released from damaged or dying cells due to trauma or in-
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fection and activate the innate immune response via pattern-recognizing receptors located
mostly on neutrophils and macrophages [35]. Subsequently, it has been suggested that
the pro-inflammatory effects of exogenous Hsp70 are explained by its contamination with
lipopolysaccharide (LPS), which is capable of inducing the reaction of macrophages and
neutrophils, even when LPS is present in trace amounts [36]. However, the results obtained
using Hsp70 isolated from eukaryotic expression systems (for example, the baculovirus
system) and free from contamination by LPS and bacterial proteins indicated that exoge-
nous Hsp70 may have an anti-inflammatory effect. This effect involves suppression of the
secretion of pro-inflammatory cytokines, reactive oxygen species and NO by neutrophils
and macrophages and reduction in the nuclear transport of NF-kB [21–27].

The formation of memory at the molecular level occurs in several stages. First, short-
term memory (STP) is formed, which does not require the synthesis of new proteins. It is
believed that the formation of short-term memory involves the activation of adenylate
cyclase and the production of cAMP, which leads to the activation of protein kinase A (PKA).
Activated PKA phosphorylates a wide range of proteins, including potassium and calcium
channel subunits, leading to the strengthening of pre-existing synaptic connections [37].

Long-term memory requires, in addition to posttranslational modifications and ac-
tivation of existing synapses, the synthesis of new proteins and the formation of new
synapses [37,38]. The formation of long-term memory and its consolidation requires the
repetition of learning stimuli, which leads to a prolonged increase in the level of cAMP
and phosphorylation of the transcription factor cAMP response element (CRE)-binding
protein (CREB), as well as the induction of several genes with CRE motifs (CREB targets)
in the promoter region [39,40]. The CREB-mediated response to extracellular stimuli is
modulated by a set of protein kinases (PKA, CaMKII, CaMKIV, RSK2, ERK1/2, and PKC)
and phosphatases (PP1 and calcineurin) [37,41]. At the next stage, both the de novo
transcribed mRNAs and the resting mRNAs stored locally at the synapses are translated,
further stabilizing the synapse.

Strengthening of both pre-existing and newly formed synaptic connections induced
by brief high-frequency stimulation is referred to as long-term potentiation (LTP) [42]. LTP
formation is associated with enhanced neurotransmitter release and is one of the main
mechanisms underlying learning and memory [42,43]. In most synapses that support
LTP, there is a postsynaptic increase in the concentration of calcium, mediated by the
activation of NMDA (N-methyl-D-aspartate) receptors. An increase in calcium levels leads
to the activation of CaMKII, which is expressed both in presynaptic and postsynaptic
terminals. On the presynaptic side, the protein substrates for CaMKII phosphorylation
include synapsin, synaptotagmin, and synaptophysin, which play key roles in the release
of neurotransmitters. On the postsynaptic side, CaMKII substrates include several other
proteins, such as α-actinin, PSD95, the synaptic adhesion protein densin-180, microtubule-
associated protein 2 (MAP2) and neurofilament L. Phosphorylation of these proteins leads
to cytoskeletal rearrangement and structural changes in synapses, further strengthening
the connection [43]. The memorization sequence is given in Figure 2.

Stimuli that require memorization are often associated with various types of stress.
Animals need to remember potentially dangerous environmental impacts (temperature
changes, predator attacks, etc.) that require an adequate response (avoidance or defense),
as well as needing to be aware of their own actions, remembering those that may lead
to negative consequences. Most likely, through these connections during the course of
evolution, the relationship between the stress response systems, in particular the mecha-
nisms of Hsp70 induction, and memory was formed and consolidated. It has been shown
that the stressful effects of moderate-intensity stressors contribute to the formation of LTP
and memory [6]. It has also been demonstrated that Hsp70 family members, which are
universal molecular chaperones, are involved in the processes of protein synthesis and
trafficking that are necessary for the maintenance of existing synapses and the formation
of new synapses. Finally, Hsp70 may act as a neuroprotector, to some extent, reducing
the impact of damaging factors and ageing of the nervous system, including memory
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deterioration. Therefore, it is evident that the relationship between Hsp70 functions and
memory formation is of fundamental interest and carries promise for the treatment of
age-related neurodegenerative diseases, such as Alzheimer’s disease.

Figure 2. Summary of the sequence of events during memory formation [37,38,41,42].

4. Relationship between the Stress Response System and Memory

Environmental and physiological stresses activate the transcription of hsps in all
studied organisms mainly through activation of HSF family members [44]. In addition to
HSEs (heat shock elements), which are targets of HSF1, the promoter region of mammalian
hsp70 genes contains sterol response element (SRE) motifs that mediate the induction
of Hsp70 by growth factors (e.g., nerve growth factor, NGF) and a CRE motif, which is
necessary for the binding of the phosphorylated form of CREB [45,46]. The presence of CRE
motifs in the promoter region of hsp70 genes suggests its possible role in the processes of
neuroregulation and memory. Phosphorylated CREB is known to initiate the transcription
of several genes associated with memory consolidation processes [37,47,48]. Both CREB and
HSF1 are activated under stress conditions and involve the participation of several stress-
induced signaling cascades (MAPK, PKA, PKC, CaMKII, and Akt) in response to an increase
in Ca2+, cAMP, and other low-molecular-weight mediator concentrations [31,49–54]. It has
been demonstrated that increased Ca2+ levels and activation of CaMKII and PKC are
involved in both the regulation of Hsp70 transcription and memory formation [55,56].

Binding sites of the transcription factor FOXO/DAF-16 have been found in the pro-
moter region of Drosophila melanogaster hsp70 genes [57]. It has also been shown that
FOXO/DAF-16 plays an important role in learning and memory, as well as in stress
resistance in Caenorhabditis elegans [58,59]. Furthermore, induction of Hsp70 has been
shown to be expressed when tasks related to learning and memory are undertaken
(see below) [60–62].

To date, a large number of studies have indicated an important role of HSF1 in
the processes of memory formation. For instance, it has been demonstrated that HSF1
activation leads to improved cognitive abilities [63,64] and that loss of HSF1 activity is
associated with neurodegeneration [65]. Notably, the promoters of genes encoding many
synaptic proteins, in particular, PSD95, synapsin I, and synaptophysin, contain canonical
HSE sequences. Activation of HSF1 with 17-aminoallylgeldanamycin (17-AAG) has been
shown to increase the expression of PSD95, synapsin I, synaptophysin, SAP97, and the
neurotrophic factor BDNF, a key regulator of synaptic plasticity [66,67]. In addition,
17-AAG has been shown to increase the expression of Hsp70 and Hsp27 in neurons in vivo
and to enhance LTP [67]. Curcumin, shown to act as an HSF1 activator, increases BDNF
levels in the hippocampus and reduces memory loss in rodent models of Alzheimer’s
disease (AD) [68,69]. Another study showed that activation of HSF1 and/or CREB during
synaptic formation induces Hsp70 expression in postsynaptic structures [70–72]. Since
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the formation of long-term memory requires rapid synthesis of several new proteins, the
participation of Hsp/Hsc70 as molecular chaperones in this process is absolutely necessary.

HSF1 also mediates the expression of β-amyloid precursor protein (APP) [73], and
HSEs are found in the promoter of the APP gene. Various types of stress (HS, ethanol,
treatment with sodium arsenite) lead to the activation of APP transcription. The APP
protein is known to be involved in the transmission of intercellular signals and in cell
adhesion, promoting contacts between neurons and the formation of new synapses [73,74].

Currently, it is known that the action of stress factors that leads to protein denaturation
is not the sole pathway leading to HSF1 activation. For instance, it has been shown
in C. elegans that serotonin, which is involved in the stress response in all animals and
modulates their physiological and metabolic adaptation to adverse conditions [75,76],
promotes the activation of HSF1 independent of temperature elevation [75–77]. Serotonin
is sufficient for the short-term induction of Hsp70 and thermal tolerance. Serotonin is
known to play an important role in learning and memory, and a decrease in its level in the
mammalian brain leads to memory impairment [78,79].

Interestingly, Hsp70 and Hsp60 levels have been elevated in daphnia placed in water
previously exposed to predators (fish) [80]. It has also been shown that Hsp70 is synthesized
in the brain of a fish (Carassius auratus) under the influence of cortisol released at the sight
of a predator. This phenomenon may be associated with the memorization of threats and
the formation of a defensive response and/or avoidance reaction [81]. Similarly, repeated
presentation of a food odor or a visual danger stimulus triggers Hsp70 expression in the
nervous system of the crab Chasmagnathus granulatus [82]. In rats, the stress caused by
immersion in water has been shown to cause a significant increase in the mRNA levels of
Hsp70 and Hsc70 in the hippocampus [83,84]. Thus, in addition to proteotoxic forms of
stress, psychophysiological stress such as a danger can cause the induction of Hsp70 family
protein expression.

A role of HSP70 in memory has also been demonstrated in rodent models [56,85]. The
increase in the level of Hsp70 proteins in mice and rats was detected using different training
protocols. Both Hsp70 and Hsc70 are induced in the hippocampus after stress-related spa-
tial learning (contextual fear conditioning, CFC, a behavioral paradigm based on the ability
to learn and remember aversive stimuli) [60–62]. The concentration of Hsp70 increases in
the cerebellum after a two-way avoidance task, with the maximal level expression observed
during the task solution phase and a decrease after the memory consolidation phase [60,86].
However, the time of maximum Hsp70 induction after training varies depending on the
study protocol. In Reference [62], a short-term increase in Hsp70 levels in the hippocampus
was observed 1 h after training. The authors suggest that the rapid induction of Hsp70 in
the hippocampus is due to the activation of PKA and CREB during and immediately after
training [87]. Injection of recombinant Hsp70 (rHsp70) at a concentration of 0.5 mg/mL
into the dorsal hippocampus immediately after exercise promoted learning and memory.
At the same time, administration of rHsp70 at a concentration of 0.25 or 1 mg/mL did not
affect memory consolidation. It is possible that Hsp70 at high concentrations is toxic or
activates pro-inflammatory signals [88,89]. In line with this possibility, transgenic mice
that constitutively express high levels of Hsp70 have previously been shown to exhibit
reduced learning ability in some tests [90]. The authors suggest that a constant high level
of Hsp70 causes stable changes in the structure of synapses and increase in LTP, with no
further increase in LTP detected after training.

A moderate increase in temperature leading to Hsp70 induction has been shown to in-
crease learning ability. For example, fluctuations in water temperature leading to Hsps pro-
duction have a positive effect on memory formation in the pond snail Lymnaea stagnalis [91].
Similarly, mild HS restores memory in the D. melanogaster Volabo and Agnostic mutants
that normally have learning and memory problems [92,93].

The relationship between stress and memory is illustrated by “Yerkes–Dodson law” [94],
which postulates that, up to a certain limit, stress promotes memory, but with a further
increase in the intensity of stress, the ability to remember decreases. This phenomenon may
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be explained by the fact that, under excessive stress, the synthesis of Hsp70 is suppressed
due to the rapid activation of the stress kinases p38 and JNK, which inhibit the activity of
HSF1 [95,96].

In addition to participating in protein folding, Hsp70 can modulate the activity of
many signaling proteins that are involved in various regulatory cascades. Thus, Hsp70
is known to inhibit the activation of the p38/JNK stress kinases under mild stress or
normal conditions [97,98]. It has also been shown that the injection of rHsp70 after CFC
leads to a change in the activity of the MAPK signaling pathway, enhancing the ERK1/2
cascade while reducing the activity of p38/JNK. Furthermore, administration of rHsp70
increases the level of CREB phosphorylation in the hippocampus. Presumably, ERK1/2
activity is necessary for the phosphorylation of CREB and CRE-dependent transcription of
genes critical for memory [85,99]. Additionally, ERK1/2 phosphorylate synapsin I protein,
leading to the mediator release and strengthening of the existing synapses, as well as the
formation of new synapses [100].

Many experiments using different mouse strains with several hsp70 family genes
deleted have demonstrated their sensitivity to ischemia and shown a higher probability
of neurodegenerative diseases in these mice [101–104]. However, to our knowledge, there
have not been reports describing the effect of Hsp70 knockout on memory formation. These
studies would significantly improve our understanding of the molecular mechanisms
underlying Hsp70 involvement in memory formation and consolidation. In particular,
we used the conditioned courtship suppression paradigm (CCSP) to elucidate the roles
of hsp70 genes in memory formation in a D. melanogaster model [105]. We found that
a constitutively low level of Hsp70 is required for learning and short- and long-term
memory formation in males. Strains with all six hsp70 genes deleted demonstrated poor
ability to learn and establish short-term memory (STM) and complete inability to form
long-term memory (LTM) in the CCSP (Figure 3). The presence of at least one hsp70 copy
was sufficient to restore the ability to form STM and partially rescued LTM under normal
conditions. A transcriptome analysis revealed that males with different hsp70 copy numbers
after courtship suppression differ significantly in the expression of several groups of genes
involved in the memory process, reproduction, and immunity. Importantly, our analysis
revealed a few pathways involved in memory formation and consolidation, including the
cAMP signaling cascade, which depends on the presence of hsp70 in the genome [105].
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Figure 3. Results of an experiment on the effect of Hsp70 on memory. (A) A fertilized Drosophila female rejects the male’s
advances by spraying him with an anti-aphrodisiac secretion. The male, who remembers the reaction of the fertilized female,
later refuses to court fertilized females. (B) STM and LTM in males of the Canton S strain with six copies of the Hsp70 gene,
the Hsp70-knockout strain (Hsp70-), and the strain with one restored copy of the Hsp70 gene (Hsp70-1c). The absence of
Hsp70 led to a decrease in STM and loss of LTM, whereas restoring a single copy of Hsp70 restored STM and LTM, compared
to the corresponding memory levels in the Hsp70-negative strain. LI refers to learning index. &, #—p < 0.05. [105].

Generally, from the data currently available, it can be concluded that HSF1 and CREB
form a joint regulatory network that determines the interaction of the stress response system
and memory formation (Figure 4). Their joint participation in this interaction is necessary
for the induction of proteins involved in the reorganization of existing synapses and the
formation of new ones (i.e., PSD95, synapsin I, synaptophysin, SAP97, BDNF, and APP).
In addition, Hsp70 family proteins are required for newly synthesized synaptic protein
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folding, reorganization of the synaptic actin cytoskeleton, and modulation of signaling
cascades involved in memory formation.

Figure 4. Interactions between the stress response and memory formation. Stress stimuli lead to an increase in the
concentration of calcium and cAMP in the cytosol in CNS cells and the activation of protein kinases PKA, PKC, CaMKII, etc.,
which are involved in the regulation of the activity of transcription factors, in particular, CREB and HSF1. Both CREB and
HSF1 initiate the transcription of genes encoding synaptic proteins and Hsp70. In turn, Hsp70 promotes the folding and
transport of synaptic proteins and the release of neurotransmitters, activates the MAPK signaling cascade, and ensures the
structural integrity of synapses by interacting with the cytoskeleton.

5. Hsp70 is Involved in the Functioning of Synapses and Protects the Synaptic
Network from Stress-Induced Damage

Hsp70/Hsc70 proteins are continuously synthesized in the nervous system under nor-
mal physiological conditions at all stages of ontogenesis (in the absence of stress) [106–108].
Thus, Hsc70 expression is found in preimplantation mouse embryos at the 2 blastocyst
stage [109]. During subsequent development, high levels of Hsc70 are maintained in the
cytosol and nuclei of neuroectoderm cells during neural plate differentiation, neural tube
closure and organogenesis [110].

Several studies [106,111] have shown that the Hsc70 level is elevated in all neuronal
tissues (retina, cerebellum, cortex, and brainstem) compared to that in other organs. Hsc70
levels reach 2 to 3% of the total protein content in rat spinal cord cells [112]. The constitutive
synthesis of Hsp70 in the brains of mouse embryos begins much later than Hsc70 synthesis,
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on the 15th day of development. Importantly, in mice, Hsc70 is localized in neurons, while
Hsp70 is mainly localized in glia. At the same time, glia may secrete various types of
Hsps, mainly Hsp70, that are then internalized by neurons, mainly in the synaptic region.
This process is activated under stress conditions, particularly by moderate temperature
elevation [101,106,113–115]. In the postnatal period, the CNS has a high constitutive level
of Hsp70 expression compared to other organs and tissues [116]. The expression of Hsp70
in the CNS correlates with a high constitutive level of HSFs [117].

A high level of Hsc70 expression has been observed in all synaptic fractions (synaptic
membranes, synaptic junctions (SJs), and postsynaptic density (PSD) elements), not only
in newly formed synapses but also in previously existing synapses [118]. Hsc70 is a
component of synaptic vesicles and is necessary for the recirculation of synaptic vesicles in
presynaptic nerve endings [119,120]. On the other hand, constitutive synthesis of Hsp70 has
been observed in the SJ and PSD fractions of the forebrain. Most of the newly synthesized
synaptic proteins are transported from the neuron body along the entire length of the axon.
During this long-term transport along the axon, some of the neuron bodies lose their native
structure. As a result of slow axonal transport, misfolded and functionally inactive proteins
that enter synapses accumulate in the synaptic region. The preservation of the native
structure and function of synaptic proteins is fundamentally important for the functioning
of neurons [121]. Thus, high levels of Hsc70 and Hsp70 in synapses are necessary to restore
and/or maintain the native conformation of the transported proteins [118]. Hsp70 also
interacts with the cytoskeleton, stabilizing the structural morphology of synapses and
thereby preserving synaptic transmission [122].

The expression of Hsp70 in different areas of the central nervous system increases
under stress [123]. A slight rise in temperature, which induces Hsps expression, protects
nerve cells from the effects of an even higher temperature, which can be lethal in nerve cells
that have not been preheated. This phenomenon is called induced thermotolerance and
is particularly important for poikilothermic animals [124,125]. Experiments using either
nerve cell cultures transfected with Hsp70-expressing constructs or transgenic animals over-
expressing Hsp70 in the CNS have shown that Hsp70 plays an important neuroprotective
role [126–128]. Under stress conditions, synaptic activity must be maintained to prevent
disruption of vital connections in the nervous system. Obviously, selective overexpression
of Hsp70 in the synaptic region increases the level of synaptic protection. It has been shown
that Hsp70, induced by stress, is localized to the synapses of the rat brain [118]. Another
independent study has found that hyperthermia causes the translocation of Hsc70 to the
synaptic region [129]. The authors suggest that Hsp/Hsc70 protects the nervous system at
the functional level by supporting neurotransmission in synapses during stress. It has also
been shown that chronic hypoxia induces the synthesis of Hsp70, which is necessary to
maintain the expression level of presynaptic proteins. A direct interaction has been found
between Hsp70 and the presynaptic protein syntaxin. Thus, heat shock-induced Hsp70
expression supports the release of neurotransmitters at elevated temperatures or during
ischemia, providing synaptic homeostasis [130,131].

6. Hsp70 Is an Effective Neuroprotector for Brain Ischemia

Overexpression of inducible Hsp70 protects the brain against ischemia. This effect
has been shown in both cell cultures and animal models of stroke [132]. The expression
of transgenic Hsp70 protects primary neurons from heat shock and plays a crucial role
in determining the fate of neurons after ischemia [133]. Ischemia, which leads to hypoxic
nerve tissue damage, induces the induction of Hsp70 synthesis [16,134]. Ischemic stroke
affects two areas: the ischemic nucleus, in which nerve cells undergo apoptosis and/or
necrosis, and the “penumbra”, in which the survival of neurons is possible. In cerebral
ischemia in rats, neurons expressing Hsp70 have been shown to be preferentially located
in the penumbra region at the border of the viable tissue surrounding the infarct nucleus,
and in the infarct region, Hsp70 has also been shown to be induced in microglia, astrocytes,
and endothelial cells [16,134,135]. In transgenic mice overexpressing Hsp70, the effects of
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cerebral ischemia are significantly less pronounced than those in wild-type mice [136,137].
On the other hand, knocking out Hsp70 genes leads to a significant increase in the volume
of affected nerve tissue in experimental focal ischemia in mice [101,102]. Geranylgerany-
lacetone, an inducer of Hsps synthesis, also exhibits a neuroprotective effect in animal
models of ischemia and traumatic brain injury [138,139].

Endogenous Hsp70 contributes to the increased survival of neurons in ischemia due
to its ability to block apoptosis and because of its anti-inflammatory properties. Hsp70 can
inhibit apoptosis at both early and later stages. Thus, Hsp70 has been shown to inhibit
the activation of SAPK/JNK family stress kinases, which represent the main triggers of
apoptosis through the phosphorylation of p53 and the antiapoptotic protein bcl-2 [97,98].
Hsp70 also inhibits the formation of apoptosomes, involving cytochrome c, Apaf-1, and
procaspase 9. Moreover, Hsp70 blocks apoptosis-inducing factor (AIF) translation to
the nucleus [16,102,104,140]. In the case of ischemia, the trafficking of the pro-apoptotic
receptor Fas and the secretion of FasL bound with Fas increase. Hsp70 inhibits Fas-
mediated apoptosis by interfering with the transport of the Fas receptor from the Golgi
complex to the cell surface [16]. Additionally, endogenous Hsp70 prevents the activation of
the pro-inflammatory factor NF-kB and its transport to the nucleus. This effect is mediated
by the interaction of Hsp70 with IkB (inhibitor of kB). As a result, overexpression of Hsp70
leads to a decrease in the production of major pro-inflammatory mediators such as NO
and ROS [16,141].

The neuroprotective potential of not only endogenous Hsp70 expressed in nerve
tissue cells but also exogenous (recombinant) Hsp70 in ischemia was demonstrated. When
administered intranasally in mice, full-size recombinant Hsp70 effectively penetrates
the brain and exhibits a pronounced anti-inflammatory effect [103,142,143]. Similarly,
it has been shown that intranasal administration of Hsp70 for 5 days reduces one-half
the volume of the ischemic lesion in a photothrombotic stroke mouse model [144]. This
procedure reduces the apoptosis of neurons in the penumbra and significantly increases
the expression of synaptophysin, which indicates the restoration of synaptic networks. In
addition, exogenous Hsp70 promotes increased neurogenesis in the hippocampus after
ischemic stroke [144].

A promising approach for the treatment of ischemic conditions is the creation of
chimeric constructs that combine the Hsp70 gene with a protein transduction domain,
such as Tat from HIV-1, which facilitates the transport of fusion protein to the central
nervous system by crossing the blood-brain barrier after intravenous or intraperitoneal
administration. These proteins have shown higher neuroprotective activity in mice with
induced ischemia than unmodified Hsp70 [145–147]. At the same time, exogenous chimeric
Hsp70 has been shown to stimulate neuroblast differentiation and proliferation, as well as
CREB phosphorylation in the hippocampus, and to improve memory [85].

Thus, both endogenous and exogenous Hsp70 effectively protect nerve tissue, includ-
ing the main “substrate” of memory, i.e., synaptic structures, from damage during ischemia.
This protection allows us to recommend further research on the possibility of using both
recombinant Hsp70 and inducers of endogenous Hsp70 synthesis as efficient and harmless
neuroprotectors in the treatment of ischemic strokes.

7. Hsp70 Prevents Neurodegeneration and Promotes Memory Recovery in Alzheimer’s
Disease Models

The described neuroprotective properties of Hsp70 may be of great importance for
the prevention and treatment of various neurodegenerative diseases, such as Alzheimer’s
disease (AD), the frequency of which has recently increased dramatically in developed
countries as a result of increased life span [148,149]. The cause of neurodegeneration
in many cases is proteinopathies, i.e., protein folding disorders, leading to excessive
accumulation and aggregation of certain proteins in the central nervous system. These
neuropathologies include Parkinson’s disease and dementia with Lewy bodies (DLB),
which develop due to aggregation of α-synuclein; frontotemporal dementia (tauopathy);
Huntington’s disease belonging to a group of polyglutamine disorders; and amyloidosis
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(Alzheimer’s disease and Creutzfeldt–Jakob disease) [150–153]. Among the listed diseases,
AD is currently of the greatest socioeconomic importance. The course of sporadic and
hereditary forms of AD includes prolonged deterioration of the patients’ mental condition,
often lasting years. Typical symptoms are progressive memory loss and the development
of dementia, and the outcome of AD is inevitably the death of patients [148,149]. More
than 100 million cases of Alzheimer’s disease are predicted to be diagnosed 2050 [154].
It is assumed that the main cause for the development of AD is the accumulation in the
brain of soluble and highly toxic oligomers and insoluble aggregates of the so-called Aβ-
peptide, which is a product of the proteolysis of the APP protein, an important participant
in intercellular communication in the nervous system [155]. Alternative hypotheses have
been proposed on the basis that the key factor in the development of AD is considered to
be the aggregation of hyperphosphorylated tau protein (tauopathy), chronic inflammation
of brain tissues (neuroinflammation), or the accumulation of mutations in mitochondrial
DNA, leading to dysfunction of the mitochondrial respiratory chain and the development
of oxidative stress [156–158]. Currently, the main models of AD are represented by various
transgenic strains of rodent species that express mutant forms of APP and β/γ secretases
(proteolytic enzymes involved in the proteolysis of APP via the amyloidogenic pathway
to form Aβ peptides) [159–161]. In these animal models, at the age of 5 to 6 months,
Aβ deposition and neurodegeneration are detected in the cortex and hippocampus, with
subsequent loss of cognitive function. A model of bulbectomized mice that develop all
major manifestations of AD a few months after the surgical removal of the olfactory bulbs
has also been considered valid [142,162,163]. The main clinical feature used in studies of
mouse models of AD is spatial memory loss, usually tested through the Morris water maze,
and an increase in β-amyloid levels in specific areas of the brain [164].

Several groups have shown that the chaperone properties of Hsp70 are of great
promise to cure neurodegenerative diseases, including AD. The decrease in Hsp70 levels in
CNS tissues observed with age may be one of the factors contributing to the accumulation
of toxic Aβ oligomers and tau aggregates, increasing the risk of AD [165]. Most authors
postulate the importance of a decrease in the levels of Hsp70 and Hsc70 in the development
of AD [166]. Thus, according to Franklin et al. 2005, tau aggregation is largely associated
with a decrease in the chaperone activity of Hsp70 and other Hsps in aged individuals.
On the other hand, some authors show an increase in Hsp70 levels at the early stages of
AD, with Hsp70 co-localizing with tau protein aggregates [165]. Hsp70 and Hsc70 are
involved in the degradation of hyperphosphorylated tau by ubiquitinylation of the latter
with the participation of the ubiquitin ligase CHIP, which increases the survival of neurons
in tauopathy [165,167,168]. The phosphorylated residues on tau act as recognition sites for
Hsp70, marking the protein for ubiquitinylation and subsequent proteasomal degradation
by the E3 ligase CHIP [169].

There is also evidence that Hsp70 interferes with the oligomerization of purified Aβ

in vitro [170]. However, Hsp70 does not reduce the toxicity of pre-oligomerized Aβ; that
is it is not able to dissolve oligomers [171]. On the other hand, the introduction of an
Hsp70-producing adenovirus vector into a primary culture of Aβ-expressing neurons
dramatically increases the survival rate of the culture (fivefold) and reduces the level of
Aβ accumulation in the cytoplasm [172].

Transgenic mice expressing a mutant APP producing Aβ peptides with a high ten-
dency to aggregate, after crossing with transgenic mice overexpressing Hsp70 show a
decrease in Aβ levels, a decrease in neurodegeneration (reduced loss of neurons and
synapses), and recovery in terms of cognitive function (memory ability as measured by
Morris test) compared to cross with wild-type mice [173]. This outcome is not due to a de-
crease in the production of Aβ but results from the activation of its phagocytosis and degra-
dation systems via IDE (insulin-degrading enzyme, an Aβ-degrading enzyme involved in
the degradation of Aβ) [173]. Induction of Hsp70 synthesis by geranylgeranylacetone in
mice expressing mutant APP leads to a decrease in Aβ levels and memory recovery in the
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Morris test [174]. In addition to the IDE, the MAPK pathway activation also participates in
the effect of Hsp70 to reduce Aß40/42 production in APP- transgenic mice [175].

The induction of Hsp70 with the subsequent development of a neuroprotective effect
is mediated by the trimerization of HSF1 under the influence of stress factors or specific
chemical compounds. HSF1 may also have an alternative neuroprotective effect, indepen-
dent of trimerization, Hsp accumulation, and activation of signaling pathways, including
the CaMKII, PKA, casein kinase II, and PI-3K-Akt pathways. Overexpression of HSF1
completely blocked mutant huntingtin-mediated toxicity in rat cerebellar granule neuronal
(CGN) cultures. The authors suggest that this effect is mediated by the class III histone
deacetylase (HDAC) SIRT1, which is known to have strong neuroprotective effects, through
a direct interaction between monomeric HSF1 and SIRT1 in the nuclei of neurons [176].

Models of bulbectomized mice that develop all major manifestations of AD a few months
after surgical removal of the olfactory bulbs are also considered to be valid [142,162,163]. Surgi-
cal removal of the olfactory bulbs (bulbectomy) in mice causes the development of several
symptoms characteristic of AD, including increased levels of Aβ, neurodegeneration in the
temporal cortex and hippocampus; deficient serotonin, acetylcholine, and glutamatergic
system levels; and memory loss [162,163]. In addition, changes in the Aβ level and other
manifestations of AD follow a certain pattern after bulbectomy. The concentration of Aβ

in the brain increases significantly 1.5–2 months after bulbectomy (5- to 6-fold compared
to sham-operated mice) but then gradually decreases, reaching a minimum 6 months
after surgery. Then, the concentration of Aβ begins to increase further (7- to 8-fold com-
pared to the sham-operated animals 12 months after the operation). Changes in the level
of Aβ correlate with the ability of experimental animals to learn and remember in the
Morris water test [177]. In bulbectomized animals, spatial memory is significantly re-
duced 1.5 months after surgery compared to sham-operated mice but is subsequently
restored (6 months after bulbectomy, corresponding to a minimal concentration of Aβ). In
addition, a strong negative correlation between the concentration of Aβ (and the degree of
memory loss) and the level of endogenous Hsp70 in the brains of bulbectomized mice has
been observed. In this study, the Hsp70 level begins to increase shortly after the removal of
the olfactory bulb, reaches a maximum 6 months after surgery, and then declines. By the
twelfth month, it becomes significantly lower than the level of Hsp70 in sham-operated
mice. Furthermore, the maximum level of Hsp70 corresponds to the period of maximal
memory recovery and a decrease in the Aβ concentration. These findings suggest that
increased Hsp70 synthesis in the brain after bulbectomy is a compensatory mechanism
that is activated in response to brain injury and to some extent contributes to the tempo-
rary recovery of cognitive functions. The mechanism of the observed protective action of
endogenous Hsp70 may be realized by the endogenous Hsp70 facilitation of blocking tau
and Aβ aggregation and promoting their degradation [165,172,174,178].

Hsp70 may have important implications and clinical prospects not only in the case
of AD but also in other proteinopathies leading to neurodegeneration. The neuropro-
tective effect of Hsp70 overexpression has been shown in many models of Parkinson’s
disease in vitro and in vivo. Heat shock-mediated or geldanamycin-induced induction of
Hsp70 can prevent α-synuclein-induced cell death in yeast, Drosophila and mouse models
of PD [179–181]. Thus, it has been shown that Hsp70 prevents the formation of toxic
α-synuclein oligomers that subsequently aggregate into insoluble fibril-forming Levi bod-
ies, which is considered the main cause of Parkinson’s disease [182,183]. In addition, Hsp70
in combination with Hsp40 and Hsp110 participates in the dissolution of α-synuclein
amyloid fibrils to form α-synuclein monomers in vitro [17–19]. Finally, Hsp70 stimulates
autophagocytosis of α-synuclein fibrils and, facilitated by Hsp40 and E3 ubiquitin ligase
CHIP, degradation of alpha-synuclein monomers via ubiquitin–proteasomal pathway [20].
Additionally, Hsp70-mediated disaggregation and autophagy are necessary for the quality
control of polyglutamine proteins, including huntingtin, whose aggregation is the cause of
Huntington’s disease [184]. Induction of Hsps by geldanamycin derivatives in vitro inhibits
aggregation of the prion protein PrPSc; thus, prion infection develops faster in Hsp70−/−
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knockdown mice than in wild-type mice after PrPSc inoculation [185]. In summary, the
effects of intracellular Hsp70 on the prevention of protein aggregate formation in the de-
velopment of neuropathies, tau, alpha-synuclein, and polyglutamine proteins are realized
through three main pathways: folding/degradation of monomers and prevention of the
formation of oligomers and dissolution of aggregates and autophagy. Currently, chemical
inducers of Hsp70 synthesis, such as geldanamycin derivatives, radicicol, or geranylger-
anylacetone, are considered possible therapeutic drugs for various neurodegenerative
diseases [186].

Exogenous Hsp70, as well as endogenous Hsp70, has a strong neuroprotective ef-
fect, as demonstrated in several AD models. The addition of exogenous Hsp70 induces
microglial activation and promotes Aβ phagocytosis in vitro [187]. Transgenic mice and
Drosophila flies secreting Hsp70 into intercellular medium have been constructed. In strains
obtained by crossing extracellular Hsp70 producers with those carrying APP transgenes ex-
pressing Aβ and prone to the development of neurodegenerative processes, a pronounced
neuroprotective effect has been observed compared to the control cross or wild-type
strain [188]. Several investigations [103,142,143,189] have shown that recombinant Hsp70
labeled with Alexa Fluor or radioactive iodine penetrates the brain when administered
intranasally and accumulates mainly in the cortex and hippocampus, the structures most
severely affected in AD. Sub-chronic intranasal administration of recombinant human
Hsp70 has resulted in a decrease in Aβ concentration, activation of neurogenesis, and
restoration of cognitive function (particularly spatial memory) in two mouse models of
AD, i.e., bulbectomized mice and 5XFAD transgenic mice [142,189]. Furthermore, analysis
of the hippocampal transcriptome of 5XFAD transgenic mice intranasally treated with
recombinant Hsp70 shows a significant decrease in the expression of genes critical for the
development of neuroinflammation, which plays an important role in the development
of AD [158,189]. In addition, the expression of genes critical for antigen presentation,
in particular, belonging to MHC classes I and II, has been shown to be significantly in-
creased [143]. Transcriptome studies have also shown an increase in the main neurorepair
markers and increased activity of neurotransmitter synthesis systems after administration
of exogenous Hsp70 (Figure 5). In addition, intranasal administration of Hsp70 has resulted
in the activation of genes involved in the regulation of the MAPK cascade [143], which
plays an important role in cell proliferation, synaptic plasticity, and memory consolida-
tion [94]. These data are in good agreement with the work presented in Reference [85],
which shows the modulating effect of exogenous Hsp70 on the activity of the MAPK
cascade. Finally, administration of recombinant Hsp70 leads to reduced Aβ levels in the
brain and restored neuron density in bulbectomized and transgenic mice [142,189]. Chronic
intranasal administration of Hsp70 to ageing mice results in a slight increase in longevity,
as well as an increase in neuron density and synaptophysin levels in the cortex and hip-
pocampus, which indicates the restoration of the synaptic network that degrades with
age [190]. Bulbectomized transgenic 5XFAD and ageing mice treated with recombinant
Hsp70 have been shown to have greater memory recovery, as revealed in the Morris water
maze test (Figure 5) [142,189].
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Figure 5. (A) Differentially expressed genes (DEGs) in transgenic 5XFAD mice, ageing mice, and transgenic mice after
administration of exogenous Hsp70. (B) Restoration of spatial memory in bulbectomized (OBX) mice as indicated by
performance in the Morris maze when exogenous Hsp70 is administered. *—p < 0.05; ***—p < 0.001.

There are several cases when human recombinant Hsp70 or Hsp70 inductors were
successfully used in clinics [191,192]. For example, the treatment with Hsp70 was applied
to patients with lysosomal storage disease (LSD) which often leads to severe damage of
CNS [191]; however, application of Hsp70 in clinics is beyond the scope of this review.

Generally speaking, Hsp70 may play a dual role in memory formation and various
types of neurodegeneration described above. First of all, Hsp70 may participate in different
memory-related processes exploring its well-known chaperone properties. On the other
hand, inducible Hsp70 sometimes found outside the cells at trace concentration, as well as
exogenous recombinant Hsp70, may exercise its “chaperokin” properties and serve as a
“danger signal” activating innate immunity and other protective cellular systems.

8. Conclusions

Hsp70 family members are involved in the formation and maintenance of memory
in different ways. First, the stimuli that trigger the stress response and the induction of
Hsp70 synthesis also activate the processes of memory and the formation of new synapses.
The transcription factor HSF1 promotes not only Hsps production but also the rapid
synthesis of synaptic proteins. Furthermore, Hsp70 functions as a molecular chaperone,
facilitating the transport and folding of synaptic proteins and modulating the signaling
cascades involved in the formation of synapses. Furthermore, Hsp70 (both endogenous
and exogenous) protects neurons and synaptic structures from damage under stress (heat
shock, hypoxia, etc.). Finally, Hsp70 interferes with the oligomerization and aggregation of
proteins prone to amyloid formation, preventing neurodegeneration. Taken together, the
accumulated data allow us to consider Hsp70 synthesis inducers and recombinant Hsp70
per se as promising neuroprotectors.
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APP amyloid precursor protein;
CaMKII Ca2+/calmodulin-dependent protein kinase II;
cAMP cyclic adenosine monophosphate;
CRE cAMP response elements;
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CREB CRE-binding protein;
ERK extracellular signal-regulated kinases;
HS heat shock;
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HSF heat shock factor;
Hsps heat shock proteins;
JNK c-Jun N-terminal kinases;
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LTP long-term potentiation;
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PKA cAMP-dependent protein kinase;
PKC protein kinase C;
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