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Studies of gut microbiota explore their complicated connections between individuals of different charac-
teristics by applying different metrics to abundance data obtained from fecal samples. Although classic
metrics are capable to quantify differences between samples, the microbiome of fecal sample is not a
good surrogate for the gut microbiome of individuals because the microbial populations of the distal
colon does not adequately represent that of the entire gastrointestinal tract. To overcome the deficiency
of classic metrics in which the differences can be measured between the samples analyzed, but not the
corresponding populations, we propose a metric for representing composition differences in the gut
microbiota of individuals. Our investigation shows this metric outperforms traditional measures for mul-
tiple scenarios. For gut microbiota in diverse geographic populations, this metric presents more explain-
able data variance than others, not only in regular variance analysis but also in principle component
analysis and partition analysis of biologic characteristics. With time-series data, the metric further pre-
sents a strong correlation with the time interval of serial sampling. Our findings suggest that the metric
is robust and powerfully detects the intrinsic variations in gut microbiota. The metric holds promise for
revealing more relations between gut microbiota and human health.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human intestinal tract harbors a huge and complex micro-
bial ecosystem, termed the gut microbiota, which has gained con-
siderable attention. Although in controversial, the number of
microbes in the human gastrointestinal tract is estimated to be
greater than the number of cells in the human body [1,2]. Microbial
species in the gastrointestinal tract have mutualistic interactions
involving the exchange of metabolic products to influence the
body’s metabolic phenotype [3]. Many environmental factors
including diet [4], birth delivery method [5], breastfeeding [6],
and antibiotic usage [7], play important roles in determining the
composition of the gut microbiome. Alterations of the gut micro-
biota in the human gastrointestinal tract are linked to the risk for
many diseases, such as diabetes mellitus [8,9], Crohn’s disease
[10,11], and colorectal cancer [12–14]. Therefore, it is important
to study and develop methods for comparing microbial structures
between individuals and evaluate their associations with different
factors.

Advances in high-throughput sequencing have made it possible
to capture the microbiome composition in biologic samples. Due to
the lower cost and less computational intensive analysis, amplicon
sequencing is still the routine method used for studying the micro-
biome [15]. The amplicon approach proceeds by amplifying taxo-
nomic marker genes of the microbiota, mainly ribosomal DNAs
including prokaryotic 16s, eukaryotic 18s, and fungal ITS genes
[16]. The amplicon sequences are then clustered into operational
taxonomic units (OTUs) according to their sequence similarity
[17]. The OTU profiles or higher-level taxa with respect to different
biological or clinical factors are compared to illustrate the relation-
ship between phenotypes and microbial dysbiosis [18,19]. Many
metrics, such as Bray-Curtis, Jaccard or phylogenetic based UniFrac
distances have been applied to quantify variations of the composi-
tion between microbiome samples, which is also refer to as
beta-diversity [20,21]. Metrics are usually employed in biological
studies under the assumption that the samples well represent their
populations. This assumption holds for many applications, and
the metrics work well in these situations. For studies of the gut
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microbiome, however, this assumption does not necessarily hold
true [22–24]. The gut microbiota has been presented differences
between gut segments, and also the stool samples from the same
individual. Many factors such as acidity, transit time and microbial
biomass vary greatly along the entire intestinal tract, and these dif-
ferences have great effects on the microbial population [25,26].
Therefore, it is important to develop a novel metric that reliably
measures differences in the gut microbiomes of individuals even
when poorly representative fecal samples are obtained.

In this report, we introduce a metric that measures the differ-
ences of the gut microbiota between individuals. This novel metric
is developed to measure the difference of paired original popula-
tions but not only the difference of their sampling subsets. We col-
lected multiple fecal microbiome data sets, which include those
from different geographic regions [27], or with different demo-
graphic factors, such as age and breast feeding [28]. We demon-
strate the new metric outperforms other classic measures in
presenting more connections between individual gut microbiomes,
it could better capture the data variation by using dimension
reduction, and also present better partition features for individuals
from different groups. Our results indicate that this metric is a
good alternative to the classic choices for investigating the micro-
bial diversity of the gastrointestinal tract.

2. Materials & methods

2.1. Review of distances for similarities in the microbial community

Several distances of beta diversity measures were recently
introduced, and are mainly classified as phylogenetic-based and
non-phylogenetic-based approaches. Among the non-
phylogenetic-based distances, the Jaccard distance is a qualitative
measure that utilizes the presence-absence data of the species.
Let Si, Sj, and Sij denote the number of species (OTUs) present in
Sample i, j, and in both i and j samples, respectively, the Jaccard
distance between Sample i and j is represented as:

Jacði;jÞ ¼
Si þ Sj

Si þ Sj þ Sij

In contrast, the Bray-Curtis distance is a quantitative measure
that uses the species abundance information for each sample. Let
S(A,i) and S(B,i) be the counts of the ith species (OTUs) in Sample A
and B, respectively, and the Bray-Curtis distance between Sample
i and j is represented as:

BCðA;BÞ ¼ 1� 2
P

min SA;i; SB;i
� �

P
SA;i þ

P
SB;i

It should be noted that the Jaccard distance is equivalent to the
Bray-Curtis distance when only presence-absence is considered
[29].

The phylogenetic-based distances use the evolutionary infor-
mation of representative sequences to compare whether the sam-
ples exhibit significant differences in the microbial community in a
particular evolutionary lineage. The unweighted and weighted
UniFrac are two representative phylogenetic distance measures.
UniFrac measures the phylogenetic distance between sets of taxa
in a phylogenetic tree as the fraction of the branch length of the
tree that leads to descendants from one sample or the other. Con-
sider a rooted phylogenetic tree with n branches and 2 microbiome
communities A and B. Let bi be the length of the branch i and pA

i , p
B
i

the taxa proportions descending from the branch i for community
A and B, respectively. The unweighted UniFrac is defined as

DðuÞ ¼
Xn

i¼1

bijI pA
i > 0

� �� IðpB
i > 0Þj

Pn
i¼1bi
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where I(.) is the indicator function and only the presence/absence of
species of branch i is used. The distance ignores the taxa abundance
information [30]. In contrast, the (normalized) weighted UniFrac
distance weights the branch length with the species abundance dif-
ference and is defined as

DðwÞ ¼
Pn

i¼0bijpA
i � pB

i jPn
i¼0biðpA

i þ pB
i Þ

The consequence of using the absolute difference is that the
value of D(w) is mainly determined by branches with large propor-
tions and is less sensitive to the abundance changes on the
branches with small proportions [31]. Both of these measures
assign too much weight to either rare lineages or highly abundant
lineages, which can lead to loss of power when an important com-
position change occurs in moderately abundant lineages. Thus,
some revised measures, such as the generalized version of the Uni-
Frac distance to address the limitations of the traditional UniFrac
distance, have been proposed [32]. Using different distance mea-
sures to summarize the overall microbiota variability provides
more insight into the source of microbiota variability.

2.2. Quantifying differences in finite sets

To overcome the deficiency of traditional metrics in which the
differences can be measured between the samples analyzed, but
not the populations, we propose a metric to quantify the differ-
ences between the populations. Given 2 finite sets, A and B, subsets
A0 and B0 are independently generated from sets A and B by sam-
pling n times with replacement. The sampling probabilities of the
elements are unknown and further differ within and between the
sets. The intersection of A0 and B0 is defined as C0.

Let us set O as the union of A and B. We assume that elements of
O appear in A0 or B0 with an overall probability p. Then, the size of C0

is SC0 ¼ ðSA0 þ SB0 Þp2=2, where SA0 and SB0 are the sizes of A0 and B0,
respectively. We estimate p as p̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2SC0=ðSA0 þ SB0 Þ
p

(Fig. 1).
Let q be the probability that an element of O does not appear in

A0 or B0 in each sampling. The probability q increases as the size of O
increases. In other words, q is larger if the intersection of A and B is
smaller. Therefore, q represents the scale of difference between A
and B in (0,1). We defined a distance d ¼ q=ð1� qÞ to represent
the scale of difference in (0, 1).

After n times sampling, we have the probability qn ¼ 1� p (Eq.
(1)). When n is large, Eq. (1) can be rewritten as
d ¼ �n=logð1� pÞ � 1. To quantify the difference between sets A
and B, we propose a new distance of finite sets (DFS) as
DFS ¼ �1=log½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2SC0=ðSA0 þ SB0 Þ
p � (Eq. (2)). It is trivial to show

that DFS satisfies the triangle inequality. We note that the Jaccard
distance (Tanimoto distance) J ¼ 1� SC0=ðSA0 þ SB0 � SC0 Þ measures
the difference between subsets A0 and B0, but not the distance
between finite sets A and B.

In the present study, we apply the DFS on OTU data of the gut
microbiota to explore the similarity of gut microbiota between
individuals. For OTU sets A and B of the gut microbiota of paired
individuals, SA0 and SB0 are the numbers of OTUs identified from
normalized sequencing data of fecal samples, respectively. SC0 is
the number of shared OTUs between the normalized data obtained
from fecal samples.

2.3. Real data analysis

2.3.1. Intestinal microbiome dataset from different geographic regions
We used the amplicon sequencing data from Yatsunenko et al.,

in which microbiomes were characterized from fecal samples of
531 individuals, including 100 from Venezuela, 111 from Malawi,
and 316 from US metropolitan areas in different age groups [27].



Fig. 1. The DSF shows the differences in the original finite sets, but not in their subsets. The OTUs are recognized as members of finite sets A and B for gut microbiota of two
individuals, respectively. Sequence reads were obtained from each fecal sample. Then the subsets of OTUs are discovered in the fecal sample A (subset A0) and in the sample B
(subset B0). The probability that the members of original OTUs appeared in the two subsets was estimated as p̂, then the distance of the two finite OTU sets of the individuals
can be obtained as DFS ¼ �1=logð1� p̂Þ.
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This study was performed using variable region 4 (V4) of bacterial
16s ribosomal RNA genes, and the amplicons were sequenced
based on Illumina HiSeq 2000 instrument. We obtained the dataset
from the NCBI-SRA (Accession: PRJEB3079) and data processing
was performed using the software tools of QIIME suite (version
1.9.1) [33]. Briefly, the closed-reference OTU picking method was
used to obtain OTUs at the threshold of 97% similarity to the refer-
ence sequence. Taxonomy assignments to OTUs were designated
using the Greengenes database (version 13.8) [34]. OTUs that pre-
sent low frequencies (<10,000 across all the samples) were filtered
out. Then, the OTU table was rarefied to the minimum value across
all the samples. Finally, we obtained an OTU table with 2301 OTUs
and 526 samples, and all communities were rarefied to 306,155
sequence reads per sample. Next, we calculated the beta-
diversity matrices using the distance we designed, and for compar-
ison purposes, other distances of the Euclidean, Bray-Curtis, and
Jaccard measurements were also calculated. We further obtained
the weighted and unweighted UniFrac distances calculated by
the QIIME suite. To avoid potential bias due to the relative short
reads of the HiSeq sequencing platform when performing multiple
sequence alignment, we used full-length sequences of the 16s V4
region from the reference database as the representative sequence
of each OTU. We also calculated the taxonomic relative abun-
dances from phylum to genus levels based on the rarefied OTU
tables.

2.3.2. Intestinal microbiome dataset from multiple time points
To test the performance of our metric on gut microbiome data

collected from multiple time points within a short period, we
obtained the 16s rRNA dataset from The Integrative Human Micro-
biome Project (HMP2) [35,36]. This dataset was processed through
the HMP DACC QIIME pipeline. The OTU table was downloaded
from the Human Microbiome Bioactives Resource Portal
(https://portal.microbiome-bioactives.org/). This datasets consists
of replicate samples collected at different time points for individu-
als. Only the participants with at least 4 replicate samples were
used for our study. In this case, a total of 728 samples from 35 indi-
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viduals were included. Then the OTU table was rarefied to the min-
imum value across all samples for further analysis.

2.3.3. Intestinal microbiome dataset of daily sampling for months
The proportions of the microbial taxa generally remain stable

for around short time, but the microbiome composition can be
altered over time by dietary changes as well as by antibiotics. To
test the association performance of the distance matrices with
the time interval, we used the dataset of Caporaso et al., which
includes two healthy individuals who were sampled daily at three
body sites (gut, mouth, and skin) for months [28]. Variable region 4
(V4) of 16s rRNA genes present in each community was sequenced
using the Illumina Genome Analyzer IIx (SRA Accession:
ERP021896). The same procedures were used for OTU picking
and distance calculation. Here we only used the fecal sample data
obtained from the male individual across 442 days. An OTU table
with 5071 OTUs and 332 samples was finally obtained.

3. Results

3.1. More explainable variance in the top ranked dimensions

To demonstrate the utility of our DFS, we applied it to the
amplicon sequencing data of the 16s rRNA genes of the gut micro-
biota published by Yatsunenko et al., which comprised 305 adults
and 117 infants from Malawi, Venezuela, and the United States
[27]. Principle Component Analysis (PCA) showed that DFS repre-
sents more variance in the 1st and 2nd principle component (PC)
than the other common choices, such as weighted or unweighted
UniFrac distance, Bray-Curtis dissimilarity, Jaccard distance, and
Euclidean distance (Fig. 2). The 1st PC accounts for 86.76% of the
total variance by DFS, while the 2nd PC accounts for another 8.8%.
More than 95.58% of the total variance is represented in the 2-
dimensional space. This suggests that the dimension reduction
causes only a minor loss of information. A matrix of Euclidean dis-
tance can also be presented well on the 1st PC (85.05% of total vari-
ance), but with only 5.16% of the total variance on the 2nd PC. More

https://portal.microbiome-bioactives.org/


Fig. 2. Comparison of different metrics for clustering individuals from different geographic regions. Principle component analysis was performed on the matrices of A) DFS; B)
Weighted UniFrac; C) Unweighted UniFrac; D) Euclidean; E) Bray-Curtis; and F) Jaccard. The first 2 principal components (PC-1 and PC-2) are represented by the x and y axes,
respectively. Each data point is a microbial community sample colored by its geographic origin.
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importantly, in the PC plots, DFS separates the Malawi and Vene-
zuela clusters from that of the United States better than the other
5 distance matrices. There are some significant mix-ups between
the 2 clusters in the PC plot of Euclidean distance. These mix-ups
are highly likely to occur because the 2nd PC of the Euclidean dis-
tance accounts for less variance in the data. We performed the
same analysis on separate data of the adult and infant groups to
further demonstrate the robustness of statistic D. The results
demonstrated that the DFS performs the best of the distance mea-
sures (Supplementary Figs. 1-2).

We further validate the excellent performance of DFS by
employing the same analysis on the additional HMP2 data (see
Method for details). The PCA analysis showed that the 1st PC
accounts for 64.47% of the total variance by the DFS, while the
2nd PC accounts for another 11.89%. The DFS has a comparable per-
formance with the Euclidean metric in dimension reduction, and
they represent more variance in the 1st and 2nd principle compo-
nent than the other metrics (Supplementary Fig. 3). Further analy-
sis suggest that Euclidean metric is poor in representing variation
of gut microbiota among individuals (see results below). Therefore,
the DFS is the best choice among the different metrics in dimension
reduction.
3.2. Better reflection of the data variance between the groups

As the PCA analysis indicated that top components have a good
reflection of samples by their geographic sources, we then used a
permutational multivariate analysis of variance (PERMANOVA) to
evaluate the geographic factor and all the distance matrixes by
using the data from Yatsunenko et al., [37]. Our analysis showed
that the geographic factor significantly contributes to all the differ-
ent metrics (p-value < 0.001). The DFS provides the best separation
3933
on the basis of the geographic information, while the Unweighted
UniFrac distance ranked second. The variance of the Unweighted
UniFrac distance that is explained by the geographic factor was
only 0.79, 0.47, and 0.82 that of the DFS for adults, infants, and
all of them together, respectively. Further, the performance of the
Weighted UniFrac distance was worse than the Unweighted Uni-
Frac distance. The explainable variance of the weighted UniFrac
distances of infants was only 0.17 that of the DFS (Table 1, data
group 1–3). The poorly explained variance suggests that the abun-
dance of OTUs is less informative than the diversity in studies of
gut microbiota. The results of the PERMANOVA show that com-
pared with the other distance measures, the DFS more effectively
reflects the information of the environment.

To further demonstrate the capability of identifying small dif-
ferences of gut microbiota between individuals, we employed PER-
MANOVA on 16s rRNA data of replicate samples of individuals
from HMP2 project (see Method for details). Our results confirmed
that the DFS is the best one among the involving metrics with a F
statistic 24.51 (Table 1, data group 4). Bray-Curtis dissimilarity
index was ranked as the NO.2 metric which had explainable vari-
ance only 0.85 that of the DFS. In this case, Weighted UniFrac dis-
tance and Jaccard distance accounted explainable variance as low
as 0.49 that of the DFS. The DFS is the best choice to discover com-
position difference of the microbial populations among individuals.
3.3. Better partitioning to groups based on demographic factors

Compared with adult, the gut microbiome is more dynamic and
unstable for neonates, one of the primary source that driving
microbiota fluctuations is breast and/or formula feeding [38]. We
applied our DFS to investigate the effects of breastfeeding on infant
gut microbiota. This investigation involved sequencing data of 16s



Table 1
PERMANOVA indicates that DFS better reflects the geographic factors and individual differences.

All sample Adult Infant HMP2

F statistic Explained F statistic Explained F statistic Explained F statistic Explained

DFS 92.99 1 81.67 1 29.35 1 24.51 1
UW UniFrac 76.39 0.82 64.65 0.79 13.81 0.47 18.76 0.77
W Unifrac 47.34 0.51 46.93 0.57 4.92 0.17 12.13 0.49
Euclidean 25.5 0.27 21.84 0.27 4.03 0.14 17.12 0.7
Bray-Curtis 45.32 0.49 32.24 0.39 6.48 0.22 20.79 0.85
Jaccard 57.01 0.61 53.77 0.66 9.42 0.32 12.13 0.49
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rDNA of 39 US twins under the age of 1 year whose feeding infor-
mation was available. A parsimony score was employed on neigh-
bor joining (NJ) trees to evaluate the partitions between the infants
who were breast-fed or formula-fed (Fig. 3A). The smaller the
score, the better partition achieved. Our investigation shows a par-
simony score of only 2 for the NJ tree of DFS. On the other hand, it
was as high as 5 and 13 for the NJ trees of the unweighted UniFrac
distance and weighted UniFrac distance measures, respectively
(Supplementary Fig. 4). The result suggests that the DFS was supe-
Fig. 3. DFS provides better partitioning for phylogeny reconstruction. A) A neighbor-j
Microbiota have major genera differences between the breast-feeding and formula-feed
Dehalobacterium (Upper green plot, FDR: 6.67E-13) and Bifidobacterium are major microo
13).
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rior to others for identifying different feeding types. We further
identified that Acinetobacter, Bifidobacterium, and Klebsiella were
among the top-ranked genera related to breast/formula feeding
(Supplementary Table 1). This observation was supported by sev-
eral other studies. For instance, Bifidobacterium was found to be
abundant in the gut of breast milk-fed full-term infants than that
of formula fed infants without probiotic supplements [39],
whereas Klebsiella was more abundant in the formula-fed group
[40].
oining tree clearly separates the breast-feeding and formula-feeding samples. B)
ing samples. C) A neighbor-joining tree separates samples from different ages. D).
rganisms differentially present across different ages (Lower orange plot, FDR: 3.35E-
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Studies have indicated that the composition and diversity of gut
microbiota presents age-related change pattern [41]. Here we
employed the DFS to investigate differences in the microbial com-
position of Venezuelans from newborn to 82 years of age. We con-
structed NJ trees for the samples using the matrixes of different
distance measures. The NJ tree of DFS clearly separated individuals
under two years of age from older individuals, except for one of
them (Fig. 3C). The result was supported by multiple studies that
observed major shifts in the microbiota population between chil-
dren two years of age and older individuals [42]. Our result is com-
parable with those using the unweighted UniFrac distance and
Jaccard distance measures, and superior to the other measures
(Supplementary Fig. 5). We further identified Dehalobacterium,
Ruminococcus, and Methanobrevibacter are among the top-ranked
genera using the Spearman rank correlation for individual age
and abundance of genera with a false discovery rate <0.05 (Fig. 3D).

3.4. Strong correlation with the time interval of serial samplings

To evaluate the ability of DFS to discriminate fluctuations in the
microbiota over period of time, we calculated the distance mea-
sures on serial data of 332 fecal samples that were collected from
the same individual across 442 days [28]. Pearson’s correlation
coefficient showed a strong correlation between the DFS values
and time intervals of serial samplings for any given sample and
all of the others (Fig. 4). Most of the coefficients (97.3%) were larger
than or equal to 0.3, and 37.9% of themwere larger than or equal to
0.6. The performance was comparable to that of the other
frequency-independent distances, such as the Unweighted UniFrac
distance and Jaccard distance measures. In contrast, for frequency-
dependent distances (i.e., Weighted UniFrac distance, Euclidean
distance, and Bray-Curtis distance), the majority of the coefficients
were <0.3 (95.5%, 95.1%, and 71.1%, respectively). Further, PCA
analysis presents 2 potential clusters of serial samples for the
frequency-independent distances but not frequency-dependent
metrics (Supplementary Fig. 6). The DFS, as well as the other
Fig. 4. Histogram of Pearson correlation coefficients for pair
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frequency-independent distance measures, may be less sensitive
to the noise fluctuations of microbiota abundance. This may
explain why the DFS outperform the frequency-dependent metrics
with the variability of an individual’s gut microbiota across years,
weeks, and even days.

4. Discussion

Microbiome data are essentially count based abundance data in
their original form. Due to their high dimensionality, phylogenetic
constraints among species/OTUs and excessive zeros, it is statisti-
cally challenging to analyze their data structures. To address the
problem, microbiome data are often measured as pairwise dissim-
ilarity matrix, which used to test the association of microbiome
composition with environmental factors [43–45]. For studies of
the gut microbiome, fecal sample was usually used as surrogate
due to the ease of obtaining. Unfortunately, it has increasing recog-
nized that fecal microbial populations may not be fully representa-
tive of those in gastrointestinal tract. Stool is useful in analyzing
the microbial populations of the distal colon, it does not ade-
quately represent the entire gastrointestinal tract. On one hand,
regional differences in gut microbial populations was observed
along the rostral to caudal due to the functional heterogeneity of
gastrointestinal tract segments [46,47], on another hand, storage,
transportation and handling methods of the fecal samples may
greatly influence the microbiome composition [48–50]. Due to
the inherent instability variable feature of the microbiome data
obtained by using fecal samples, it is often difficult to capture reli-
able information about the ecological structures of the gut micro-
biota for a given population by using traditional beta-diversity
metrics [51]. Here we propose a novel beta-diversity measures of
gut microbiota. By applying it to microbiome data from fecal sam-
ples, we show that our method is robust and powerful in detecting
the ecological structure from populations. Our method is general
and can be applied to microbiome data from different scenarios,
such as detecting microbial composition structures driven by
ed samples with different distances and time intervals.
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geographic or aging factors. Our method is also superior to other
metrics for more explainable data variance by using dimensional-
ity reduction methods.

We used PCA analysis for dimension reduction in the present
study. The DFS presents more explainable variance on the 1st
and 2nd dimension in the PCA analysis, which means that less
information is lost in the dimension reduction. In addition, DFS
has another significant advantage in evolutionary studies. Given
a distance matrix of 4 taxa, the phylogeny can be shown without
information loss in a quartet network with 6 length parameters.
Although the phylogenetic relationship is indicated in a quartet
tree where only 5 length parameters are allowed, information will
be lost due to the transformation. There is, however, an exception.
Information loss is not going to occur if the distances between 4
taxa can be fully presented in a 2-dimensional linear space. In
other words, we expect to lose less information in a DFS matrix
in the phylogeny reconstruction than in the other distance
matrixes. Our results further show excellent performance of DFS
in phylogeny reconstruction. Other ordination methods (PCoA,
NMDS) can also be employed on DFS to rearrange the samples in
a low-dimensional space (Supplementary Fig. 7), while the meth-
ods aim to present the relation, but not to maximize the variance
represented by the PCs.

It is crucial to thoroughly present the connections of gut micro-
biota between individuals. For the numerous distance measures
now available to address this issue, one major type of measure
depends only on the variation of the components between micro-
biome samples. Qualitative measures like Sorensen and Jaccard
distances use the presence/absence (binary) data to compare the
community. In contrast, quantitative measures such as Bray-
Curtis distance and Kullbach-Leibler divergence take the relative
abundance of each type of organism into account [29,52]. The lim-
ited range of the classic distances (i.e., 0 to 1) is a significant draw-
back in presenting the connection of the gut microbiota of many
individuals. Studies of gut microbiota require a good measurement
that is additive with a range from zero to infinity. The additive fea-
ture allows for less information loss and better reconstruction
when the relation tree of the samples is reconstructed with the
measurements [53]. DFS has a range from zero to infinity. Our
results show the DFS leads to less information loss and performs
well in tree reconstruction (Figs. 2, 3). We therefore propose DFS
as a good replacement for the aforementioned classic measures
in studies of gut microbiota.

The phylogeny based UniFrac distances are other major choices
for the quantification of distances of fecal samples. The UniFrac
distances, however, are easily influenced by the tree topology of
OTUs [54]. Moreover, the unweighted UniFrac distance is highly
sensitive to sequencing depth and rarefaction instances with no
clear structure or separation between groups [55]. Further, the cal-
culation of UniFrac distances is far more complicated than the
other distances, and calls for the development of a novel dissimi-
larity measure to overcome the drawbacks. Our DFS distance is
not influenced by the tree topology of the OTUs, and it is easy to
obtain using straightforward algebra (Eq. (2)). Furthermore, our
results show the DFS performs better than UniFrac distances in
multiple datasets. DFS is an excellent alternative to represent the
complicated connections of gut microbiota between individuals.
5. Conclusions

The DFS is a unique metric. It was developed to measure the dif-
ferences in finite sets or individuals, but not subsets or biologic
samples. In studies of gut microbiota, this unique metric can lead
us to inspect more connections between individuals, and not only
3936
those of fecal samples. Our study demonstrated many advantages
of this unique metric on multiple datasets using different scenar-
ios. In future, it is important to compare the different metrics in
studies of fungal diversity using 18s rRNA and ITS sequencing data
of replicate samples from different sources. The usefulness of other
metrics should be evaluated in future studies. It is highly unlikely
that a single metric can performwell for all research purposes in all
scenarios. Further, we strongly suggest caution when interpreting
DFS analysis results, and the properties of DFSmetric must be thor-
oughly considered.
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