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Abstract—Atherosclerosis at the carotid bifurcation is a
major risk factor for stroke. As mechanical forces may
impact lesion stability, finite element studies have been
conducted on models of diseased vessels to elucidate the
effects of lesion characteristics on the stresses within plaque
materials. It is hoped that patient-specific biomechanical
analyses may serve clinically to assess the rupture potential
for any particular lesion, allowing better stratification of
patients into the most appropriate treatments. Due to a
sparsity of in vivo plaque rupture data, the relationship
between various mechanical descriptors such as stresses or
strains and rupture vulnerability is incompletely known, and
the patient-specific utility of biomechanical analyses is
unclear. In this article, we present a comparison between
carotid atheroma rupture observed in vivo and the plaque
stress distribution from fluid–structure interaction analysis
based on pre-rupture medical imaging. The effects of image
resolution are explored and the calculated stress fields are
shown to vary by as much as 50% with sub-pixel geometric
uncertainty. Within these bounds, we find a region of
pronounced elevation in stress within the fibrous plaque
layer of the lesion with a location and extent corresponding
to that of the observed site of plaque rupture.

Keywords—Patient-specific, Vulnerable plaque, Atheroscle-

rosis, Image-based.

INTRODUCTION

Atherosclerotic plaque at the bifurcation of the
extracranial carotid arteries is a major risk factor for
stroke. Plaque erosion and rupture are known to be the
underlying causes of many devastating acute coronary

and cerebrovascular events.3,4,48 Rupture of atheroma
at the carotid bifurcation can lead to shedding of
embolic material either from the vessel wall or from
thombi that form on the thrombogenic ruptured plaque
surface. This thromboembolic material can then travel
distally to the brain where it can lodge in vessels,
depriving that vascular territory of blood supply
thereby causing neurological symptoms. Furthermore,
the presence of an irregular or cratered plaque surface,
termed an ulcerated plaque, is known to increase the
risk of a subsequent neurologic event, presumably from
additional thrombo-embolic material that is generated
and shed from the slowly rotating blood pool within the
ulceration. While these vulnerable plaques generally
experience an active inflammatory process and progress
with strong modulation from the local biochemical
environment, mechanical forces are also of importance.
The composition and distribution of material in the
atheroma lining the vessel wall reflects the stabilizing
and destabilizing biochemical processes that determine
vessel remodeling and progressive tissue damage.
Rupture, then, is a mechanical process in which local
stresses exceed material strengths.

2D and 3D patient-specific finite element models of
diseased vessels have been used to investigate the
mechanics of atherosclerotic vessels under physiologic
and supraphysiologic load, such as that experienced
during an angioplasty procedure.5,11,15,18,23,28,43,45

Many studies have succeeded in revealing the com-
plexities of diseased vessel mechanics, and have made
comparative analyses of various lesion types in an
attempt to understand how plaque features influence
vulnerability.5,41,44,45 Although not the primary pur-
pose of most studies, a common long-term goal is the
use of patient-specific biomechanical simulations of
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atherosclerotic vessels to assess the degree of rupture
vulnerability for any particular lesion.

Such simulations are complex, however, and their
patient-specific utility may be compromised by several
different factors. Predictive models are based on med-
ical imaging studies that are limited in their ability to
resolve geometrical or compositional features. Mate-
rial responses for plaque and vessel tissues are difficult
to obtain on a patient-specific basis, and anisotropy is
hard to characterize from in vivo data. Accurate
knowledge of the diseased vessel’s zero-stress state
cannot be derived from medical imaging, and simpli-
fying assumptions must be made. The boundary
conditions placed on the model’s vessel displacement
or blood flow are often rough approximations of
the in vivo situation. Additionally, the relationship
between various mechanical descriptors such as stres-
ses or strains and rupture vulnerability is incompletely
known, and may not be universal. The breadth and
severity of these challenges make it difficult to assess
the predictive capacity of patient-specific models of
rupture potential in atherosclerotic vessels.

An attractive approach for validating the predictive
ability of such analyses is to assess, in cases where
plaque ulceration is noted in a previously unruptured
plaque, whether the location of that ulceration corre-
sponds to the location identified in modeling as that
most vulnerable to rupture. Unfortunately, data on
in vivo plaque rupture, under normal physiologic
conditions, is sparse. Patients with carotid atheroscle-
rosis who have undergone an imaging study at a time
when they have not experienced any plaque disruption
do not necessarily progress to rupture, and if they do,
the yearly rupture rate is estimated to be less than 1%.
Additionally, the availability and demonstrated suc-
cess of carotid endarterectomy limits the extent to
which patients with advanced carotid disease are fol-
lowed.33,34

In vivo observation of the formation of an ulceration
in a previously smooth plaque could provide a proving
ground for the sophisticated simulations currently
possible, allowing a more complete understanding not
only of plaque rupture but also of the assumptions and
limitations of the modeling effort. In this article, we
present a 3D fluid–structure interaction (FSI) analysis
of an atherosclerotic carotid bifurcation based upon
pre-rupture imaging data with available post-rupture
imaging information. The predicted stress field within
the diseased artery wall is examined within the neigh-
borhood of known plaque rupture, and is compared to
the location and extent of ulceration as determined by
a post-rupture medical imaging study. This work tests
the maximal local stress hypothesis,44 in which extreme
local stress concentrations are suspected to directly
cause plaque rupture.

Because of the recent wealth of work in carotid
plaque biomechanics,19,26–28,40,46 we believe that more
cases like this one will be found in the clinical work-
load and examined using similar numerical methods.
For this reason, we have built our models using
methods that can be quickly and easily employed for
highly complex geometries, material distributions, and
boundary conditions. Patient-specific data are used
whenever possible in this approach.

This article will first describe our approach to
patient-specific modeling of atherosclerotic arteries.
Next, we will present results from our stress analysis of
a carotid plaque that is known to have undergone
rupture. We will then explore the effects of modeling
uncertainty introduced by imaging and image seg-
mentation imprecision of sub-pixel (<0.5 mm) mag-
nitude. Particular attention will be paid to the influence
of modeling uncertainty on the predicted stress field in
the region where the plaque is known to have ruptured.

MATERIALS AND METHODS

Imaging and Geometric Model

The analysis presented here is based on a multide-
tector computed tomography angiography (MDCTA)
study of an 83 y/o male using the following acquisition
protocol: spiral mode; slice thickness 1.25 mm, slice
acquisition interval 1 mm, pitch 1.375:1; 120 kVp,
240 mAs; intravenous administration of 70 mL of
iodinated contrast material at a rate of 4–5 mL per
second, with an acquisition delay calculated from a test
bolus ranging from 14 to 29 s. Data acquisition were
performed from the origin of the aortic arch branch
vessels to the vertex, with an in-plane resolution of
0.5 mm 9 0.5 mm.

As seen in Fig. 1a, the internal carotid artery (ICA)
had a large plaque burden at baseline, with the image
intensities suggesting that the plaque contains a large
lipid core. At baseline, the ICA was roughly 85%
stenotic by area at slice 2 in Fig. 1a (in a circular lumen
this would correspond to a diameter stenosis of 61%).
The patient was admitted for a possible transient
ischemic attack 8 months after the baseline imaging
study, and the CTA study shown in Fig. 1b revealed
that a portion of the ICA plaque had ruptured and
plaque contents had emptied into the circulation.
From the CTA images, it appears that the plaque
ruptured over a segment of ICA 6.25 mm in length
located 6.25 mm superior to the bifurcation. The
rupture was located on the posterior aspect of the
lumen surface, and circulating blood ‘‘tunneled’’ into
the plaque core about 3.75 mm inferior to the first
imaging slice demonstrating plaque failure.
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To establish a computational geometry for our
study, the vessel lumen and lipid pools were segmented
from the images based on Hounsfield unit using a 3D
level-set active contour algorithm implemented in
ITK-SNAP 1.80.53 Each ‘‘snake’’ was initialized in
several locations based on image intensity and local
features. The image intensities corresponding to dif-
ferent materials were based on results from de Weert
et al.8 and from image features, and are provided in
Table 1.

Before implementation of the active contour algo-
rithm, images were re-sampled from 512 9 512 to
1024 9 1024 in-plane, and from a slice thickness of
1.25 mm to a thickness of 0.3125 mm. The image series
was thus represented in 3-dimensions as a set of voxels
far more isotropic than the original acquisition,
allowing for a more accurate segmentation with the 3D
snake algorithm.

Perivascular structures often have image intensities
similar to that of fibrous and muscular tissues found in
diseased arteries. For this reason, the outer boundary
of the vessel wall was segmented manually based on
image intensity and local vessel wall curvature in the
coronal, sagittal, and axial planes. The consideration
of vessel wall curvature was secondary to image

intensity, but was included to assure that the outer
vessel wall appeared smooth as it does upon exposure
during carotid endarterectomy.

Careful attention was paid so that the segmentation
did not contain lipid–lumen deviations less than two
pixel-widths. In this way, resampling of the data did
not create regions of fibrous cap thinner than could be
resolved with the original clinical imaging employed. If
necessary, a one pixel-width lipid–lumen deviation was
increased by an additional pixel-width by eliminating
the encroaching lipid pixel. This was done only a
handful of times throughout the entire dataset, and
would serve to reduce calculated fibrous cap stress if it
had any effect at all.

Because the radio-opacities of fibrous plaque and
healthy vessel wall are so similar, one cannot accu-
rately distinguish between the two tissue types based
on a range of Hounsfield units. In our segmentation,
every pixel inside the vessel wall outer boundary that
was not already designated as lipid or lumen was
temporarily designated to be ‘‘fibrous tissue’’. Figure 2
shows the images and the segmentations of lipid pool,
lumen, and fibrous tissue. As seen in surgery and from
histological examination, some portion of relatively
healthy vessel media and adventitia remains sur-
rounding the fibrous plaque, lipid pools, and vessel
lumen. To account for this, the outermost 0.5 mm of
fibrous tissue was re-assigned to be healthy wall tissue.
The remaining fibrous tissue was assigned to be true
fibrous plaque. The fibrous plaque was assumed to
extend longitudinally such that all lipid pools were
fully contained within fibrous plaque, healthy common
carotid artery (CCA) wall thickness did not exceed
1.0 mm, and healthy ICA wall thickness did not

FIGURE 1. CTA studies showing lumen geometry in the longitudinal plane (left) and transverse to the lumen for slices 1 and 2
(right) at (a) baseline, without plaque rupture distal to the bifurcation. Note the irregular lumen geometry proximal to the bifur-
cation, suggesting existing ulceration of common carotid artery plaque. (b) Eight-month follow-up. Slice 1 shows increased lumen
area in the internal carotid artery consistent with plaque rupture, while slice 2 shows that a portion of the plaque core inferior to the
rupture location has emptied after fibrous cap failure.

TABLE 1. Hounsfield unit ranges used for segmentation.

Material Hounsfield unit range

Fibrous tissue (vessel wall,

fibrous plaque)

65–170

Lipid pool 65 and below

Contrast-enhanced circulating blood 170 and above
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exceed 0.5 mm. At least one pixel was left unassigned
in the segmentation between the ICA and the exter-
nal carotid artery (ECA) so that contact between the
branches, believed to have little impact on fibrous
cap stresses, could be avoided in the computational
model.

The final geometric model extended from ~2.7 cm
proximal to the bifurcation to ~2.7 cm distal, such
that flow could be modeled with reasonable boundary
conditions. The segmentation procedure resulted in a
geometry where fibrous plaque begins 2 cm proximal
to the bifurcation and ends 0.44 and 2.4 cm distal to
the bifurcation in the ECA and ICA, respectively.
Surface representations of the vessel lumen, fibrous
plaque outer boundary, lipids, and outer vessel wall

are shown in Fig. 3. Representative coronal images
and corresponding slices through the geometric model
are shown side-by-side in Fig. 4, demonstrating the
distribution of fibrous plaque thickness. Details of the
plaque segmentation and fibrous plaque thickness in
the region of rupture, as shown in Fig. 1a, are pre-
sented in Fig. 5, where the original images, their
segmentation, and the final geometric representation
of the region used in the finite element model are
shown.

Material Descriptions

For the flow rates considered and geometry stud-
ied, it is unlikely that a non-Newtonian constitutive

FIGURE 2. Original and segmented CTA images. Green 5 fibrous tissue, comprising healthy vessel wall and fibrous plaque;
Red 5 vessel lumen; Yellow 5 lipid pool.
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FIGURE 3. Bounding surface representations of key vessel components. Green 5 healthy vessel wall; Red 5 vessel lumen;
Yellow 5 lipid pool; Blue 5 fibrous plaque.

FIGURE 4. Coronal CTA image slices and corresponding slices through the reconstructed geometrical model. Green 5 healthy
vessel wall; Red 5 vessel lumen; Yellow 5 lipid pool; Blue 5 fibrous plaque.
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formulation for blood would alter the flow field solu-
tion appreciably.25 For this reason, blood was treated
as an incompressible Newtonian fluid, with dynamic
viscosity l = 0.0035 Pa s and density of 1060 kg/m3.

Vessel wall, fibrous plaque, and lipids were modeled
as nearly incompressible, isotropic, nonlinear, hyper-
elastic materials using the Demiray-type strain energy
density function

W ¼ D1 eD2ðI1�3Þ � 1
� �

ð1Þ

where I1 is the first invariant of the Cauchy-Green
deformation tensor and D1 and D2 are constants
determined experimentally for each tissue type.10 The
product D1D2 is proportional to the elastic modulus of
the material at zero strain, while D2 relates to the
strain-stiffening behavior typical of collagenous bio-
logical materials. Material constants, taken from pre-
viously published studies, are listed for the three tissue
types in Table 2.5,10,29,31

Two-Stage Solution Method

Because accurate resolution of the stress field in
such a complex geometry would require an impracti-
cally large element count, a two-stage approach was
taken to model the diseased artery. The full details of
this modeling strategy are presented elsewhere,24 and
only the essential features will be discussed here. Key
steps in the finite element model definition and two-
stage solution are shown in Fig. 6.

First, ‘‘truncation planes’’ are used to divide the
full domain into segments, one of which is the region
of interest where accurate stress predictions are
desired (Fig. 6a). At the planar interfaces between the
region of interest and the remaining geometry, a set
of ‘‘end cap’’ faces are constructed so that each
region and the end caps form air-tight geometrical
objects (Fig. 6b). The region of interest is discretized
using a high-resolution mesh capable of accurately
resolving stresses (Figs. 6c, 6d). The discretization on
the end caps is saved, and used as a portion of the
boundary discretization for a full-domain, coarse-
mesh model (Fig. 6e). Here, the entire domain is
meshed just finely enough to accurately represent
geometric features and solve for displacements. A
time-dependent FSI simulation is run on the full-
domain, coarse-mesh model (Fig. 6f), solving for the
fluid and solid dynamics and giving an estimate of
solid stress patterns.

FIGURE 5. Axial slices at level 1 and 2 as shown in Fig. 1. (a) Raw image (left), segmented image (center), final geometry with
fibrous plaque (right) for level 1. (b) Raw image (left), segmented image (center), final geometry with fibrous plaque (right) for level
2. Green 5 healthy vessel wall; Red 5 vessel lumen; Yellow 5 lipid pool; Blue 5 fibrous plaque. Note that in the segmented
images, fibrous plaque boundaries have not yet been established.

TABLE 2. Material parameters for vessel wall, fibrous
plaque, and lipid pool.

Material D1 (Pa) D2

Vessel wall 2644.7 8.365

Fibrous plaque 5105.3 13

Lipid 50 5
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The nodal displacements from the time-dependent
problem are saved at the boundaries of the region of
interest. Fluid velocities are saved at the inlet to the
region of the interest, and average fluid pressure is
saved at the outlet. The solutions from the coarse
model at the planar inlet and outlet are then used as
boundary conditions in the secondary, fine-mesh
model of the region of interest so that stress fields
may be accurately resolved in the diseased artery wall.
By using the same end cap meshes in the fine-mesh
model, nodal solutions can be passed directly from
the coarse model to the finely meshed model. The end
caps are constructed as level planes for use in the first
stage simulation for easy reference, but their non-
planar shape during the second stage solution is fully
determined by the results of the first stage. No
assumptions on mesh displacement or planarity are
made at the end caps during either stage of the
solution process.

Mesh Generation

The use of the two-stage approach dictates that the
coarse mesh conforms to the region of interest’s fine
mesh at the truncation planes, which necessitates a
careful geometry preparation and meshing scheme.
After formation of plaque and vessel component end
caps, contiguous surfaces are forced to use the same
bounding curves at the truncation planes so that their
discretizations will naturally conform. Each surface,
inside and outside the region of interest, is meshed with
three node triangles and the end caps are also meshed.
By using the appropriate sets of surface meshes as
input, conforming 4-node tetrahedral volume meshes
are made for each vessel and plaque component. The
entire solid domain mesh is then converted to 10-node
tetrahedra employing a mixed finite element formula-
tion. By converting the linear element meshes to higher
order elements, mid-side nodes can be placed at the

FIGURE 6. Outline of the 2-stage method used in this analysis, shown for a simple geometry. (a) A schematic artery with eccentric
lumen and small cylindrical inclusion. Intersections of the geometry and two truncation planes are shown by the curves separating
region 2 from regions 1 and 3. Region 2 is the region of interest. (b) Regions 1 and 2 shown, with bottom end caps for ‘‘wall’’ and
inclusion of region of interest shown. (c) Fine mesh within region of interest used for second stage of two-stage method. (d)
Magnified display of region of interest. (e) Bottom plane of region of interest, finely meshed in (c), shown with conforming coarse
mesh used in the same region during stage 1 of two stage approach. (f) Full-domain coarse mesh used in stage 1.
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midpoint of the element edge and element quality is
predictable and very good over the highly complex
geometry. The fine-mesh model is meshed with more
accurate 11-node mixed-formulation tetrahedra for the
solid domain, with an element density high enough to
accurately solve for the material stress field. Because
the solution times for the computational fluid
dynamics (CFD) portion of the iteratively coupled FSI
problem are much lower than those of the solid
domain, an accurate fluid mesh of several hundred
thousand linear tetrahedra was used. Examples of the
fluid mesh and solid meshes, made using Hypermesh
(Altair Engineering, Troy, MI), are shown in Fig. 7.

Mesh independence studies were conducted for each
stage of the solution. In the first stage of the compu-
tation, the goal is to accurately resolve solid displace-
ments, which can be achieved at a solid element density
lower than that required to resolve a highly converged
stress field. A segment of the region of interest was
meshed multiple times with increasing element density,
and lumen and outer wall boundary circumferences
were measured at multiple longitudinal positions
before and after lumen pressurization. A six-fold
increase in element density from the coarsest to finest

mesh was shown to have a negligible effect (less that
1%) on the measured circumferences and out-of-plane
displacements. To assure displacement accuracy
throughout the entire domain, an intermediate mesh
density was used in the first stage computation. To
determine an element density suitable for the second
stage solution, the region of interest was meshed three
times with increasing element density. Element counts
for the three models are provided in Table 3. Calcu-
lated first principal stresses within the fibrous plaque
layer were divided into quartiles Q1–Q4, with Q1 being
the smallest stresses. The minimum, maximum, and
average of each quartile converged to within 5% from

FIGURE 7. Computational meshes. (a) Fluid domain. (b) Solid mesh used for 1st stage solution. The region of interest covers the
rupture location in the ICA. (c) Coarse mesh cutaway in region of interest for 1st stage solution. (d) Fine mesh cutaway in region of
interest (shown with remainder of model) used for 2nd stage solution. Note the dramatic increase in element count throughout the
fibrous plaque layer.

TABLE 3. Element counts for meshes used in stress
resolution tests.

Test mesh

Total solid

element count

Fibrous plaque

elements

Coarse mesh 103,148 67,191

Medium mesh 173,570 123,594

Fine mesh 305,580 219,116
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the medium mesh to the finest mesh, and the medium
mesh density was used for the second stage solution.

Solid Boundary Conditions

In FSI problems of arterial structures, the solid
domain is constrained in some way at the inlet(s) and
outlet(s) to prohibit rigid body motion. In our models,
we define local cylindrical coordinate systems at the
inlet and outlets of the carotid bifurcation with ẑ being
in the direction of the lumen centerline. All nodes on
the inlet and outlet planes are constrained in the local ẑ
direction. To prevent possible rotation of the entire
model, which could increase convergence time, one
edge of one element is fully constrained at the inlet and
outlets.

Flow Boundary Conditions

While the stresses felt by the vessel and plaque tis-
sues are mainly a result of systemic arterial pressure,
with flow-related shear stresses often being orders of
magnitude smaller, flow shear stress is sensed by the
endothelium and could play some role in the vulnera-
bility of atherosclerotic lesions. Time-dependent flow
boundary conditions were generated from an ultra-
sound study of the same patient made on the same day
as the baseline CTA study. The Doppler ultrasound
data provided peak systolic and end diastolic velocities
at the proximal CCA and distal ICA. Under the
assumption that the maximum velocity corresponds to
the centerline velocity, and that the profiles were par-
abolic at peak systole, a set of flow rate waveforms
measured with phase-contrast MRI for another patient
with similar ICA stenosis were scaled appropriately
and used here. Flow rates for the CCA and ICA are
shown in Fig. 8.

The vessel lumen is approximately circular at the
CCA inlet and ICA outlet, and an equivalent circular
radius rc was calculated for each. An in-house code
developed in MatLab (The Mathworks, Natick, MA)
was used to calculate time-dependant Womersley
profiles based on the flow rate waveforms and the
equivalent radii at the CCA and ICA. The use of a
Womersley profile at the model inlet was shown by
Moyle et al.35 to be an acceptable approximation for
simulations of carotid bifurcation flow. The circular
Womersley profiles were linearly mapped to the inlet
(outlet) nodes, with all nodes at the wall boundary
being assigned a null velocity. Unfortunately, pressure
data was not available for this patient and realistic
but generic pressure conditions were used. The outlet
of the ECA in our model is still within the conducting
circulation, and the pressure therefore fluctuates sig-
nificantly throughout the cardiac cycle. The fluctua-
tion is only greatly reduced much further downstream
in the vasculature, and so specifying a static pressure
at the ECA is not appropriate. The simplest
assumption to make without introducing retrograde
flow or spurious oscillations in CCA flow was to as-
sign a pressure waveform of the same shape as the
CCA flow waveform. The waveform was scaled so
that the end diastolic pressure at the ECA outlet was
80 mmHg, while the maximum pressure there was
120 mmHg. Although the pressure waveform has the
same shape as the CCA flow waveform, no assump-
tions were made of the pressure waveform at the
CCA, and the pressure-flow phase relationship was
dictated entirely by the solution of the coupled FSI
equations.

FSI Boundary Conditions

At the lumen surface, the fluid and solid domains
must be consistent with a no-penetration, no-slip
behavior. To enforce this, the following boundary
conditions are placed on each domain’s FSI boundary
during FSI iterations:

sS � n̂ ¼sf � n̂
~uSðtÞ ¼~dMðtÞ
_~uSðtÞ ¼~ufðtÞ ¼ ~uMðtÞ
€~uSðtÞ ¼ _~ufðtÞ ¼ _~uMðtÞ

ð2Þ

where subscript S, f, and M denote solid, fluid, and
fluid mesh (in the ALE formulation), respectively. s is
the stress tensor, n̂ is the unit vector normal to the FSI
interface, ~dMðtÞ is the displacement of the fluid mesh,
and ~ufðtÞ, ~uMðtÞ, and ~uSðtÞ are the fluid velocity, mesh
velocity in the ALE formulation, and solid displace-
ment vector, respectively.

FIGURE 8. Flow rates at the CCA inlet and ICA outlet. Flow
rates were used to generate time-dependent Womersley-type
velocity profiles.
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Solution Method

The relevant equations of motion for the incom-
pressible Newtonian fluid and solid domains are

qf

@~uf
@t
þ ~uf �~uMð Þ � rð Þ~uf ¼�rpþ lr2~uf

r �~uf ¼ 0

ð3a; bÞ

and

qS

@2~uS
@t2
¼ r � sþ fB ð4Þ

where qf and qS are fluid and solid density, p is fluid
pressure, and l is Newtonian fluid viscosity. ~ufðtÞ,
~uMðtÞ, and ~uSðtÞ are the fluid velocity, mesh velocity in
the ALE formulation, and solid displacement vector,
respectively. s is the Cauchy stress tensor and fB is the
body force the solid experiences.

Equations (3) and (4), subject to the fluid and solid
boundary conditions, FSI boundary conditions in
Eq. (2) and material formulations discussed above,
were solved over a cardiac cycle using the commercial
finite element code ADINA (ADINDA R&D, Water-
town, MA). ADINA has been used extensively to
model systems exhibiting material and geometric
nonlinearity, and has been successfully employed
to solve arterial FSI problems.20,39,46,50,51 We use
ADINA to solve the strongly coupled nonlinear fluid
and solid systems of equations in an iterative manner
using in-core direct sparse solvers. Flow was assumed
to be laminar and was solved using a Galerkin finite
element method with upwinding applied. The nonlin-
ear fluid and solid systems of equations were solved by
Newton–Raphson iteration with equilibrium iterations
at each time step and each FSI update.

It should be noted that while the material stresses
are accurately solved during the second stage of our
two-stage process, the flow field dynamics are most
accurately solved over the full domain during the first
stage. The significant savings on computational time
and resource requirements afforded by the two-stage
solution method come at a modest cost on solution
accuracy when compared to the results of a traditional
one-stage solution. As shown in an earlier article that
considered the same model,24 the average deviation in
the two-stage computed pressure field over the region
of interest was 1.5% of the pressure field computed
using a single-stage solution. The passage of nodal
displacement solutions from the first to second stage,
with a large increase in element density, resulted in a
maximum stress difference of around 5% within the
region of interest, and a virtually identical stress dis-
tribution.

Effects of Imaging Imprecision

The primary structural features that correspond to
increased plaque stresses are a large lipid core and a
thin fibrous cap overlying the lipid core.6,30,36 To better
understand the effects of an improper representation of
the plaque components in this particular artery, we
have run several simulations in which the geometry of
a large lipid pool is modified in a manner consistent
with imaging imprecision.

The partial voluming effects inherent to CT and MR
imaging can lead to feature misinterpretation or inac-
curate segmentation of a medical image. With in-plane
resolutions on the order of 0.25–0.5 mm, current imag-
ing modalities are susceptible to partial volume effects
that could alter an image-based finite elementmodel. An
additional challenge in CT imaging is incomplete dis-
crimination of lipid and fibrous plaque tissue. To study
the effect of imaging imprecision, and how it might im-
pact information gathered from this unique plaque
dataset, wemodified the luminal face of a large lipid pool
(the side of the pool closest to the lumen) in this model.
An adjusted luminal face of the lipid pool was generated
as a constant offset surface from the original face in the
direction of the local surface normal, using offsets of 0.2,
0.4, and 0.5 mm. In this way, lipid pool features were
essentially preserved, and fibrous cap thickness was
varied accordingly. The lipid pool geometry was only
modified in the segment of the ICAcontaining the region
of plaque rupture, as this would by far have the greatest
impact on stresses there. In an effort to isolate the effects
of reduced fibrous cap thickness from those of increased
total lipid pool volume, only the surface of the lipid pool
facing the lumen was modified. Thus, lipid volume was
modestly increased without changing the entire lipid
pool geometry. The volumes of the baseline and modi-
fied lipid pools within the region of interest identified in
Fig. 7 are listed in Table 4.

RESULTS

Baseline Model

The baseline model and additional models with
modified lipid pool boundaries all used the same flow

TABLE 4. Volume of lipid pool for four cases modeled.

Surface offset for lipid

pool (mm)

Volume of lipid pool contained

in region of interest (mm3)

0 (Baseline geometry) 150.19

0.2 171.07

0.4 194.09

0.5 206.5
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boundary conditions, arterial solid constraints, and
two-stage solution strategy in determining the stress
distribution in the region where the plaque ruptured.

A 14 mm spline curve of the ICA lumen centerline
was constructed and used to define 15 planar slices
along the vessel axis on which stress results were ana-
lyzed (see Fig. 9). By plotting peak stresses of each slice
for the baseline and all lipid-offset cases, it was found
that slices 1 and 7–10 consistently experienced the
lowest stresses in the region of plaque rupture, and
slices 11–15 displayed no interesting stress patterns.
For this reason, stress results are only discussed for
slices 2–6. As seen in Fig. 9, slices 2–6 cover the region
over which lumen geometry changed most drastically
post-rupture. The cut plane slices are defined with
respect to the pre-rupture lumen geometry, while the
post-rupture geometry is shown in transparent gray for
reference. For brevity, the location on the post-rupture
CTA images indicating plaque rupture will be referred
to as the region of rupture, although there is no way to
be certain of where the rupture was initiated.

First principal stresses in the fibrous plaque layer, of
primary interest in plaque rupture, are shown for slices
2–4 in the top panel of Fig. 10. The stress plots cor-
respond to the time at which fibrous plaque stresses
near the region of rupture were highest throughout the
cardiac cycle. The outer boundary curve of the vessel
wall is displayed, the lumen is indicated with ‘‘Lu’’,
and lipid pool is indicated with ‘‘Li’’. The stress fields
from the baseline model reveal stress concentrations at
the intersection of the ‘‘major axis’’ of the roughly
elliptical lumen and the fibrous plaque. In an idealized
geometry with an elliptical lumen this is easily

FIGURE 9. Cut planes on which first principal stress results
are compared. (a) View of full lumen geometry and lipid pool
with cut planes. (b) Zoom view of (a) in region of plaque
rupture. Post-rupture lumen geometry shown in transparent
gray. Stress results are presented for planes 1–10 only, as
these cover the region of plaque rupture. The patient’s neck
was positioned slightly differently for baseline and follow-up
CTA studies, deforming the carotid geometry. Pre- and post-
rupture lumen geometries were aligned for maximum overlap
of ICA proximal and distal to the region of rupture.

FIGURE 10. Axial ‘‘slices’’ through the region of interest, as shown in Fig. 9. First principal stresses are displayed for fibrous
plaque layer in baseline model and model with 0.2 mm lipid surface offset. ‘‘Lu’’ shows the position of the lumen on each slice, ‘‘Li’’
shows the position of the lipid pool, and the outline of the outer vessel wall is shown for reference.
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understood by considering the force balance of blood
pressure and circumferential stress.22 In this case,
where the lumen shape and fibrous plaque thickness
are irregular, the stress field is not symmetrical across
the lumen and peak stress locations are influenced
substantially by local fibrous plaque thickness, lipid
pool volume and proximity, and lumen curvature.
With the exception of slices 3 and 4, first principal (in
this geometry, very nearly equivalent to circumferen-
tial) stress peaks for slices 2–6 are located in the region
of plaque rupture. At slices 3 and 4, the fibrous plaque
thickness at the location of peak stress is much smaller
than elsewhere in the geometry and this dominates
over the effects of the lipid pool. Many finite element
studies of atherosclerotic vessels have revealed that
plaque lipids do not support a great deal of stress due
to their relative compliance. Our results show this as
well, with lipid stresses being compressive and within
the range of 500–2500 Pa. Stress patterns in the vessel
wall were unremarkable, with tensile stresses in the
range of 0–40 kPa, and a few very small regions of
weakly compressive stress.

Modified Lipid Pool

Due to a change in the stiffness of the diseased
artery wall with different lipid pool boundaries, the
pressurized lumen geometry varied slightly between
different models. The effect of this difference on the
converged pressure field solution was minimal, with
maximum deviations from the baseline pressure field of
1.5% for the 0.2 mm offset case, 3% for the 0.4 mm
offset case, and 5.4% for the 0.5 mm offset case. In
each case, the largest deviations were near the
boundary of the model and would not affect the wall
stresses in the region of rupture appreciably.

The lower panel of Fig. 10 shows the fibrous plaque
first principal stresses on slices 2–4 of the model with a
lipid pool surface offset of 0.2 mm. For slice 2 the
stress pattern remains largely the same and peak
stresses are located in essentially the same locations
as in the baseline geometry, with an average stress
increase of 12.6% (std. dev. = 2.06%). The peak stress
on slice 4 is now located across the lumen from its
location in the baseline model, and it is now within the
region of plaque rupture with a magnitude increase of
9.9% over baseline stress. At slice 3, the small decrease
in fibrous plaque thickness covering the lipid core
caused the peak stress location to deviate substantially
from the location seen at baseline. Here, the peak stress
is at the surface of the fibrous cap directly apposing the
lipid core. In fact, for all slices examined, the stresses in
the fibrous cap directly apposing the central portion of
the lipid core (not at the lipid core shoulders) increased
substantially. From the CTA data, it is clear that this

location is within the region of rupture. Thus, for the
model with a lipid surface offset of 0.2 mm, less than
half of a pixel-width for state-of-the-art in vivo imag-
ing, peak stress locations for each slice are consistent
with the site of rupture. The first principal stress for
this case at the luminal surface of fibrous plaque was
plotted on the lumen geometry, and is shown in
Fig. 11. The distribution of wall shear stress (WSS) is
also shown for the same region, at the same cardiac
phase. The first principal stress field is viewed from
outside the lumen so that the results are most easily
compared to the changes in lumen geometry observed
post-rupture, and so that first principal stress and WSS
fields are easily related. Comparing Figs. 9 and 11, it is
clear that a local first principal stress concentration
corresponds well to the region of plaque rupture. First
principal stress concentrations outside of the region of
rupture are attributed to the exceedingly thin local
fibrous plaque layer, and suggest that some combina-
tion of stress magnitude and other local feature (i.e.,
distance from lipid core, inflammatory state, or
another mechanical descriptor) may be the best pre-
dictor of rupture-risk. The WSS field shows a local
minimum over the region of rupture, with local maxi-
mum shear located just proximal at the stenotic throat.

As the luminal face of the large lipid pool was fur-
ther modified to a 0.4 and 0.5 mm offset, slices 5, 6, 8,
and 9 all experienced peak stresses in the fibrous cap
directly apposing the central portion of the lipid core.
It should be mentioned that nodal result smoothing,
common in the literature for complex 3D models,
should not be used across a material boundary as is
commonly done. Smoothing stress results across the
fibrous plaque/lipid pool boundary is inappropriate
due to material differences, and effectively masks any
elevated stress present at the fibrous plaque apposing
the low-stress lipid pool. Conclusions drawn from
these smoothed results can be dramatically different
than those drawn from non-smoothed or properly
smoothed nodal results. The magnitude trends for
peak stresses as a function of lipid pool modification
are shown for slices 1–10 in Fig. 12.

DISCUSSION

In this work we have presented what is, to the best
of our knowledge, the first image-based stress analysis
of an atherosclerotic plaque based on pre-rupture
imaging data where post-rupture imaging data is
available for identifying the actual site and extent of
rupture. We have shown that the region of plaque
rupture coincides with a pronounced local elevation of
first principal stress. In an effort to realistically model
the mechanical environment of the heavily diseased

Image-based FSI Analysis of Carotid Plaque Rupture 2759



carotid bifurcation considered, we have utilized a
3-dimensional finite element model with fully resolved
plaque structures and fluid–solid interaction. These
sophisticated image-based models are increasingly

being used to augment the understanding of plaque
mechanics provided by simpler 2D models, and models
of idealized vessel and plaque geometries. It is hoped
that patient-specific biomechanical models will have

FIGURE 11. Pre-rupture lumen geometry (left), first principal stress field based on pre-rupture geometry (left center), wall shear
stress distribution of pre-rupture geometry (right center), and post-rupture lumen geometry (right). The first principal stress field
shown is that within the fibrous plaque layer at the lumen surface.

FIGURE 12. Peak stress magnitudes at slices 1–10 for models with varying lipid pool surface offsets. While slice-to-slice trends
do not change qualitatively, stress magnitudes and peak stress locations at each slice change significantly.
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clinical utility in the characterization of atherosclerotic
lesions, and in the optimization of individual patients’
treatment plans.

Before these models find a place in routine clinical
management, however, a suitable mechanical descrip-
tor, or a combination of multiple descriptors must be
correlated to plaque rupture vulnerability. Several
mechanical factors have been proposed to be relevant
to the initiation of plaque rupture, drawing from both
the fluid mechanics and solid mechanics of diseased
vessels. While low and oscillatory flow-induced wall
shear stress has long been known to influence plaque
initiation, the endothelial damage caused by extreme
shear stress is now suspected to contribute to rupture
due to both mechanical and biological effects.12–14

Critical pressure and flow conditions in stenotic vessels
have also been suspected as contributing to rupture
initiation.2,42 A strong pressure drop at the throat of
a stenosis can cause arterial collapse locally, most
severely during peak systolic flow, altering arterial wall
and plaque stresses significantly from the homeostatic
norm. Among the structural mechanical factors sus-
pected to influence plaque vulnerability, cyclic stress/
strain and maximum stress stand out as likely deter-
minants of plaque rupture. Although both descriptors
are related to the stress within plaque tissues, the
mechanisms by which they influence plaque destabili-
zation differ. Cyclic stressing and deformation of pla-
que tissues have been shown to cause local tissue
damage at stresses far less than the tissue failure
strength, and thus plaque rupture is being investigated
as a fatigue process.1,32,47 A more acute form of plaque
rupture is thought to occur when local plaque stresses,
particularly those in the fibrous cap region, exceed the
tissue failure strength causing catastrophic damage.
Accordingly, several studies have sought to quantify
either the first principal or von Mises stresses in
the fibrous caps of idealized and patient-specific
lesions.6,26,30

The mechanical analyses used to explore these
possible rupture mechanisms have, with exception to
that by Groen et al.,14 used idealized diseased vessel
geometries, artificially repaired geometries from rup-
tured lesions, or have used histological features,
structural features, or symptom status of the patient as
a surrogate for rupture. Groen et al.,14 used serial MRI
data of a 67-year-old woman with pre- and post-rup-
ture imaging studies to show that a carotid plaque
ruptured in a region of locally elevated wall shear
stress. The study used a rigid-wall CFD model to
determine wall shear stress throughout the carotid
bifurcation, and thus was incapable of resolving plaque
stresses resulting from systemic pressure. Without
patient-specific flow boundary conditions, only a
steady-state simulation with equal normal tractions at

the ICA and ECA was presented. Although these
assumptions and limitations can severely affect the
CFD results, the study is important because it exam-
ines a plaque known to have ruptured and the analysis
is based on pre-rupture imaging data. Given the rarity
of pre- and post-rupture imaging data being available
for a particular patient, it is important that these cases
be analyzed and interpreted with the inherent modeling
limitations in mind.

The results presented here build on those of Groen
et al. While we have chosen to focus on the material
stresses in the region where a carotid plaque rupture
occurred, the flow-induced shear stress at the diseased
vessel wall is also available from our FSI model. In
contrast to the results of Groen et al., our analysis
shows that WSS is not elevated within the region of
rupture, but is in fact at a local minimum. Just prox-
imal to the region of rupture, in the stenotic throat of
the ICA, WSS is at a local maximum. At the most
distal portion of WSS elevation, there is a small lumen
segment on which both WSS and first principal stress
are elevated. Given the proximity of the two types of
stress concentrations, and the sensitivity of WSS cal-
culations to lumen geometry, it is difficult to conclude
whether or not there truly is an ‘‘overlap’’ region where
both first principal stress and WSS are at a local
maximum. Further studies and careful sensitivity
analyses should be conducted to explore the idea that a
combination of elevated plaque stresses and WSS
contribute to rupture potential.

While our result showing co-localization of ele-
vated first principal stress and plaque rupture is
compelling and suggests that maximum local stress
might be a primary influence on plaque vulnerability,
our study has a number of limitations and we
therefore cannot make definitive statements about a
cause of rupture. The stress field at the lumen surface
shows the peak stress at a location outside the region
of rupture, and other areas of stress concentration
exist. Stress concentration outside of the rupture
region occurs where the fibrous plaque layer is
especially thin and not directly overlying the lipid
pool. The fibrous plaque in these regions is roughly
half as thick as that overlying the lipid pool in the
region of rupture.

Other FEM studies have shown peak stresses out-
side of a suspected ‘‘vulnerable’’ region, often in a
relatively healthy portion of vessel. These observations
inspired the ‘‘critical site tracking’’ approach of Tang,
in which only particular features of the stress field are
used to draw conclusions about lesion vulnerability.44

We suspect that detailed regional information about
the material response or ultimate tensile strength of the
fibrous plaque would help to reduce the apparent stress
paradox. Until such information is available, indirect
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measures of local tissue strength may be of some use.
For instance, proteolytic activity from macrophage-
expressed matrix metalloproteinases may be limited to
some distance from the lipid core, suggesting that we
weigh the influence of the stress-field based on location.
The rapid progress in lesion-specific constitutive mod-
eling20,21 and inflammation imaging will surely increase
the realism and reliability of predictive modeling.16

Because of the computational intensity of this type
of problem, only one cardiac cycle was simulated to
obtain the results presented. Transient effects are often
seen in flow simulations, requiring multiple cardiac
cycles to be run before flow solutions are considered
reliable. In our case, because the flow field and shear
stress patterns were not of primary interest, these
transients were ignored. Furthermore, as already
mentioned, lack of detailed patient-specific flow
boundary conditions required modification of condi-
tions from another patient for use in this model.
Nevertheless, the primary cause of wall stress, systemic
pressure, was within physiologic range and since
transient effects are thought to be of second-order
importance here we believe improved modeling of
these flow effects would not substantially alter our
results. A more lengthy analysis should be conducted
to verify this.

Most finite element analyses of atherosclerotic
arteries derive the arterial and plaque geometries from
a multi-sequence black-blood MRI study. The ability
to manipulate soft tissue contrast in MR imaging is
far greater than that of other imaging modalities, and
recent work has shown that this allows accurate
characterization of carotid plaques.37,38,52 Owing to
relative cost and availability, however, MR studies are
performed far less often for suspected cerebrovascular
events than computed tomography studies, including
non-contrast, angiographic (CTA), and perfusion
scans.7 Keeping in mind the rarity of a pre-rupture
scan, and an estimated yearly rupture rate less than
1%, finding an appropriate patient with available MR
data proves difficult. Our group maintains a database
of over 100 patients with carotid disease followed
longitudinally with MRI, and none were found to have
pre- and post-rupture imaging. The CTA data used for
this model was found during a case-search for a dif-
ferent retrospective study. Although the soft tissue
discrimination capabilities of CT imaging are less
impressive than those of MRI, recent work has shown
that carotid plaques can be characterized well if their
features are suitably large.8,9,49

Like other image-based models, ours has uncer-
tainty in the plaque component and vessel wall
boundaries. The effect of lipid-pool boundary error
was explored here, and another study5 shows that error
in the outer wall boundary has a negligible effect on

fibrous cap stresses for similar geometries. Because the
distinction between fibrous plaque and artery wall
tissue cannot be made based on image intensity alone,
local features were used to estimate a fibrous plaque
outer boundary. The estimation of the fibrous plaque
outer boundary was reviewed by a pathologist for
realism, yet uncertainty remains. Studies similar to
ours often do not make a material distinction between
fibrous plaque and healthy vessel wall in the finite
element model, even when multi-spectral MRI capable
of this discrimination is used. This makes for easier
computational mesh generation, but we feel that our
estimation of the fibrous plaque outer boundary is less
artificial than simply ignoring the boundary. Ignoring
this boundary would add thickness to the fibrous pla-
que layer outside of the region of rupture and greatly
reduce the apparent ‘‘maximum stress-rupture point’’
paradox. In a second analysis of the model using a
0.5 mm lipid surface offset, we replaced the vessel wall
material with fibrous plaque to investigate the effects
of ignoring this boundary. The peak stress magnitudes
at slices 1–10 changed, on average, by 4.53% (std. dev.
2.99%), with the greatest changes being at slices con-
taining no lipid pool. For slices 2–6, the average peak
stress change was 2.59% from the model with a fibrous
plaque/vessel wall boundary intact. For this model, it
therefore seems reasonable to ignore the fibrous pla-
que/vessel wall boundary if conclusions are drawn
from the region spanned by slices 1–10, but such an
assumption needs to be carefully justified for each
geometry considered.

As mentioned, we attempted to separate the influ-
ence of a thinned fibrous cap from that of a total lipid
pool volume increase. This was difficult due to the
irregular patient-specific geometry. The lipid pool
volume increases roughly 14% for every 0.2 mm of
surface offset, resulting in a maximum volume increase
of 37.5% in the 0.5 mm offset case. Performing an
offset of all the lipid pool surfaces would have resulted
in a 40% volume increase for just the 0.2 mm offset
case. A simple translation of the lipid pool toward the
lumen, which would have preserved lipid features and
volume, is not able to simulate the effects of segmen-
tation error in all three dimensions and would cause
preferential fibrous cap thinning in certain regions
due to lumen and lipid pool curvature. Partial volume
errors at the lumen/wall interface are also common and
can affect finite element predictions, but adjusting
luminal geometry would have a stronger impact on the
CFD solution making comparisons between cases
more difficult and less meaningful.

Finally, our model does not account for residual
arterial stresses, patient-specific material properties, or
material anisotropy. Residual stresses and material
anisotropy are difficult to account for in a realistic 3D
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geometry, and the available imaging data could not
provide information for this case. The ‘‘shrink–stretch’’
technique employed by Huang et al.17 makes an
attempt to approximate the zero-stress state of a car-
otid bifurcation based on in vivo and unloaded ex vivo
MRI data. Ex vivo data were not available for this
study, and assumptions on axial shrinking would have
been entirely artificial and without a means for error
estimation. Additionally, it is not clear how best to
circumferentially shrink a multi-component model in
which different plaque features may have different
behaviors. In a geometry where lumen and plaque
feature curvature may play a significant role in material
stress patterns, the use of such a technique may com-
promise geometrical features if not carefully employed.

Because of our assumption that the geometry from
the CTA data was stress-free, our pressurized model
expands more than those accounting for the no-load,
stress-free state. As inlet velocity was assigned as a
fluid boundary condition, the expansion of the artery
led to a flow rate greater than that used to generate
velocity boundary conditions. The flow rates obtained
in the simulation were still within the observed physi-
ologic range, however, and a correction was not
sought. Obtaining a proper zero-stress state for FSI
simulations is an important concern, and more work
needs to be done to find a practical solution for multi-
component models with complex geometries.

Even with the limitations discussed, our study has
three important conclusions. First, we have shown that
plaque rupture occurred in a region of strongly elevated
first principal stress, and that patient-specific biome-
chanical simulations may have real clinical utility in the
near future. Secondly, our study adds an important data
point to the investigation ofwall shear stress elevation as
a potential rupture trigger. Lastly, our results show that
there can be a substantial impact on predicted stress
fields frommisrepresentation of plaque features that are
smaller than current in vivo imaging resolution limits.
Conclusions drawn from patient-specificmodelingmust
consider the possible effects of limited imaging resolu-
tion, and the further effects of employing constitutive
relations that are not lesion-specific. Each of these lim-
iting factors suggests that precise numerical stress results
at discrete points should be carefully interpreted in the
larger context of the local stress field.
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