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Pandemic Vibrio parahaemolyticus is an emerging public health concern as it has

caused numerous gastroenteritis outbreaks worldwide. Currently, the absence of a

global overview of the phenotypic and molecular characteristics of pandemic strains

restricts our overall understanding of these strains, especially for environmental strains.

To generate a global picture of the sero-prevalence and genetic diversity of pandemic

V. parahaemolyticus, pandemic isolates from worldwide collections were selected and

analyzed in this study. After a thorough analysis, we found that the pandemic isolates

represented 49 serotypes, which are widely distributed in 22 countries across four

continents (Asia, Europe, America and Africa). All of these serotypes were detected

in clinical isolates but only nine in environmental isolates. O3:K6 was the most widely

disseminated serotype, followed by O3:KUT, while the others were largely restricted to

certain countries. The countries with the most abundant pandemic serotypes were China

(26 serotypes), India (24 serotypes), Thailand (15 serotypes) and Vietnam (10 serotypes).

Based on MLST analysis, 14 sequence types (STs) were identified among the pandemic

strains, nine of which fell within clonal complex (CC) 3. ST3 and ST305 were the only

two STs that have been reported in environmental pandemic strains. Pandemic ST3 has

caused a wide range of infections in as many as 16 countries. Substantial serotypic

diversity was mainly observed among isolates within pandemic ST3, including as many

as 12 combinations of O/K serotypes. At the allele level, the dtdS and pntA, two loci

that perfectly conserved in CC3, displayed a degree of polymorphism in some pandemic

strains. In conclusion, we provide a comprehensive understanding of sero-prevalence

and genetic differentiation of clinical and environmental pandemic isolates collected

from around the world. Although, further studies are needed to delineate the specific

mechanisms by which the pandemic strains evolve and spread, the findings in this study

are helpful when seeking countermeasures to reduce the spread of V. parahaemolyticus

in endemic areas.
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INTRODUCTION

Vibrio parahaemolyticus, an organism with a high genetic
diversity, has emerged as a pathogen causing acute gastroenteritis
with a worldwide distribution. Before 1996, V. parahaemolyticus
infections usually exhibited a localized distribution and were
linked to diverse serotypes (e.g., O2:K3, O3:K6, O4:K8)
(Wong et al., 2000). In February 1996, the pandemic O3:K6
serotype emerged, resulting in an inexplicable increase of V.
parahaemolyticus gastroenteritis in Kolkata city, India (Okuda
et al., 1997). This unique serotype subsequently quickly spread
into coastal regions of southern Asia (Bag et al., 1999), America
(Martinez-Urtaza et al., 2004), Africa (Ansaruzzaman et al.,
2005), and Europe (Martinez-Urtaza et al., 2005) and caused
numerous outbreaks within a few years (Okuda et al., 1997;
Chowdhury et al., 2000a; Nair et al., 2007). Such widespread
occurrence of a single serotype of V. parahaemolyticus had not
been previously reported.

All the pandemic O3:K6 strains share the following
specific genetic markers: positivity for the thermostable
direct hemolysin(tdh) gene, negativity for the TDH-related
hemolysin(trh) gene and positivity for a toxRS/new gene,
which can be amplified via a specific PCR method known
as “GS-PCR” (Matsumoto et al., 2000; Chao et al., 2011;
de Jesús Hernández-Díaz et al., 2015). To our surprise, in
recent years, some new serotypes [e.g., O4:K68, O1:K25,
O1:KUT(untypable)] have been detected that exhibit identical
genotypes and molecular profiles to the pandemic O3:K6
serotype (Chang et al., 2000; Bhuiyan et al., 2002). These
serotypes may diverge from the pandemic O3:K6 serotype in
alteration of the O and/or K antigens and are referred to as
“serovariants” of the pandemic O3:K6 serotype (Chowdhury
et al., 2000b; Matsumoto et al., 2000). Currently, all of the
pandemic serotypes are grouped as belonging to the “O3:K6
pandemic clone.” Through 2007, a total of 22 serotypes had been
reported to belong to this clone (Nair et al., 2007).

Many surveys have shown that pandemic V. parahaemolyticus
serovariants can be identified not only in clinical samples
(Li et al., 2014; Pazhani et al., 2014; Ueno et al., 2016), but
also in seafood and other environmental samples (Arakawa
et al., 1999; Vuddhakul et al., 2000; Deepanjali et al., 2005;
Quilici et al., 2005; Chao et al., 2009; Caburlotto et al., 2010),
indicating that the pandemic strains have established ecological
niches in many regions, resulting in a heightened perception
of the threat to the public health of the local population.
An accurate description of the distribution and spread of
the pandemic strains is important for understanding the
epidemiology of this pathogen and preventing outbreaks
and sporadic illnesses. However, after G. Balakrish Nair and
colleagues reviewed the global dissemination of pandemic
V.parahaemolyticus serotype O3:K6 and its serovariants
in 2007 (Nair et al., 2007), few studies have specifically
for the pandemic V. parahaemolyticus on a global scale,
especially concerning the worldwide dissemination of
environmental strains. Therefore, it would be beneficial to
integrate and update the available scientific data on pandemic
V. parahaemolyticus.

The establishment of a multilocus sequence typing
(MLST) scheme for V. parahaemolyticus has enhanced our
knowledge of the population structure and genetic diversity of
V. parahaemolyticus (Gonzalez-Escalona et al., 2008). Previous
studies based on MLST assay have shown that the increasing
prevalence of clonal complex 3 (CC3) has become an ongoing
public health concern (Gonzalez-Escalona et al., 2008; Haendiges
et al., 2014; Han et al., 2015), and most pandemic strains have
been identified as belonging to CC3 (Chen et al., 2016). Thus,
clarifying the genetic diversity among the pandemic strains will
aid in the selection of preventative strategies targeting pandemic
strain infections.

In this study, we collected data on pandemic strains
mainly from the pubMLST database (http://pubmlst.org/
vparahaemolyticus) and previous studies, in an effort to
generate a comprehensive overview of the spread of clinical
and environmental pandemic V. parahaemolyticus strains
occurring over wide geographic areas since the emergence of
this clone. Furthermore, through MLST phylogenetic analysis,
we determined the genetic diversity of the pandemic clone
to provide a holistic understanding of the microevolution of
pandemic strains.

MATERIALS AND METHODS

Datasets Utilized in the Present Study
A total of 267 representative clinical and environmental
V. parahaemolyticus isolates with pandemic genetic marks
(toxRS/new+, tdh+, and trh−) were selected as the research
subject of this study, among which 263 isolates came
from the literature and four from the pubMLST database
(http://pubmlst.org/vparahaemolyticus/). To identify relevant
publications, we conducted a comprehensive search of the
US National Library of Medicine PubMed database and the
Elsevier, Springer, and China National Knowledge Infrastructure
databases for all relevant studies using combinations of
the following terms: “Vibrio parahaemolyticus,” “pandemic
clone,” “pandemic strains,” and “O3:K6 clone” (until July
1, 2015). Additional eligible studies were identified from
references cited in the relevant articles. The full text of each
potentially relevant paper was scrutinized and a total of 263
isolates with pandemic genetic marks (toxRS/new+, tdh+,
and trh−) were finally extracted from 39 papers. Details
on the individual isolates are summarized in Additional
file 1: Table S1.

Multilocus Sequence Typing Analysis
To determine the genetic diversity of the pandemic strains
through MLST analysis, another file containing 185 isolates
were analyzed (see Additional file 2: Table S2). These isolates
included 95 pandemic isolates from Table S1 and 90 strains
that are non-pandemic but belong to CC3 from the pubMLST
database. The sequence types (STs) of the 185 isolates were
compared using eBURST V3 (http://eburst.mlst.net/) (Feil et al.,
2004). Additionally, a “population snapshot” analysis of the
entire V. parahaemolyticus population was also implemented
based on the total pubMLST dataset, which illustrated the
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TABLE 1 | Presence of clinical and environmental pandemic serovariants

of V. parahaemolyticus occurring at a global scale.

Serotype Country (year of isolation)

CLINICAL(49 SEROTYPES):

O1:K25 Bangladesh(1999), China(1998, 2005–2012), India(2004–2010),

Thailand(1999–2010), Vietnam(1998–1999), Japan (1998)

O1:K26 China(2007)

O1:K30 India(2011)

O1:K33 India(2002)

O1:K36 China(2006–2012)

O1:K38 India(2001)

O1:K41 Thailand(1998–1999, 2002), Vietnam(1998–1999)

O1:K5 China(2007, 2009)

O1:K56 China(2008), India(2011), Vietnam(1998–1999)

O1:KUT* Bangladesh(1998, 2000), China(2003,2005–2012), India(1998,

2001), Peru(2005, 2007), Thailand(2001–2010)

O10:K60 China(2010–2012), Japan(2013), India(2012)

O10:KUT Mexico(2004–2010)

O11:K36 China(2007)

O2:K3 China(2010–2012), Thailand(2000), India(2002)

O2:K4 India(2005)

O3:K25 China(2007)

O3:K29 China(2007), Thailand(2002–2003), Mexico(2011–2013)

O3:K3 China(2010–2012)

O3:K30 Peru(2007)

O3:K46 Thailand(2001, 2004)

O3:K5 India(2004)

O3:K58 Peru(1998–1999)

O3:K59 Chile(2007)

O3:K6 Angola(1999), Bangladesh(1998), Brazil(2002), Chile(1998, 2007),

China(1996–2012), Ecuador(1999), France(2004), India(1996),

Indonesia(1997), Italy(2007–2008), Japan(1996, 1998),

Korea(1997–1998), Laos(1997), Mexico(2004–2013),

Mozambique(2004), Peru(1996–2003), Russia(2012),

Singapore(1996,1998), Thailand(1996–1997,2000–2010) ,

Vietnam(1997), Spain(2004), USA(1998,2012)

O3:K6,59 Chile(2007)

O3:K68 China(2006), Peru(1998)

O3:K75 Vietnam(1998–1999)

O3:K8 China(2009–2011)

O3:KUT Brazil(2002), China(2010–2012), India(2003–2004), Peru(2007),

Spain(2004), Mexico(2004–2010), Thailand(2004,2006–2010)

O4:K10 India(2004)

O4:K12 Chile(2004), Thailand(1998–1999), Mexico(2004–2010),

Vietnam(1998–1999)

O4:K13 India(2010)

O4:K25 India(2005)

O4:K4 India(2004), Thailand(2005)

O4:K48 China(2005–2008)

O4:K55 India(2001)

O4:K68 Bangladesh(1998), China(1999, 2003, 2005–2012),

India(1998–1999), Mozambique(2004), Singapore(1998),

Vietnam(1998), Thailand(1999–2001, 2003–2005)

O4:K8 China(2006–2010), Thailand(2006–2010), Vietnam(1998–1999)

O4:K9 Thailand(2006–2010)

(Continued)

TABLE 1 | Continued

Serotype Country (year of isolation)

O4:KUT China(2006–2007), India(2009), Vietnam(1998–1999)

O5:K17 India(2002)

O5:K25 India(2002)

O5:K68 China(2007–2012), Norway(2002)#

O5:KUT China(2010–2012), India(2004), Vietnam(1998–1999),

Thailand(2003)

O6:K18 China(2005), Singapore(1998)

O8:K21 India(2006)

OUT:K6 Peru(1998)

O10:KUT Mexico(2011–2013)

OUT:KUT China(2007), India(2003–2004), Mexico(2004–2013)

ENVIRONMENT (9 SEROTYPES):

O3:K6 Chile(2008–2009), China(2005–2008), Italy(2007), France(1997,

1998, 1999), Mexico(2004–2013), the UK(2012),

Bangladesh(2007), Japan(1998, 2000, 2001), India(2002)

O3:KUT Mexico(2011–2013)

O4:K48 China(2005–2008)

O1:KUT China(2005–2008)

O1:K25 Japan(2001)

O4:K10 Mexico(2012)

O4:K68 Japan(2001)

O10:KUT Mexico(2004–2010)

OUT:KUT Mexico(2004–2010)

*UT, untyped.
#There was no sufficient evidences to determine the isolate of pandemic O5:K68 was

really collected from Norway in 2002.

population differentiation of the whole population. Clonal
complexes were defined conservatively as a cluster of STs in
an eBURST diagram, in which all STs were linked as single-
locus variants (SLVs, two STs differing from each other at
a single locus) to at least one other ST (Feil et al., 2004).
The singleton STs corresponded to STs differing from all the
others by three or more of the seven loci (Esteves et al.,
2015).

Genetic Diversity and Phylogenetic
Analysis
The diversity of the seven loci in the pandemic isolates was
revealed by DnaSP V5 (http://www.ub.edu/dnasp/) with respect
to the following parameters: the number of alleles, number
(%) of polymorphic sites, nucleotide diversity (per site) and
Tajima’s D value. The purpose of Tajima’s D test is to distinguish
housekeeping genes evolving randomly (“neutrally”) vs. those
evolving under a non-random process (Tajima, 1989). A P >

0.05 indicates that the target gene is evolving randomly and
that mutations in the gene have no effect on the fitness
and survival of an organism (Tajima, 1989; Ferreira et al.,
2008). A minimum-evolution (ME) tree for the concatenated
sequences of each ST of the 185 isolates was generated
using Mega 5 software with the Kimura two-parameter model
to estimate genetic distances. The statistical support for the
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FIGURE 1 | Map showing the dissemination of clinical and environmental pandemic serovariants of V. parahaemolyticus occurring at a global scale.

Serotypes identified in clinical isolates (black), environmental isolates (blue) and both in clinical and environmental isolates (green) are marked respectively.

nodes in the ME tree was assessed through 1000 bootstrap
resamplings.

RESULTS

Global Spread of Pandemic Serovariants
According to a detailed review, a total of 49 pandemic serotypes
from 22 countries across four continents (Asia, Europe, America,
and Africa) were identified. All of these serotypes were detected
in clinical isolates but only nine in environmental isolates.
O3:K6 was the most widely disseminated serotype, and patients
in all 22 countries had been infected with this subtype at
some point in time. O3:KUT was the second most widely
distributed serotype. Several serotypes, such as O1:K25, O1:KUT,
and O4:K68, also exhibited multi-country distributions but were
mainly restricted to Southeast Asia (Table 1).The sources of
environmental pandemic isolates were diverse, mainly including
shellfish, oyster, clam, and shrimp, sediment and seawater
samples collected in nine countries (see in Additional file 1:
Table S1).

A comprehensive map of the dissemination of the clinical
and environmental pandemic serotypes on a global scale was
generated (Figure 1). The serotypes of the pandemic clone
were highly abundant and variable in coastal regions of China,
India, Thailand and Vietnam. It was notable that most of the
environmental pandemic serotypes present in a certain country
were also detected in patients from that country. O3:K6 was the

typical serotype. Four environmental serotypes (O3:K6, O3:KUT,
O10:KUT, and OUT:KUT) in Mexico were also found spread in
its local population.

Widely Dispersed Clones of
V. parahaemolyticus and Genetic
Differentiation of the Pandemic Isolates
Until August 2015, a total of 954 STs had been identified in
the V. parahaemolyticus pubMLST database, approximately two-
thirds of which were detected in environmental isolates, while
less than one-third came from clinical isolates, and only 26
were present both in environmental and clinical isolates. The
total population displayed 19 CCs as well as some doublets and
numerous singletons (Figure 2). CC3 was the most prevalent
CC, being comprised of 18 STs with no less than 15 serotypes
(Table 2).

After thoroughly analyzing the sequence data for the 185
isolates (in Additional file 2: Table S2), we found that the
pandemic strains exhibited 14 STs, only two of which (ST3
and ST305) had ever been identified in environmental samples
(Figure 3C). China was the country with the most pandemic
STs (10 STs). Nine of these 14 pandemic STs could be classified
into CC3, among which, ST3 was the only pandemic ST that
had caused a wide range of infections in as many as 16
countries (Table 2, Figure 3A). ST305 and ST672 were DLVs
of ST3 but were not members of CC3 because there was
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FIGURE 2 | “Population snapshot” showing the clonal diversity of V. parahaemolyticus based on data archived in public database. Green numbers

indicate STs typed in environmental isolates; black numbers represent clinical STs; and pink numbers are STs that found in both clinical and environmental collections.

Nineteen clonal complexes are indicated with separate shades. STs that are SLVs of each other are connected with black lines. STs associated with pandemic

spreading are underlined in red.

no ST in CC3 could act as their SLV. The other three STs
(ST283, ST301, and ST302) originating from coastal areas
of China were identified as singletons with no relationship
to CC3.

The Association between Pandemic STs
and Serotypes
The Minimum spanning tree of the 14 pandemic STs resulting
from the MLST analysis showed a substantial serotypic diversity
among isolates within ST3, but not among isolates of the
other 13 STs (Figure 3B). Specifically, pandemic ST3 comprised
isolates of 12 serotypes (O1:K25, O1:K36, O1:KUT, O3:K6,
O3:K25, O3:K30, O3:K58, O3:K68, O3:KUT, O4:K68, O5:K68,
and O11:K36). ST305 included isolates belonging to O1:K25
and O1:KUT serotypes. The remaining STs were consisted of a
single serotype, respectively (Table 2, Figure 3B). From another
perspective, the pandemic O3:K6 serotype was shared by six
different STs (ST3, ST27, ST42, ST71, ST435, and ST672). Other
serotypes were clustered in no more than two different pandemic
STs, respectively (Table 2).

Genetic Diversity of the Pandemic Isolates
The data on the nucleotide and allelic diversity of the pandemic
isolates are summarized in Table 3. The highest percentage of
polymorphic sites was detected in dtdS (5.46%). Nucleotide
diversity ranged from 0.01082 (pyrC) to 0.02926 (dtdS). dtdS and
pntAwere perfectly conserved in CC3 (the allele types were dtdS4
and pntA29), but in the pandemic isolates, five different alleles
were detected for each of the two genes; the number of SNPs was
25(5.46%) for dtdS and 10(2.33%) for pntA (Table 3).

Phylogenetic Analysis of Pandemic
Isolates
Phylogenetic analysis may provide a better resolution and
elucidate some phylogenetic relationships among CCs or
singletons that are not observed or resolved using goeBURST.
Therefore, an ME tree representing the concatenated sequences
of the seven housekeeping gene fragments in the 185 isolates is
shown in Figure 4. In the goeBURST analysis, five pandemic STs
(ST305, S672, ST301, ST302, and ST283) were not grouped into
CC3. However, in the ME tree analysis, ST305 and ST672 were
clustered together with STs of CC3, and only ST301, ST302, and
ST283 exhibited relatively greater evolutionary distances from
STs in CC3. In fact, the number of SNPs in the seven alleles
of these last STs was greater than in ST305 and ST672 when
compared with the STs of CC3.

DISCUSSION

In previous studies, we successfully made extensive descriptions
of strains from a global clinical collection and from Chinese
patients, respectively, exhibiting a highly degree of genetic
diversity and a complicated population structure of V.
parahaemolyticus in general (Han et al., 2014, 2015). In
this study, we elucidated the sero-prevalence and genetic
differentiation of the pandemic clone, which has becoming
an emerging public health concern (Martinez-Urtaza et al.,
2010; Velazquez-Roman et al., 2012, 2014; Powell et al.,
2013; Li et al., 2014; Pazhani et al., 2014). The results will
be useful in uncovering the microevolution relationships
among pandemic V. parahaemolyticus strains. Serotyping is

Frontiers in Microbiology | www.frontiersin.org 5 April 2016 | Volume 7 | Article 567

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Han et al. Prevalence of Pandemic V. parahaemolyticus Strains

TABLE 2 | Sequence types, allele profiles, and geographic locations of CC3 and pandemic V. parahaemolyticus clone.

Clone ST Allele types Collection countries (serotypes)

CC3 Pandemic dnaE dtdS gyrB pntA pyrC recA tnaA clinical environment

Yes No 2 11& 4 4 29 4 19 22 − China(O3:K6)

Yes No 72 3 4 4 29 4 4 22 Thailand(O3:KUT) −

Yes No 220 3 4 4 29 4 15 22 − China(O3:K6)

Yes No 266 3 4 4 29 4 19 78 − China(O1:K33)

Yes Unknown 557 3 4 4 29 4 19 152 China(Unknown) −

Yes Unknown 787 3 4 4 29 48 19 22 China(O4:K68) −

Yes Unknown 886 51 4 4 29 4 19 22 China(Unknown) −

Yes Unknown 1139 3 4 415 29 4 19 22 Mexico(O3:K6) −

Yes Unknown 1172 3 4 23 29 4 19 22 Chile(Unknown) −

Yes Yes 3 3 4 4 29 4 19 22 * #

Yes Yes 27 17 4 4 29 4 19 22 Korea(O3:K6) −

Yes Yes 42 22 4 4 29 4 19 22 USA(O3:K6) −

Yes Yes 51 29 4 4 29 4 19 22 Bangladesh(O3:KUT) −

Yes Yes 71 3 4 4 29 4 4 20 Ecuador(O3:K6) −

Yes Yes 192 3 4 126 29 4 19 22 China(O1:K26) −

Yes Yes 227 3 4 4 29 22 19 22 China(Unknown) −

Yes Yes 431 3 4 225 29 4 19 22 China(Unknown) −

Yes Yes 435 3 4 4 29 4 31 22 China(O3:K6) −

No Yes 283 27 84 127 139 54 124 37 China(O4:K8) −

No Yes 301 140 167 136 151 50 135 17 China(O4:KUT) −

No Yes 302 27 106 127 152 54 124 101 China(O4:KUT) −

No Yes 305 3 147 4 93 4 19 22 China(O1:K25) China(O1:KUT)

No Yes 672 1 4 147 29 4 19 22 China(O3:K6) −

*Bangladesh(O1:K25,O1:KUT,O3:K6,O4:K68), Chile(O3:K6), China(O1:K25, O1:K36,O1:KUT,O11:K36,O3:K25,O3:K6,O3:K68,O4:K68), Ecuador(O3:K6), India(O1:KUT,O3:

K6,O4:K68), Indonesia(O3:K6), Japan(O1:K25,O3:K6), Korea(O3:K6), Mexico(O3:K6), Mozambique(O3:K6,O4:K68), Norway(O5:K68), Peru(O1:KUT,O3:K30,O3:K58,O3:K6,O3:KUT),

Singapore(O3:K6,O4:K68), Spain(O3:K6), Thailand(O1:K25,O3:KUT,O4:K68), USA(O3:K6).
#Chile(O3:K6), China(O1:KUT). These isolates belong to the pandemic clone. Others can’t be determined as pandemic isolates but typed as ST3 were not listed here, see them in

Additional file 2: Table S2.
&Compared with ST3, the changed allele types in other STs in bold.

TABLE 3 | Sequence analysis of the seven loci studies for the isolates of CC3 and pandemic clone.

Locus Fragment No of Number (%) of Nucleotide diversity Tajima’s D

size alleles polymorphic sites (per site) (P-Value)

CC3 Pandemic Clone CC3 Pandemic Clone CC3 Pandemic Clone CC3 Pandemic Clone

dnaE 557 6 7 18 (3.23) 19 (3.41) 0.01352 0.01368 −0.27603 (P>0.10) −0.09825 (P > 0.10)

gyrB 592 5 6 10(5.92) 18(3.04) 0.00676 0.01261 −1.19267 (P>0.10) −0.32862 (P > 0.10)

recA 729 4 5 28(3.84) 26(3.57) 0.01920 0.02058 −0.86044 (P>0.10) 1.50445 (P > 0.10)

dtdS 458 1 5 − 25(5.46) − 0.02926 − 0.86832 (P > 0.10)

pntA 430 1 5 − 10 (2.33) − 0.01209 − 0.59633 (P > 0.10)

pyrC 493 3 4 8(1.62) 10 (2.03) 0.01082 0.01082 − −0.22234 (P > 0.10)

tnaA 423 4 5 11 (2.60) 15 (3.55) 0.01300 0.01608 −0.83741 (P > 0.10) −0.40617 (P > 0.10)

Four or more suquences are needed to compute the Tajima’s test.

the primary basis of the classification of V. parahaemolyticus
strains. Pandemic strains exhibit rapidly changing their serotypes
(Nair et al., 2007). From1996 to 2007, 22 pandemic serotypes
were identified (Nair et al., 2007). In the present study, as
many as 49 serotypes identified to date in investigations

conducted by different laboratory groups around the world
could be confirmed as being associated with the pandemic
clone.

Several lines of evidence have been presented in support of
the hypothesis that these new serotypes might have emerged
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FIGURE 3 | goeBURST full MST of the STs consisting of 185 representative isolates associated with CC3 and/or the pandemic clone. (A) Geographical

distribution, (B) Serotype distribution, (C) Source distribution. The sizes of the circles vary according to the frequency of the ST. The number of different alleles is

presented between STs connected via a line. ST3 and its SLVs (one allele diversity) form the CC3. STs in the shaded area are associated with the pandemic clone. “n”

in the figure legend indicates the number of isolates.

from the pandemic O3:K6 strains through replacement of the
putative O and K antigen gene clusters (Okura et al., 2008;
Harth et al., 2009). In the present study, as many as 12
combinations of O/K serotypes were grouped in pandemic ST3,
demonstrating a remarkably high degree of serotypic diversity
among the pandemic isolates and suggesting that the O- and K-
antigen encoding loci are subject to exceptionally high rates of
recombination in isolates with the same genotype (Gavilan et al.,
2013; Theethakaew et al., 2013). Herein, we agree that the high
frequency of alterations in the O and/or K antigens is a significant
biological characteristic of pandemicV. parahaemolyticus strains,
which might be an important means of survival in the face
of changing external environments and host immunological
resistance.

Regional persistence of the clinical pandemic O3:K6
serotype has been identified in coastal areas of many countries,
such as Mexico(2004–2015) (Velazquez-Roman et al., 2012;
de Jesús Hernández-Díaz et al., 2015), Peru(2007) (Gil et al.,
2007), Chile(2007–2009) (Cabello et al., 2007; Garcia et al.,
2009), China(2007–2012) (Zhang et al., 2013; Li et al., 2014),
India(2001–2012) (Pazhani et al., 2014), and Thailand(2006–
2010) (Thongjun et al., 2013). However, it is not obvious what
specific factors conferred upon this serotype the ability to
disseminate around world. Some environmental conditions
(e.g., seawater temperature, PH or salinity effects) affecting
survival and the unique pathogenic potential of pandemic
O3:K6 strains vs. other strains have been compared, but the
specific advantage of pandemic O3:K6 strains over other
strains remains unclear (Wong et al., 2000; Yeung et al.,
2002). Further, investigations should focus on revealing

the routes and mechanisms of the rapid spread of the
pandemic clone.

In addition to the O3:K6 serotype, other pandemic serotypes
have been isolated in both clinical and environmental samples
from some certain countries, such as O1:KUT and O4:K48
in China (Chao et al., 2009), O1:K25 in Japan (Hara-Kudo
et al., 2003) and O3:KUT, O10:KUT, and OUT:OUT in
Mexico (Velazquez-Roman et al., 2012; de Jesús Hernández-Díaz
et al., 2015). Although, the specific relationships between
environmental serotypes and those leading to illnesses have not
been determined, it is important to first understand epidemic
situation of these serotypes through active surveillance.

In the present study, we showed that the population structure
of V. parahaemolyticus was extremely genetically diverse based
on the successful identification of 19 CCs and a large number
of singletons, in agreement with previous findings (Han et al.,
2015). Over half of the pandemic STs belonged to CC3 according
to goeBURST analysis. The dtdS and pntA genes were found to
be perfectly conserved throughout the evolution of CC3, whereas
they presented some degree of polymorphism in pandemic
strains. In our analysis, none of the values of Tajima’s D was
significantly different from zero (P > 0.10), suggesting that the
housekeeping genes of the pandemic strains evolve under a
random process (“neutrally”) and are subject to low selective
pressure. The similar conclusion was obtained in studies based
on the entireV. parahaemolyticus population (Theethakaew et al.,
2013).

According to the available data, 64.3% of the STs (9/14) of the
pandemic clones were isolated from China, suggesting that this
country represents an important reservoir for the emergence of
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FIGURE 4 | A minimum evolutionary tree built using the concatenated

sequences of the seven loci of each ST associated with pandemic

clone and/or CC3. The scale bar represents the evolutionary distance.

novel pandemic strains. If a global network for the prevention
and control of V. parahaemolyticus infection is established in
the future, the coastal regions of China should be recognized as
important monitoring points. Three special STs (ST283, ST301,
and ST302) typed in pandemic isolates originating from China
were identified as singletons presenting distant relationships
with other STs of the pandemic clone in this study. However,
in a study by Chen et al. (2012), the corresponding strains
were clustered together with other pandemic strains based
on other molecular typing methods, such as enterobacterial
repetitive intergenic consensus sequence PCR (ERIC-PCR) and
sequence analysis of the gyrB gene. Thus, it can be observed that
current molecular typing methods, including MLST, could lead
to controversial results, making it difficult to draw conclusions,
although such methods have been confirmed to provide a high
level of resolution and information for elucidating the evolution
of the V. parahaemolyticus clonal complex (Chen et al., 2012).
Therefore, to accurately portray the relationships among strains
at themolecular level, combined use of different molecular typing
techniques with better discrimination could be considered in
epidemiological investigations of V. parahaemolyticus. Whole
genome sequencing (WGS), a powerful typing method with a
robust differentiation ability for characterizing related isolates, is
another outstanding alternative for analyzing the evolution and
population structure of V. parahaemolyticus (Haendiges et al.,
2015).

Invalid data in the pubMLST database were one problem
restricting our analysis in this study. As of 15th July 2015,
a total of 1844 records of isolates had been deposited,
but definite STs were only available for 1700. Moreover,
information on the corresponding biological characteristics of
many uploaded isolates, such as sample sources, regions, drug
sensitivity, serotypes and virulence genes was deficient. This
lack of information is not conducive to conducting further
epidemiologic and etiologic analyses of V. parahaemolyticus at a
global scale. In this study, for five STs belonging to CC3 (ST557,
ST787, ST886, ST1139, and ST1172), it could not be determined
whether they were associated with pandemic clone, because
of missing of toxRS/new gene and/or tdh gene sequences. As
MLST assays play an important role in studies on the molecular
epidemiology of V. parahaemolyticus, we recommend that the
researchers uploaded their data on isolates as accurately and
completely as possible.

In summary, the present study provides novel information on
the abundance and prevalence of pandemic V. parahaemolyticus
based on the analysis of clinical and environmental isolates from
a worldwide collection. We showed that the regional persistence
of pandemic O3:K6 has been established in coastal areas of
many countries. The presence and persistence of pandemic
V. parahaemolyticus strains, and especially the continuous
appearance of environmental pandemic strains, is a matter of
concern for public health authorities. We analyzed the genetic
diversity of the pandemic clone to provide a comprehensive
understanding of the microevolutionary relationships between
pandemic strains. The answers to some unresolved questions
about the pandemic clone, such as the advantage of pandemic
O3:K6 over other strains and the mechanisms underlying
the spread of strains with pandemic genetic marks, remain
speculative, and require further investigations.
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