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A B S T R A C T   

The medical and scientific communities are currently trying to treat infected patients and develop vaccines for 
preventing a future outbreak. In healthcare, machine learning is proven to be an efficient technology for helping 
to combat the COVID-19. Hospitals are now overwhelmed with the increased infections of COVID-19 cases and 
given patients’ confidentiality and rights. It becomes hard to assemble quality medical image datasets in a timely 
manner. For COVID-19 diagnosis, several traditional computer-aided detection systems based on classification 
techniques were proposed. The bag-of-features (BoF) model has shown a promising potential in this domain. 
Thus, this work developed an ensemble-based BoF classification system for the COVID-19 detection. In this 
model, we proposed ensemble at the classification step of the BoF. The proposed system was evaluated and 
compared to different classification systems for different number of visual words to evaluate their effect on the 
classification efficiency. The results proved the superiority of the proposed ensemble-based BoF for the classi
fication of normal and COVID19 chest X-ray (CXR) images compared to other classifiers.   

1. Introduction 

The COVID-19 pandemic, as announced by the world health orga
nization in 2020, is caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), which was first informed in Wuhan, China 
before affecting 218 countries and territories world-wide. Compared to 
the outbreaks of different coronavirus infections, COVID-19 is consid
ered the most contagious and widespread coronavirus [1]. COVID-19 or 
coronavirus disease 2019 can spread via several means, most primarily 
via the droplets and excretions from the infected person, while sneezing, 
coughing, speaking, or breathing. The recounted symptoms include 
slight symptoms, such as cough, fatigue, fever, difficulty breathing, and 
sudden loss of taste and smell to severe complications, such as pneu
monia and acute respiratory distress syndrome (ARDS). Molecular test is 
considered the most common diagnostic test of COVID-19 in comparison 
to the antigen or antibody tests. However, molecular tests are complex, 
costly, prone to human errors, and time consuming [2]. 

Thereby, medical imaging, such as chest X-ray images were 

approached to assist in the detection of COVID-19 in addition to the 
clinical symptoms. Chest X-ray (CXR) images allow perceiving the chest 
pathology via the acquired two-dimensional projection of the patient’s 
chest, which has a pivotal role in the diagnosis of lung diseases and the 
detection of COVID-19 infection. Compared to the computed tomogra
phy (CT) scan, the wide availability and less complexity of the X-ray scan 
promotes the development of highly applicable computer-aided diag
nosis (CAD) frameworks using the acquired CXR images in order to 
identify and confirm the COVID-19 cases. Accordingly, several studies 
have adopted machine learning for diagnosing COVID-19 in CXR im
ages. These techniques can be categorized as either deep learning, or 
traditional machine learning (ML) techniques. 

2. Literature review 

Several studies have developed deep-learning networks for auto
mated detection of COVID-19. For instance, an optimized convolutional 
neural network [3] was designed to classify COVID-19, normal, and 
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pneumonia CXR images, while optimizing the hyperparameters of the 
convolutional neural network (CNN) using Grey wolf optimization. The 
results showed 97.78% accuracy, 97.75% sensitivity, and 96.25% 
specificity. Also, five pre-trained CNN-based models [4], namely the 
ResNet101, ResNet50, ResNet152, Inception-ResNetV2, and Incep
tionV3, were proposed for the classification of CXR radiographs into 
4classes: COVID-19, bacterial pneumonia, viral pneumonia, and normal 
leading to classification accuracy ranging between 96.1% and 99.7% 
among three datasets. The deep CNN CoroNet model [5] was also pro
posed targeting the same four classes of COVID-19 and pneumonia CXR 
images using pre-trained Xception network leading to an overall accu
racy of 89.6%, 93% precision, and 98.2% recall for COVID-19 detection 
among the four classes. Moreover, seven different networks of deep 
convolutional and NN models were included in the COVIDX-Net [6] 
which targeted the analysis of CXR images into positive or negative 
COVID-19 cases. The results showed 0.91 and 0.89 F1-scores for normal 
and COVID-19 cases, using DenseNet and VGG19 models, respectively. 
Transfer learning was applied in the proposed decompose, transfer, and 
compose (DeTrac) CNN-based model [7] achieving 95.12% accuracy, 
97.91% sensitivity, and 91.87% specificity in the detection of COVID-19 
CXR images among normal and severe acute respiratory syndrome cases. 
Also, adopting transfer learning with several CNN-based models [8] 
achieved the highest 2-class accuracy of 96.87%, 98.66% sensitivity, 
and 96.46% specificity using MobileNet v2 for classifying COVID-19 
against non COVID-19 cases including normal, VN, and BN. As CNNs 
are prone to losing spatial information between image instances besides 
requiring large datasets, COVID-CAPS [9], a capsule networks-based 
framework was developed to handle relatively small datasets, which 
achieved 98.3% accuracy, 80% sensitivity, and 98.6% specificity in the 
four class classification task (i.e. normal, COVID-19, VN, and BN). 

Thus, the main limitation of most of the proposed DL-based models 
the required large datasets that include several alterations of the input 
images, such as shifting and rotation. However, the availability of large 
CXR datasets of COVID-19 is still limited. Accordingly, researchers have 
also adopted traditional machine learning (ML) techniques, for example, 
a linear support vector machine-based model [10] was proposed for 
classifying CXR images into healthy or COVID-19. The CXR images were 
segmented using a multi-thresholding segmentation process into back
ground and several objects of different intensities. Using a dataset of 40 
contrast-enhanced CXR images, the suggested system achieved 97.84% 
accuracy, 99.7% specificity, and 95.76% sensitivity. Also, an 
ensemble-based support vector machine (SVM) model [11] was imple
mented for the automated identification of COVID-19 in which the 
segmentation threshold for the contrast-enhanced CXR images was 
estimated using Li’s method and particle swarm optimization. Subse
quently, the texture information was improved using Laws’ filter masks, 
which highlight the micro-structure characteristics, prior to extracting 
the texture-based feature vector using the gray-level cooccurrence ma
trix (GLCM). Finally, an ensemble of SVMs using weighted voting was 
applied in the classification stage yielding to 98.04% accuracy in dis
tinguishing COVID-19 apart of SARS, MERS and ARDS pneumonia. From 
the previous, despite the few studies adopting traditional ML techniques, 
promising results have been introduced. Also, to the best of our 
knowledge, the bag-of-features (BoF) ML models have not been adopted 
yet in the domain of the CXR image-based COVID-19 diagnosis, despite 
their efficiency, the BoF has the ability to deal with the changed object’s 
position and orientation. Moreover, from [11], it was deduced that using 
ensembles in the classification process have led to high classification 
accuracy in terms of distinguishing COVID-19 apart of other causes of 
pneumonia, which indicates an expected high performance in classi
fying CXR images as either COVID-19 or normal, as in our study. 

Accordingly, in this paper, we have proposed an automated 
ensemble-based BoF model with speeded up robust features (SURF) 
descriptor for the detection of COVID-19 in CXR images using a balanced 
two-class dataset of normal and COVID-19 cases. The organization of the 
paper is as follows. Section 2 reports significant related studies in the 

automated COVID-19 detection based on CXR images. Then, Section 3 
introduces the methodology of the proposed ensemble-based BoF 
framework. In Section 4, the experimental results are reported and 
interpreted. In Section 5, the proposed system performance is compared 
to state-of-the-art studies. Finally, the conclusions are presented in 
Section 6. 

3. Methodology of the proposed ensemble-based bag-of-features 

Bag of features (BoF), also known as bag of visual words (BoVW) 
model, is a standalone ML model which is highly efficient in image 
classification due to its high resistance to the variation in the orientation 
or the position of the object-of-interest. The main advantage of the BoF is 
the unneeded segmentation process before the classification stage as it 
aims to construct a set of visual codewords, also referred to as a code
book or a dictionary, which represents all the possible visual codewords 
that can be present in the dataset images. The obtained bag of visual 
words represents a vector of existence counts of a vocabulary of local 
features in an image without the need of a segmentation process. Hence, 
given the codebook, an input image can be quantified and represented 
by a histogram that indicates the occurrence counts of the present visual 
codewords in the given image. The obtained histograms from the dataset 
are then used to classify the given images using classification models 
that are embedded within the BoF model. The BoF model includes three 
main sequential processes without segmentation, namely local feature 
extraction, codebook construction and quantization, and classification. 
The presence of multiple processes in the BoF ML model raises the po
tential of developing modified models by improving their underlying 
algorithms. Accordingly, in this study, an ensemble-based BoF for 
COVID-19 classification-based diagnosis model was proposed by inte
grating ensemble classifiers at the classification stage of the BoF model. 
The different processes of the proposed ensemble-based BoF model are 
discussed below. 

3.1. Feature extraction using speeded up robust features descriptor 

The feature extraction process in the BoF model is the initial process 
at which a feature vector is obtained for each determined keypoint 
without segmentation, which results in a large number of local features 
for each image. Therefore, the feature extraction process is considered a 
two-fold process at which: i) the interest points (i.e. keypoints), which 
represent the feature point locations in each input image are detected, 
then, ii) feature descriptors are applied to extract the feature vector for 
each keypoint. In our proposed model, for determining the keypoints 
and extracting their feature vectors, grid method, and speeded up robust 
features (SURF) descriptor algorithm [12] were applied, respectively. 
The interest points were located using the grid method in which a uni
form grid with a predefined spacing (i.e. grid step) was applied on the 
image, such that the intersections of the grid lines determined the lo
cations of the keypoints. In that process, the grid step was set to the size 
of 8 × 8. 

The SURF descriptor defines the distribution of Haar-wavelet within 
the locality of the determined interest point. This process is applied 
using the integral image instead of the original image, which reduces the 
number of required calculations, which is one of the advantages of using 
SURF compared to the scale invariant feature transform (SIFT). Thus, 
given an interest point X = (x, y), where x and yrepresent its x − axis and 
y − axis coordinates, respectively. The integral image I∑(X) is calcu

lated as the intensity sum of all the pixels within the rectangular region 
formed between the pixel and the image origin, as follows: 

I∑
(

X

)

=
∑i<x

i=0

∑j<y

j=0
I(i, j) (1) 

Prior to extracting the descriptor, SURF follows an orientation 
assignment step at which the horizontal and the vertical Haar wavelet 
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responses are calculated in the preset neighborhood of the interest point. 
Then, the Gaussian weighted sum of these responses is estimated in a 
sliding orientation window covering an angle of 60◦ to obtain the 
dominant orientation. However, this process can be neglected to 
improve the computational speed. Accordingly, the upright-SURF (U- 
SURF) was applied in our study in which the image is robust-up to ± 15◦

change in orientation, while having faster calculations [12]. 
For feature extraction, first, square patches (i.e. regions) were 

centered around the detected keypoints. Multiple sized regions were 
applied in order to extract multiscale features, namely 32×32, 64×64, 
96×96, and 128×128. Per each scale, regions were divided into 8×8 
square sub-regions, where the vertical and horizontal Haar wavelet re
sponses dxand dy, respectively were calculated. Thus, forming the four- 
dimensional sub-region feature vector: 

FV =
[∑

dx,
∑

dy,
∑

|dx|,
∑⃒

⃒dy
⃒
⃒
]

(2)  

where both horizontal and vertical responses were summed over the 
sub-region in the first two entries. Also, the sums of the absolute re
sponses 

∑
|dx|and 

∑⃒
⃒dy
⃒
⃒ are considered to represent the intensity 

changes’ polarity. Thus, per each scale, a. 

3.2. Codebook construction & quantization using K-means algorithm 

The keypoint feature extraction process has generated a vast number 
of features by having a 64-dimensional feature vector for each region per 
each scale. These features are initially reduced prior to constructing the 
codebook. For feature-space reduction, the variance of the extracted 
descriptors is computed, then, the 80% of the strongest descriptors (i.e. 
having the highest score) are selected. Next, these features were quan
tized using K-means clustering algorithm to construct the visual vo
cabulary, which comprises Kvisual words. Using K-means clustering, the 
obtained descriptors are grouped into Kclusters, such that the cluster 

centers represent the Kvisual words. For obtaining the K visual words, 
first, Kinitial cluster centers are randomly selected based on the inputted 
Ndescriptors. Then, the Euclidean distance between each of the N de
scriptors (points di) and each of the Kinitial cluster center is calculated, 
as expressed by the following equation: 

DE = argmin j = 1,……,K
i = 1,…….,N

║di − Cj║
2

(3)  

where Cj represents the cluster center. Thus, the descriptor is then 
assigned to the nearest cluster center. Subsequently, the new cluster 
centers are calculated in addition to the Euclidean distances between the 
descriptors and the new cluster centers. This process is repeated itera
tively, while reducing the sum of the squared Euclidean distances, until 
the cluster centers became steady. The final obtained cluster centers 
represent the Kvisual words (i.e. codewords) of the BoF codebook. 

After constructing the codebook, input images are represented by a 
histogram that indicates the frequency of occurrence of the Kvisual 
words within the image. This vector quantization process is performed 
using the nearest neighbors algorithm based on the Euclidean distance 
measure, which assigned each extracted descriptor to its nearest code
word. Hence, the histograms of the input images represented the dis
tribution of visual content using the constructed codebook. Hereby, 
these histograms were then exploited by ML algorithm to classify the 
input CXR images into either normal or COVID-19 case. 

3.3. Classification using ensemble-based models 

Ensemble-based models integrate a set of classifiers for producing a 
superior classification performance compared to the performance of 
each individual classifier, thus, reducing the poor selection possibility. 
The ensemble-based models are classified into classifier selection 
models, where only the output of the best performing classifier is 

Fig. 1. Block diagram of the proposed ensemble-based bag-of-features classifier for COVID-19 diagnosis model: (a) training phase; (b) testing phase.  
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selected as the final classification output; or classifier fusion models, 
where predefined rules are applied for combining the outputs of the 
individual classifiers to obtain the final decision. The number of classi
fiers in the ensemble, i.e. the ensemble size, is selected based on the 
tradeoff between the classification accuracy and speed, where large 
ensembles produce better classification results on the expense of longer 
training and prediction time. Ensemble learning applies several ap
proaches in integrating the several models, such as: i) bagging (boot
strap aggregation) at which a set of models are trained using randomly 
sampled subset of the training points, while containing all the feature 
set, then the obtained predictions are aggregated using averaging for 
obtaining the final output, ii) boosting which weights the constructed 
models based on their performance by focusing on the misclassified data 
and assigning them higher weights to reduce classification errors, and 
iii) random subspace which uses random feature subsets to train each 
learner, then, the outputs of the different models are combined by ma
jority vote or by combining the posterior probabilities. 

In bagging or bootstrap aggregation, weak learners, such as decision 
trees are trained using random subsamples of the training points. De
cision trees are sensitive to the input data, hence, if the training data is 
changed, the obtained predictions will significantly change. Thus, the 
bagging approach aims to reduce the high variance of the decision trees 
and reduce their bias by training a number of decision trees with 
different data samples and then combining the predictions of the mul
tiple trees into a final decision instead of depending on one individual 
tree. Nevertheless, random subspace algorithm requires less computa
tional time compared to the bagging and boosting methods, as each 
learner is trained using a subset of the feature space instead of all the 
features. Subspace discriminant ensemble engage linear discriminant 
analysis (LDA) to determine a low-dimensional discriminant subspace 
[13]. In this study, ensemble-based classification models using bagged 
trees ensembles and subspace discriminant ensembles were investigated 
in the classification layer of the proposed BoF model. 

Fig. 2. Sample CXR images from the dataset: (a) normal CXR images; (b) COVID-19 CXR images.  

Fig. 3. Scatter plot for two different feature pairs using K = 200: (a) original feature pairs; (b) classified feature pairs using the ensemble subspace discrimi
nant model. 
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3.4. Proposed ensemble-based bag-of-features COVID-19 detection model 

The proposed ensemble-based bag-of-features COVID-19 diagnosis 
model initially undergoes a training phase using the labeled training 
CXR images to construct the codebook of the BoF model in addition to 
train the classification model for setting its parameters. Fig. 1(a) dem
onstrates the sequential processes that were carried out during the 
training phase, which encompassed the keypoint detection using grid 
method followed by the SURF descriptor extraction. The descriptor 
extraction process was based on the calculated integral image, which 
was divided into spatial regions and sub-regions using multi-scale block 
sizes. Accordingly, Haar wavelet response vector was extracted from 
each sub-region, which resulted in a vast number of descriptors per each 
image. Hereby, 80% of the top (i.e. strongest) features were selected 
based on their variance, as the increase in the descriptor variance among 
classes indicates a high distinctive descriptor. Afterward, the codebook 
was constructed using the K-means clustering algorithm to obtain a 
preset number of visual words K. Subsequently, the selected descriptors 
were quantized using the nearest neighbors algorithm to assign each 
descriptor to its nearest visual word and produce the histogram indi
cating the frequency of occurrence of each visual word in the image. 
Finally, the obtained histograms for the training images were used to 
train the classification model to discriminate the COVID-19 CXR images 
and the normal cases. 

In the testing phase, as illustrated in Fig. 1(b), the input CXR images 
were applied to the keypoint detection algorithm for extracting the 
SURF descriptors from the detected keypoints. The selected strongest 
features were quantized using the constructed codebook to obtain the 
frequency of occurrence histograms for the testing images. Finally, the 
pre-trained classification model produced the classification decisions 
regarding the input testing CXR images. 

4. Experimental results and discussion 

In this study, an open publicly-available dataset of CXR images was 
applied for training and testing the proposed system [14]. A 4 GB GPU, 
Intel Core i7 desktop was used to execute the MATLAB software for 
evaluating the proposed system. At the access date, the dataset consisted 
of 400 CXR images, including 200 COVID-19 cases and 200 normal 
cases, which were collected from public sources in addition to hospitals 
and physicians. Fig. 2 displays a sample of the dataset images. 

The CXR images were separated into training and testing sets using 
the five-fold cross-validation technique by splitting the dataset into five 
equal folds to find the classifier’s overall performance as the average of 
the five runs. The training images followed the process demonstrated in 
Fig. 1(a) for keypoint detection and SURF descriptor extraction. These 
features were quantized into Kvisual words according to the number of 
codewords that were defined at the codebook construction process. In 
our study, we investigated the effect of changing Kon the proposed 
system performance. The classification metrics of accuracy, sensitivity, 
precision, specificity, F-measure, and area under curve (AUC) were 
estimated at K = 150 and K = 200. Generally, increasing the number of 
codewords lead to better classification performance due to the presence 
of more distinctive features. However, this comes on the expense of the 
computational time. Also, different classification models were compared 
to the proposed ensemble-based classification in the BoF model, which 
includes the default linear SVM, and several nearest neighbor KNN al
gorithms. Also, two different ensemble-based classification models were 
studied: the ensemble bagged trees model and the ensemble subspace 
discriminant model. Fig. 3 demonstrates the scatter plot of a two 
different feature pairs using K = 200 in the first row, and their classifi
cation results using the ensemble subspace discriminant classifier are 
visually demonstrated in the second row, where the cross mark repre
sents the misclassified samples. 

From Fig. 3, the foremost aim of the selected classification method is 
to decrease the number of the misclassified samples in the given two 

classes. Different classification models were investigated at different 
numbers of visual words to select the classification model having the 
optimal performance metrics. Figs. 4 to 11 demonstrates the effect of 
increasing the number of visual words from K = 150 and K = 200 on the 
different classification models, namely subspace discriminant ensemble, 
bagged trees ensemble, linear SVM, cosine KNN, fine KNN, medium 
KNN, coarse KNN, and weighted KNN, respectively. The performance 
metrics of the classification models were evaluated according to the true 
negative (TN), true positive (TP), false positive (FP), and false negative 
(FN) rates. The positive class represented the COVID-19 class, where the 
negative class represented the normal cases. The accuracy was calcu
lated as the percentage of the truly detected images (TP and TN) relative 
to the entire number of input images. The sensitivity or recall or true 
positive rate was calculated as the percentage of the positive cases which 
were truly detected. Precision determined the percentage of the truly 
detected positive cases relative to all the detected positives. On the other 
hand, the specificity determined the true negative rate, which is the 
percentage of the truly identified normal cases. Finally, the F-measure 
was calculated to represent the weighted average of precision and recall. 

Fig. 4 displays that increasing the number of visual words from K =

150 to K = 200 increases the classification accuracy, precision, speci
ficity, and F-measure metrics of the subspace discriminant ensemble by 
nearly 2% each, reaching 98.6%, 97.7%, 97.7%, and 98.6%, respec
tively. Also, an approximate increase of 1% was achieved in the classifier 
sensitivity reaching 99.4% at K = 200. However, for bagged trees en
sembles in Fig. 5, the effect of the increase of Kwas obvious only positive 
on the accuracy, sensitivity, and F-measure metrics. On contrary, a 
negative effect was intercepted on the precision and specificity metrics, 
which indicates the increase in the number of false positive cases, while 
the reduction in the number of false negative cases. 

Thus, Fig. 5 illustrates that the rise in the number of visual words 
from K = 150 to K = 200 increases the classification accuracy and F- 
measure metrics of the bagged trees ensemble by nearly 0.7% each 
reaching 97.5% and 97.4%, respectively, while, increasing the 

Fig. 4. Classification performance metrics of subspace discriminant ensemble 
at K = 150 and K = 200. 

Fig. 5. Classification performance metrics of bagged trees ensembles at K =

150 and K = 200. 
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sensitivity by nearly 2% reaching 98.3%. However, both the precision 
and specificity scored an approximate reduction of 0.7% from 97.1%– 
96.6%. 

Fig. 6 demonstrates the classification metrics of linear SVM at both 
K = 150 and K = 200, which reveals an approximate 2% increase in 
both the classification precision and specificity from 94.5%–96.6%. 
Also, the accuracy and F-measure metrics increased by nearly 1.5% 
each, thus, both reached 97.7%. While, the sensitivity remained steady 
at 98.8%, which reveals that the number of false negative and true 
positive remained steady with the increase of K. Figs. 7 to 11 demon
strate the classification metrics at both K = 150 and K = 200 for 
different types of K-nearest neighbor classifiers, namely cosine, fine, 
medium, weighted, and cubic KNNs. 

Fig. 7 demonstrates that all the classification metrics of the cosine 
KNN increased with the increase of Kfrom 150 to 200. The accuracy, 
sensitivity and F-measure have increased by an average of 2% reaching 
96.9%, 94.6% and 96.9%, respectively. Moreover, both the precision 
and specificity have increased from nearly 96.5%–99.4% with the 

increase of KFrom Figs. 4 to 7, it can be concluded that the increase of K 
resulted in improving the performance of the ensemble-based, linear 
SVM and cosine KNN classification models. This is because as the value 
of Kincreases, the number of cluster centers increases, and fewer de
scriptors will belong to the cluster. Thus, the average distortion in 
assigning the descriptors will decrease and descriptors would be more 
precisely assigned to clusters leading to more discriminant cluster points 
(i.e. visual words). Nonetheless, Figs. 8 to 11 representing the fine, 
medium, weighted and cubic KNNs indicate the decrease in classifica
tion performance with the increase of K This result occurs due to the 
increase of the number of visual words leads to less occurrence levels in 
the histogram of the BoF, which leads to closer sample points. The KNNs 
categorize the given sample points into different classes based on their 
distance to neighboring points. Hence, the closer proximity occurring 
with the increase of Kleads to less distinction in the classification pro
cess, with the exception of the cosine KNN which achieved better per
formance with the increase of K In that case, the sample points are 
assigned to the nearest neighbors based on a cosine distance metric, 
which calculates the included angle between the sample points instead 
of the Euclidean distance. 

Fig. 8 illustrates that the rise in the number of visual words from K =

150 to K = 200, decreases the accuracy, precision, specificity, and F- 
measure of the fine KNN by nearly 2% reaching 90.9%, 83.6%, 85.7% 
and 90.2%, respectively. However, the sensitivity has roughly remained 
steady at 98%. As the fine KNN considers the fine detailed distinctions 
between classes, better results were obtained using the fine KNN 
compared to the medium KNN in Fig. 9 at which the coarser distinctions 
are observed between classes. 

Fig. 9 demonstrates that increasing the number of visual words from 
K = 150 to K = 200 decreased the accuracy, sensitivity, precision, 
specificity, and F-measure of the medium KNN reaching 87.5%, 99.3%, 
75.7%, 80.4% and 85.9%, respectively with an average decrease of more 
than 2%. 

Fig. 10 demonstrates that increasing the number of visual words 

Fig. 6. Classification performance metrics of linear SVM at K = 150 
and K = 200. 

Fig. 7. Classification performance metrics of cosine KNN at K = 150 
and K = 200. 

Fig. 8. Classification performance metrics of fine KNN at K = 150 and K = 200.  

Fig. 9. Classification performance metrics of medium KNN at K = 150 
and K = 200. 

Fig. 10. Classification performance metrics of weighted KNN at K = 150 
and K = 200. 
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from K = 150 to K = 200 decreased the accuracy, sensitivity, precision, 
specificity, and F-measure of the weighted KNN reaching 87%, 99.2%, 
74.6%, 79.6% and 85.2%, respectively with an average decrease of less 
than 2%. Conversely, in Fig. 11, the accuracy, sensitivity, precision, 
specificity, and F-measure of the cubic KNN have reached 82.8%, 99.2%, 
66.1%, 74.6% and 79.3%, respectively at K = 200 with an average 
reduction of nearly 4% compared to the case at K = 150.

From Figs. 4 to 11, it is clear that the best overall classification 
performance was obtained from the subspace discriminant ensemble 
model compared to the bagged trees ensemble, the default linear SVM 
and the KNN algorithms at K = 200. Figs. 12 and 13 compares the 
classification performance metrics of these classification models at K =

150 and K = 200, respectively. 
Fig. 12 establishes the highest classification performance with K =

150 was obtained using the ensembles subspace discriminant, which 
achieved 96.9% accuracy, 98.3% sensitivity, 95.5% precision, 95.6% 
specificity, and 96.8% F-measure. In the second rank, the ensembles 
bagged trees, which achieved 96.9% accuracy, 96.6% sensitivity, 97.1% 

precision, 97.1% specificity, and 96.9% F-measure. While in the third 
rank, the linear SVM achieved 96.3% accuracy, 98.8% sensitivity, 94.5% 
specificity, 94.4% precision, and 96.5% F-measure. 

Fig. 13 establishes the highest classification performance with K =

200 was obtained using the ensembles subspace discriminant, which 
achieved 98.6% accuracy, 99.4% sensitivity, 97.7% precision, 97.7% 
specificity, and 98.6% F-measure. In the second rank, the linear SVM, 
which achieved 97.7% accuracy, 98.8% sensitivity, 96.6% precision, 
96.6% specificity, and 97.7% F-measure. However, in the third rank, the 
ensembles bagged trees achieved 97.5% accuracy, 98.3% sensitivity, 
96.6% specificity, 96.6% precision, and 97.4% F-measure. Table 1 re
ports the area under the receiver operating characteristics curve (ROC), 
which known as the AUC for the different classifiers at both K = 150 and 
K = 200.

Accordingly, the proposed BoF model for diagnosing COVID-19 
based on CXR images establishes its best performance using the en
sembles subspace discriminant model with 200 visual words (i.e. K =

200). 

Fig. 11. Classification performance metrics of cubic KNN at K = 150 
and K = 200. 

Fig. 12. Classification performance metrics of different classification models for the proposed BoF at K = 150.  

Fig. 13. Classification performance metrics of different classification models for the proposed BoF at K = 200.  

Table 1 
Area under receiver operating characteristics curve for different classification 
models using K = 150 and.  

Classification Model AUC using K = 150  AUC using K = 200  

Ensembles Subspace Discriminant 1.00 1.00 
Ensembles Bagged Trees 1.00 0.99 
Linear SVM 1.00 1.00 
Cosine KNN 0.99 0.99 
Fine KNN 0.92 0.91 
Medium KNN 0.99 0.99 
Weighted KNN 0.99 0.99 
Cubic KNN 0.99 0.99  

A.S. Ashour et al.                                                                                                                                                                                                                               



Biomedical Signal Processing and Control 68 (2021) 102656

8

5. Performance evaluation of the proposed system against other 
studies 

Table 2 demonstrates a comparative analysis that highlights the 
proposed system performance in contradiction of other state-of-the-art 
studies. The reported studies used CXR images including confirmed 
COVID-19 cases and negative COVID-19 cases. It is worth noting that the 
continuous update of the publicly available COVID-19 datasets makes it 
difficult to compare to proposed study to other studies which applied the 
exact same dataset. However, Table 2 indicates the superiority of the 
proposed model against the deep learning techniques in [6,8] and the 
SVM ensembles model in [11]. 

6. Conclusion 

The occurrence of COVID-19 pandemic has imposed major pressure 
on healthcare facilities, which hinders providing efficient healthcare 
services without the risk of infections. Computer-aided diagnostic sys
tems present an automated risk-free solution to diagnose COVID-19 
using CXR images. Although several automated detection systems 
were proposed in literature, most of these systems relied on deep- 
learning techniques, which require large datasets for accurate perfor
mance. However, this condition was hardly achieved in several studies 
due to availability limitations. Accordingly, in our study, we have 
investigated the BoF classification model, which is one of the most 
promising traditional ML models. In our proposed model, the effect of 
the used number of visual words on the classification performance was 
studied using K = 150 and K = 200.Accordingly, it was concluded that 
the increase in the number of visual words boosts the classification ac
curacy due to the presence of more distinctive features, while reducing 
the computational time. 

In the proposed BoF model, ensembles were employed in the clas
sification process for the efficient classification of CXR images into 
normal or COVID-19 cases. Two several ensembles were investigated 
namely, the ensemble subspace discriminant and the ensemble bagged 
trees, which were compared to other classifiers including the linear 
SVM, which represent the default classifier in the bag-of-features, and 
different KNN classifiers. Results have indicated the superiority of the 
ensemble subspace discriminant at K = 200, which achieved 98.6% 
accuracy, 99.4% sensitivity, and 97.7% precision. 
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