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Genomic landscape of extraordinary responses in
metastatic breast cancer

Sun Min Lim1'8, Eunyoung Kim 2'8, Kyung Hae Jung3'8, Sora Kim2, Ja Seung Koo4, Seung Il Kim5, Seho Park5,
Hyung Seok Park®, Byoung Woo Park®, Young Up Cho® >, Ji Ye Kim®, Soonmyung Paik® ©, Nak-Jung Kwon’,
Gun Min Kim, Ji Hyoung Kim® !, Min Hwan Kim'!, Min Kyung Jeon', Sangwoo Kim® 2 & Joohyuk Sohn® '™

Extreme responders to anticancer therapy are rare among advanced breast cancer patients.
Researchers, however, have yet to investigate treatment responses therein on the whole
exome level. We performed whole exome analysis to characterize the genomic landscape of
extreme responders among metastatic breast cancer patients. Clinical samples were obtained
from breast cancer patients who showed exceptional responses to anti-HER2 therapy or
hormonal therapy and from those who did not. Matched breast tumor tissue (somatic DNA)
and blood samples (germline DNA) were collected from a total of 30 responders and 15 non-
responders. Whole exome sequencing using lllumina HiSeq2500 was performed for all 45
patients (90 samples). Somatic single nucleotide variants (SNVs), indels, and copy number
variants (CNVs) were identified for the genomes of each patient. Group-specific somatic
variants and mutational burden were statistically analyzed. Sequencing of cancer exomes for
all patients revealed 1839 somatic SNVs (1661 missense, 120 nonsense, 43 splice-site,
15 start/stop-lost) and 368 insertions/deletions (273 frameshift, 95 in-frame), with a median
of 0.7 mutations per megabase (range, 0.08 to 4.2 mutations per megabase). Responders
harbored a significantly lower nonsynonymous mutational burden (median, 26 vs. 59, P=
0.02) and fewer CNVs (median 13.6 vs. 97.7, P=0.05) than non-responders. Multivariate
analyses of factors influencing progression-free survival showed that a high mutational
burden and visceral metastases were significantly related with disease progression. Extreme
responders to treatment for metastatic breast cancer are characterized by fewer non-
synonymous mutations and CNVs.
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according to three therapeutic biomarkers: (1) estrogen

receptor (ER)-positive cancer, (2) HER2 (ERBB2)-amplified
cancer, and (3) triple-negative cancer. ER-positive cancers can be
further separated into those with higher proliferative (luminal A-
like) and lower proliferative (luminal B-like) capabilities. Never-
theless, even with the predictive markers, patients still exhibit
various responses to their designated therapies: for example,
almost 50% of all ER-positive patients with advanced disease do
not respond to endocrine therapy, and a complete response is
rarely encountered. As such, interest in the causes that underly
these varying responses is growing.

Cancer acquires successive genetic alterations, such as point
mutations and copy number changes, during clonal evolution.
Breast cancer is characterized by genomic instability that drives
tumor heterogeneity, including mutations, copy number altera-
tions, and chromosomal structural rearrangements!. Recent
molecular advances have helped outline the genomic landscape of
breast cancer, and multiple mutational signatures have been
suggested?. However, these studies do not contain information on
treatment responses.

Exceptional responses, such as complete responses or durable
partial responses, are rare in solid tumors. However, case studies
of extraordinary responses to targeted therapeutics have been
reported, suggesting that some somatic alterations in a patient’s
tumor may elicit extreme responses3‘5. In the cancer genome, the
prevalence of somatic mutations can vary greatly between can-
cers, ranging from about 0.001 per megabase (Mb) to more than
400 per Mb®. Notably, potentially curable cancers, such as
hematologic malignancies, and childhood cancers, such as pilo-
cytic astrocytoma and acute lymphoblastic leukemia, carry the
fewest mutations, while chemotherapy-resistant cancers, such as
malignant melanoma, show the opposite, with high mutational
burden. Accordingly, we hypothesized that cancers with fewer
mutations may be more sensitive to anticancer treatment, owing
to simplicity of their genome. In line with this, we also hypo-
thesized that breast cancer patients who show extreme sensitivity
to anticancer treatment may harbor fewer genomic alterations.

In this study, we prospectively collected primary tumor tissue
and blood samples from extreme responders to anti-ER or anti-
HER2 therapy and non-responders, and performed whole exome
analysis of these patients. The primary aim of this study was to
compare mutational burden and copy number variations between
the extreme responders and non-responders.

Breast cancer is a heterogeneous disease categorized

Results

Design of the study. The overall design of the study is depicted in
Fig. 1. A total of 2548 cases of metastatic breast cancer were
searched for extreme responders and non-responders. Among 89
patients who met the inclusion criteria, we were able to obtain
informed consent consecutively from 71 patients (43 extreme-
and 23 non-responders) who visited an outpatient clinic from
April 2013 to February 2019. Out of 43 extreme responders, 13
were excluded due to insufficient primary breast tumor materials
for whole exome sequencing. Likewise, six out of 23 non-
responder patients were excluded. One other non-responder who
expired before blood collection was also excluded. Consequently,
a total of 30 responders and 15 non-responders were finally
analyzed (Fig. 1).

The average depths of sequencing were 107 for tumor samples
and 65 for blood samples. Based on the list of somatic alterations,
group-specific variations and mutational burden were explored.
Functional analysis of the group-specific variations, including
frequently aberrated regions and genomic instability, was
conducted to explain differences between the two groups. An

overview of the genome variant analysis is presented in
Supplementary Fig. 1.

Patient characteristics. The median age of all patients was 55
years (range, 36-72), and there were 38 ER-positive patients and
7 HER2-positive patients. All HER2-positive patients were ER-
negative. The clinical characteristics of all patients are outlined in
Table 1. According to initial stage, there were 7 (16%) patients
with stage 1, 10 (22%) patients with stage 2, 8 (18%) patients with
stage 3, and 20 (44%) patients with stage 4 disease. The most
common site of metastasis or recurrence was the lungs (30%),
followed by bone (27%), and liver (27%). Among the 30
responders, 24 were ER-positive (80%), and all showed a com-
plete response or durable partial response to either aromatase
inhibitors or tamoxifen. Among responders, 20 (67%) patients
had received therapy as their first line of treatment, and 3 (10%)
patients had experienced progression at the time of data cut-off
(May 2019). Among non-responders, 10 (66%) patients had
received therapy as their first line of treatment, and all patients
had experienced progression at the data cut-off date. The median
PES of responders was not reached at the time of data cut-off,
with a median follow up of 42 months, and the median PFS of
non-responders was 5.5 months (95% CI, 3.86-7.14) (Fig. 2).

Analysis of nonsynonymous mutational and CNV burden. We
compared mutational burden between the responder and non-
responder groups with respect to the number of somatic
SNVs (with indels) and somatic CNVs. Initially, a total of
13,617 somatic SNVs and 361 indels were called in the 45
patients. We further filtered out 11,778 SNVs that did not lead to
protein alterations (mutations outside of exons and synonymous
mutations). The remaining 1839 mutations included 1661 mis-
sense, 120 nonsense, 15 start-loss and stop-loss, 43 SNVs at a
splice junction, and 368 indels (95 in-frame and 273 frameshift)
(Fig. 3a). The overall nonsynonymous mutational burden was
0.99 (£0.95) per Mb (median, 0.72 per Mb), which is comparable
to a previous report of 1.29 (+1.33) per Mb (median, 0.93 per
Mb)”. On average, ER-positive patients had a mutational burden
of 1.08 per Mb; HER2-positive patients had a mutation burden of
0.51 per Mb.

Next, we compared nonsynonymous mutational burdens
between the responder and non-responder groups (Fig. 3b).
The number of nonsynonymous mutations in the 30 responders
ranged from 4 to 195 per patient, with an average of 41.47 and a
median of 26 mutations. In contrast, the number in the 15 non-
responders ranged from 10 to 210 per patient, with an average of
65.80 and a median of 59 mutations, an approximately two-fold
increase. With only a few outlier patients, mutational burden
could discriminate the two groups (Fig. 3a), and the difference in
mutational burden was statistically significant (Wilcoxon rank-
sum test, P=0.02, one-side), confirming the hypothesis that
extraordinary responders in metastatic breast cancer would have
a lower tumor mutational burden than non-responders. Muta-
tional burden in the ER-positive patients also showed a significant
difference between the responders and non-responders (45.96 vs.
67.93, Wilcoxon rank-sum test, P = 0.04, one-side), with non-
responders harboring more nonsynonymous mutations.

We further categorized all patients into two groups according
to the median nonsynonymous mutational burden (median =
0.72 per Mb). In doing so, we sought to determine whether
patients with lower nonsynonymous mutational burden would
show longer PFS than patients with a higher nonsynonymous
mutational burden. In survival analysis, we found that the median
PES of patients with the lower mutational burden was not
reached, whereas the median PFS of patients with the higher
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Fig. 1 Schematic diagram of the study protocol. The overall study procedure is depicted to show patient enroliment and analysis.

nonsynonymous mutational burden was 5.9 months (95% CI,
3.61-8.18) (Supplementary Fig. 2a). Multivariate analyses of
factors influencing PFS (mutational burden, initial metastasis, line
of therapy, visceral metastasis) revealed that high mutational
burden and visceral metastases were significantly related with
disease progression (both P <0.05) (Table 2).

Additionally, we compared CNV burden between the respon-
ders and non-responders. Due to ambiguity in the definition of
CNV, CNV burden was measured using two different values:
CNV total size (the size of genomic regions affected by CNVs)
and CNV average size (CNV total size per the number of distinct
CNVs) (Fig. 4a). The median CNV counts (the number of distinct
CNVs) per patient were 13 (mean = 18.7) in responders and 12
(mean = 17.6) in non-responders (Wilcoxon rank-sum test P =
0.45, one-side). The median CNV gene counts (the number of
genes with distinct CNVs) per patient were 134 (mean = 358.7)
in responders and 594 (mean=660.9) in non-responders
(Wilcoxon rank-sum test P=0.05, one-side). The median
total lengths of CNVs per patient were 13.6 Mb (mean = 41.59
Mb) in responders and 97.7 Mb (mean= 77.85Mb) in non-
responders (Wilcoxon rank-sum test P=0.05, one-side). The
median average lengths of CNVs per patient were 0.99 Mb

(mean = 1.90 Mb) in responders and 3.94 Mb (mean = 5.99 Mb)
in non-responders (Wilcoxon rank-sum test P = 0.03, one-side).
We found that CNV burden was significant in discriminating
between the two groups, expect for CNV count (W =230.5, P =
0.452, one-side) and total length (W =293, P =0.052, one-side).
Nevertheless, the total measured lengths of CNVs under both
definitions in responders were consistently lower than those in
non-responders: the total lengths of CNVs in the 15 non-
responders ranged from 0.09 to 183 Mb, with a total sum of 1167
Mb, and those in the 30 responders ranged from 0 to 139 Mb,
with a total sum of 1247 Mb (Fig. 4b). In addition, we categorized
patients into two groups according to the median value of CNV
burden (Supplementary Fig. 2b). In doing so, we found that the
median PFS of patients with lower CNV burden was not reached,
whereas the median PFS of patients with higher CNV burden was
34.4 months (P =0.032).

Analysis of group-specific variants and enrichment pathways.
Next, we investigated differences in genomic variants and
enrichment pathways between the responders and non-
responders (Supplementary Fig. 3). Fisher’s exact test revealed
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Table 1 Clinical characteristics of all patients.

Pt ER/HER2 Age Initial stage Site of metastases Treatment PFS (mo.)

1 HER2+ 57 4 Lung Herceptin + taxane followed by herceptin 86.0+
maintenance

2  HER2+ 4 4 Brain TDM1 62.9+

3 HER2+ 49 4 Bone, lung Herceptin + taxane followed by herceptin 49.9+
maintenance

4 HER2+ 39 3 Ovary Herceptin + taxane followed by herceptin 379
maintenance

5 HER2+ 67 1 Liver Xeloda + lapatinib 345

6  HER2+ 62 4 Axillary lymph node, bone Herceptin 4 taxane followed by herceptin 34.4
maintenance

7 ER+ 74 2 Pleura Letrozole 100.3+

8 ER+ 58 4 Ipsilateral axillary lymph node, lung, liver, Anastrozole 100+

bone, brain

9 ER+ 56 1 Lung Letrozole 87+

10 ER+ 49 3 Lung Tamoxifen 73+

n  ER+ 48 4 Pleura Tamoxifen 72.8+

12 ER+ 46 2 Bone Letrozole/leuprorelin 71+

13  ER+ 61 3 Pleura, mediastinal LN Letrozole 69+

14 ER+ 44 2 Bone Everolimus/exemestane 63+

15 ER+ 60 2 Liver Letrozole 621+

16 ER+ 54 4 Liver Letrozole 62+

17 ER+ 52 2 Pleura, lung Anastrozole 61.6+

18 ER+ 551 2 Pleura, mediastinum Letrozole 61.4+

19 ER+ 691 1 Pleura Everolimus/exemestane 61+

20 ER+ 512 2 Lung Everolimus/letrozole/leuprorelin 61+

21 ER+ 592 3 Bone Letrozole 61+

22 ER+ 58 1 Lung Arimidex 60.5+

23 ER+ 50 3 Multiple bone Everolimus/letrozole/leuprorelin 59+

24  ER+ 52 3 Liver Everolimus/letrozole/leuprorelin 49+

25 ER+ 48 2 Liver, ovary Femara 47 1+

26 ER+ 69 4 Pericardial, ipsilateral cervical LN Letrozole 42+

27 ER+ 72 4 Stomach Letrozole 34+

28 ER+ 51 2 Lung Letrozole/leuprorelin 28+

29 ER+ 56 3 Bone Everolimus/exemestane 23+

30 ER+ 52 4 Bone Paclitaxel 10.6+

Non-responders

1 HER2+ 56 4 Liver, lung Herceptin + taxane 7.2

2 ER+ 57 1 Bone Letrozole 12.2

3 ER+ 50 4 Bone Letrozole, LY2835219 or placebo 9.6

4 ER+ 40 4 Lung Letrozole 8.1

5 ER+ 58 4 Liver Letrozole 7.4

6 ER+ 49 4 Bone, liver Tamoxifen, Goserelin 6.6

7 ER+ 56 4 Bone, distant LN Tamoxifen, Goserelin 5.9

8 ER+ 55 4 Lung Letrozole 55

9 ER+ 59 4 Liver, axillary LN Letrozole, palbociclib 4.9

10 ER+ 49 4 Brain, liver Letrozole 4.6

1  ER+ 43 1 Lung Letrozole 4

12 ER+ 63 3 Bone Femara + ibrance 23

13  ER+ 49 1 Distant LN Letrozole, palbociclib 2.1

14  ER+ 36 2 Bone Tamoxifen 1

15 ER+ 49 4 Bone Tamoxifen 0.96

LN lymph node, PFS progression-free survival.

five non-responder-specific genes (P <0.05): AFF2, TTN, TP53,
ATM, and MLLT4. These genes have previously been shown to be
related to biological pathways of cell cycle control, DNA damage
repair, and apoptosis in breast cancer, either directly or
indirectly®. In enrichment pathway analysis of mutated genes,
alterations in genes important in ER signaling and ERBB2-related
signal transduction were specific to non-responders (adjusted
P value < 0.01): Mutations in the three genes (PIK3CA, AKT1, and
ESRI) associated with these two pathways have been shown to
induce drug resistance in breast cancer?-11,

ESRI gene mutations known to be associated with resistance to
aromatase inhibitors in ER-positive metastatic breast cancer were

found in two non-responders!2-14, These mutations were located
in known hotspot regions, Y537S and D538G, at the ligand-
binding domain, which facilitates hormone-independent ER
transcriptional activity. Mutations therein are known to lead to
resistance to aromatase inhibitors and decreased sensitivity to
tamoxifen and fulvestrant!!. While there was one in-frame
deletion located in the hinge domain in responders, the functional
impact was unpredictable and might be tolerated.

Regarding CNVs, 1q (1q21.2, 1q32.3, 1q41, 1q44), 8q (8q11.22,
8q11.23, 8q12.3, 8q13.1, 8q13.2, 8q21.12, 8q24.13), and 17q25.2
were found to be specific to non-responders (Fisher’s exact test
P <0.05). The gain of a whole long arm (1q) was a common
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Table 2 Univariate and multivariate analyses of parameters
associated with progression.

Univariate analysis Multivariate analysis

Odds ratio P Odds ratio P

Age

<55 1

>55 11 0.851

Mutational burden

Low 1 1

High 3.563 0.028 3.54 0.03
Initial metastasis

MO 1 1

M1 2.993 0.043 2.972 0.046
Line of therapy

First 1

Second or more 1.504 0.236

Visceral metastasis

No 1

Yes 3.457 0.063

The bold values are those that have P < 0.05 significance.

aberration, and local amplification of 1q21-q23 has been
frequently observed in advanced metastatic cancers, unlike
primary diseases tissue!®. The telomeric amplification at 8pl1,
which includes eight genes (ZNF703, PROSC, BRF2, RABIIFIP]I,
GOTIL1 ADRB3, and KCNUI), was previously reported to be
associated poor clinical outcomes in breast cancer!®!7. The
8p11-12 amplicons have previously been shown to be associated
with endocrine resistance and to include the histone methyl-
transferase WHSC1L1 and the receptor tyrosine kinase FGFRI1. In
our cohort, one of the 30 responders (3.3%) and two of the 15
non-responders (20%) have WHSC1L1 and FGFR1 duplication!8.

Mutation signatures and clonal diversity. Analysis of mutational
signatures was performed to investigate whether mutational
processes were responsible for genomic instability in non-
responders®. We noted that mutational signatures related to the
activities of the APOBEC family of enzymes (SBS 2, SBS 13),
which are commonly found in breast cancer and are related to
kataegis, contributed to 22.1% of the mutations in the non-
responder group, compared to only 4.7% in the responder
group!3. Even in ER-positive patients, mutational signatures
related to APOBEC were more predominant in non-responders
than in responders (24.3% vs.4.7%) (Supplementary Fig. 4).

COMMUNICATIONS BIOLOGY | (2021)4:449 | https://doi.org/10.1038/s42003-021-01973-x | www.nature.com/commsbio 5


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01973-x

A
: ﬁ@g DUP DEL  mmNR
BD UFreq. Freq.  pm g

o [0~0.4] | [0~0.4]

0
3

a
o
o
g = mj/ ° s T

f=3 le
2 ; =3 -
o | - o 2 o S o
= i : N 33
~ . : ® =)
=) : | @ o 2
N =2 . ) -7 @
» o 2 ] c
o g = 1 g
Il ) ; o mo
2o & Z8 .
> © > © . e % 0 K
z Z 5

o s lan o L IS) - il

T T T T
NR R NR R

Wilcoxon rank-sum test
P-value = 0.052

2

Wilcoxon rank-sum test
P-value = 0.029
W =304

NR R 3% O 5
Wilcoxon rank-sum test ;’%@&@Q BO%@

W =2925

W =293

Effect Size = 0.244 Effect Size = 0.284

P-value = 0.046 %%
o
%

Effect Size = 0.242

Fig. 4 Comparison of copy number variants between responders and non-responders. a Comparison of copy number variants (CNV, total and average
length) and CNV gene count between responders and non-responders. P values were calculated by the Wilcox rank-sum test. b Circos plots depict CNV
types and frequencies in the 30 responders and 15 non-responders. The frequency of duplications per genome base in each group is shown in histogram
plots and indicated in the regions marked by green lines (max: 0.6). Also, the frequency of deletions (DEL) is indicated in the regions marked by orange

lines (max: 0.8).

Recently, APOBEC signature has been linked to drug resistance
in ER-positive breast cancer and ongoing tumor evolution by
driving subclonal diversification!®. In order to verify whether
drug responses are associated with clonal diversity, we analyzed
in non-responders and responders correlations between estimated
clone counts and genetic features. The nonsynonymous muta-
tional burden (R=0.52 vs. 0.44) (Fig. 5b) and CNV total length
(R=0.68 vs. 0.36) (Fig. 5¢), respectively, exhibited more positive
correlations with clonal diversity in spite of a similar correlation
between them (R=0.59 vs. 0.53) (Fig. 5a) for non-responders
than responders. The number of clones per patient was a median
of 1 (mean =2.03) in responders and a median of 2 (mean =
3.47) in non-responders (P =0.04, one-side) (Fig. 5d). Patients
with a higher number of clones tended to exhibit higher
intratumor heterogeneity (ITH) (i.e., greater nonsynonymous
mutation burden and larger CNV lengths). The proportion of
patients with high intratumor heterogeneity was markedly greater
in non-responders than in the responders (Fig. 5e).

Discussion

In this study, we analyzed mutational and CNV burden in
extreme responders to anti-ER or anti-HER2 therapy among
metastatic breast cancer patients. In doing so, we discovered that
responders harbored significantly fewer nonsynonymous muta-
tions and a lower CNV burden, compared to non-responders.
These findings confirm our hypothesis that extreme responses to
anti-cancer therapy may be characterized by fewer genomic
alterations.

Treatment responses are undergirded by various genomic
factors. In line with this, we initially hypothesized that patients
with larger numbers of genomic alterations would exhibit acti-
vation of alternative pathways that interfere with treatment
responses. Supporting our hypothesis, preclinical and clinical data
has suggested that resistance to therapy in ER-positive and
HER2-positive patients constitutes complex molecular crosstalk
between ER and HER2 pathways?). Meanwhile, co-targeting
PI3K/mTOR pathways or the CDK4/6 complexes has been found
to significantly delay resistance to endocrine therapy?!:22, and
dual inhibition of the HER2-pathway has been shown to provide
a more complete blockade of HER?2 signaling?3. Notwithstanding,
these pivotal studies offer no insights into extreme responders
to endocrine and HER2-targeting therapy. Accordingly, the

National Cancer Institute’s Exceptional Responder Study
(NCT02243592) is currently attempting to document large
number of exceptional responders to understand their tumor
biology and inform treatment decisions?*.

Ellis et al. performed massive parallel sequencing analysis to
characterize responses to aromatase inhibitors?>. Several path-
ways were enriched in the aromatase inhibitor-resistant subjects,
including TP53 signaling, DNA replication, and mismatch repair.
The results were in accordance with ours, in that aromatase
inhibitor-resistant individuals had larger numbers of point
mutations and indels, genome-wide copy number alterations, and
structural rearrangements. Chalmers et al. recently analyzed
human cancer genomes and revealed that TP53 gene mutations,
which were also significantly enriched in our non-responder
group, were associated with high tumor mutational burden2®.

Impaired p53 pathway signaling may impact cellular responses
to DNA damage. A defective p53 pathway can lead to aberrant
expression of p53 target genes, such as PTEN, BRCAI, and RPI,
which directly affect both the recruitment of DNA repair proteins
to sites of DNA damage and DNA damage repair potentiall.
Interestingly, however, genes involved in DNA mismatch repair,
such as MSH2, MSH6, MLH1, and PMS2, were not enriched in
our non-responder group.

Several studies have proposed that tumor mutational burden
may be used as a predictive biomarker of immune checkpoint
inhibitors?”-28. Tumor-specific mutations created by DNA
alterations have been found to result in the formation of novel
proteins that allow the immune system to distinguish cancer cells
from noncancer cells, and these neoantigens can enhance T cell
reactivity?®. Therefore, mutational load may be an indirect bio-
marker with which to predict tumor-specific T cell reactivity.
Although our patients did not include those who were treated
with immunotherapy, investigating whether non-responders with
high mutational burden may be good candidates for treatment
with immune checkpoint inhibitors would be interesting.

Tumors often evolve, and understanding a tumor’s evolu-
tionary trajectory may help to predict patient outcomes. In this
study, genetic heterogeneity was more common in non-
responders. Similarly, multiple studies have described associa-
tions between subclonal diversity and adverse clinical outcomes
in cancers®’. One previous study reported that intratumor het-
erogeneity in HER2 copy numbers was associated with shorter
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survival3l. Likewise, the presence of subclonal diversity, as noted
in the non-responder group, may reduce the therapeutic effect
treatments in breast cancer patients.

This study has a few limitations that warrant consideration.
One is that RNA sequencing was not feasible, although it would
provide more accurate evaluation of CNVs. This was because
FFPE blocks were old and RNA was degraded to a large degree.
Also, the functional significance of each nonsynonymous varia-
tion and copy number variant was not validated. Lastly, our
cohort comprised only a small number of HER2-positive breast
cancer patients, which may show different mutational burdens.
Nevertheless, the majority of our patients were ER-positive, and
our analysis of ER-positive patients alone showed higher non-
synonymous mutational burden in non-responders. Lastly, all
patients included in this analysis were Korean, which may hinder
the generalizability of our findings to other ethnic groups. Despite
these limitations, our study provides new insights into extra-
ordinary responses to treatment in metastatic breast cancer
patients.

In conclusion, extreme responders to treatment of metastatic
breast cancer are characterized by low nonsynonymous muta-
tional and low CNV burden.

Methods

Patient recruitment. We prospectively and consecutively recruited primary breast
cancer tissue samples and matched blood samples from patients who visited two
institutions (Yonsei Cancer Center and Asan Medical Center, Korea) from April

2013 to February 2019. In addition, we also searched the metastatic breast cancer
database at Yonsei Cancer Center (n = 2548). The criteria for extreme responders
were (1) a complete or (2) partial response for more than two times the reported
progression-free survival (PFS) for metastic breast cancer in historical data. The
criteria for non-responders were (1) no shrinkage in tumor diameter and (2)
progressive disease as the best response. Clinical information, including age, sex,
treatment duration, best response to treatment, percent change in tumor size,
previous treatment history, and survival data, were collected. Tumor response
evaluation was conducted as per Response Evaluation Criteria in Solid Tumor
(RECIST), version 1.132. The study protocol was approved by the independent
ethics committee and institutional review board of Severance Hospital and was
conducted in accordance with the Declaration of Helsinki and Good Clinical
Practice. All patients provided written informed consent for genomic testing in this
study. Specimens were evaluated by a board-certified pathologist (J.S.K.) to identify
tumor-bearing areas for DNA extraction.

Genome variant analysis

Whole exome sequencing and preprocessing. Genomic DNA was isolated from
formalin-fixed paraffin-embedded (FFPE) specimens using QIAamp DNA FFPE
Tissue Kits (Qiagen). Genomic DNA was used for SureSelectXT Target Enrichment
library generation (Agilent) and was then captured by Human All Exon V5
(Agilent). We performed whole exome sequencing analysis using Illumina
HiSeq2500. For the improved quality of variant calls, we followed the Genome
Analysis Toolkit (GATK) best practice of data pre-processing for variant
discovery®3. Sequencing reads for normal and tumor samples were aligned and
processed to the human reference genome (UCSC hgl9) using BWA-MEM v0.7.17
and Picard tools v2.19.0 (http://broadinstitute.github.io/picard/)3*.

Single-nucleotide variants (SNVs) and indel calling. Somatic SNVs and indels were
identified in normal-tumor paired samples by Mutect2 in GATK v4.1.0.0, with the
min-base-quality-score option set to 303°. SNVs were annotated and filtered with
SnpEff and SnpSift v4.1 based on dbSNP v15136-38, Also, we annotated common
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somatic mutations in the Catalog of Somatic Mutation in Cancer (COSMIC)
database v86%°. To minimize the calling of false-positive SNV resulting from
artifacts, such as FFPE contamination, we used the modules of GetPileupSumm-
aries, CalculateContamination, CollectSequencingArtifactMetrics, and FilterByOr-
ientationBias included in the GATK variant filtering.

To retain only high confidence nonsynonymous coding variants, we applied the
following criteria for an additional filtration of the initial call set: (1) variants
rejected by the Mutect2 filter, (2) variants included in noncoding regions, (3)
variants with alternate allele counts <3, (4) variants with an allele frequency <0.1,
and (5) variants with a total allele count (read depth) <20.

Copy number variants (CNVs) calling. CNVs were called using EXCAVATOR2
v1.1.2, with the option minimum mapping quality >30%0. A paired mode was
used to compare CNVs in tumor samples with matched controls. Genomics
regions with an estimated copy number fraction >3 between tumor and control
tissue were considered as duplications. Similarly, regions with fractions <1 were
called as deletions. We considered a gene to be affected by CNVs if the entire
exonic region of the gene was completely contained in the CNV calls. Genes with
low coverage (average read-depth < 20) were removed to reduce false positivity.
The entire process of genomic variant analysis is summarized in Supplementary
Fig. 1.

Analysis of mutational burden and group specificity. One-tailed Wilcoxon rank-sum
test was used to test whether mutational burden (nonsynonymous somatic
mutations and CNVs) differed between the responder and non-responder groups.
To test for group-specific enrichment of genomic variants, Fisher’s exact test was
conducted for each called variant (nonsynonymous mutations, indels, and CNVs),
applying a cut-off P value of 0.05. In Supplementary Fig. 5, we denoted genes with
group-specific CNV selected by Fisher exact test in each group and genes with
CNV that recurrence in both groups. The function impact of somatic SNVs was
predicted using PROVEAN v1.1.5 or SIFT v6.2.14142_ All statistical analyses were
performed using R version 3.6 (http://www.r-project.org) with wilcox.test and
fisher.test functions.

Mutation signature and enrichment pathway analysis. The relative contribution of
COSMIC mutational signatures v3 was assessed within our responders and non-
responders using Mutalisk with breast cancer-specific signatures based on PCAWG
signature. And we performed cross-validatation using SigProfiler*3. A matrix
containing the information on the somatic mutation variants was created using the
module of SigProfilerMatrixGenerator with exome option and then used for sig-
nature extraction and visualization through SigProfilerExtractor and SigProfiler-
Plotting. To proceed with the enrichment analysis, we selected genes that were
mutated in more than two patients within each group. The selected gene list in each
group was used as the input data for analyzing mutated signaling pathways in
Enrchr4,

Inference of clonal populations and impurity. The clonal populations of each patient
with respect to CNVs and allelic counts were inferred using the PyClone with the
Beta Binomial emission model*®. PyClone was performed using binomial emission
densities and the pior option of total copy number for higher confidence of clonal
populations. The suggested cut-offs of each feature were determined using impurity
for distinguishing extreme responders from non-responder. The Gini index
impurity measure is one of the split criteria of the decision tree in the Classification.
The smaller the Gini index means that the better the classification, and that Gini
index used for cut-off value to distinguish the two groups. The Gini index was used
to measure the impurity of mutational burden, copy number burden, and clones as
follows: Gini = 1 — Y_I" | P2, where P, is the probability of class Ci®.

i

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We have deposited a dataset on the mutations and copy number variants obtained
through analysis on the GitHub page (https://github.com/hellokeyworld/Extreme). All
sequence data have been uploaded to NCBI under accession code PRINA700464, with
controlled access. The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request. All the
source data for Figs. 2-5 are available at Supplementary Data 1.

Code availability

The custom code used during the current study are provide on the Zenodo page (https://
doi.org/10.5281/zenodo.4457453)47 and GitHub page (https://github.com/hellokeyworld/
Extreme).
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