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In special application scenarios, such as portable anesthesia depth monitoring,

portable emotional state recognition and portable sleep monitoring,

electroencephalogram (EEG) signal acquisition equipment is required to be

convenient and easy to use. It is di�cult to remove electrooculogram (EOG)

artifacts when the number of EEG acquisition channels is small, especially

when the number of observed signals is less than that of the source signals, and

the overcomplete problem will arise. The independent component analysis

(ICA) algorithm commonly used for artifact removal requires the number of

basis vectors to be smaller than the dimension of the input data due to a set

of standard orthonormal bases learned during the convergence process, so

it cannot be used to solve the overcomplete problem. The empirical mode

decomposition method decomposes the signal into several independent

intrinsic mode functions so that the number of observed signals is more than

that of the source signals, solving the overcomplete problem. However, when

using this method to solve overcompleteness, the modal aliasing problem

will arise, which is caused by abnormal events such as sharp signals, impulse

interference, and noise. Aiming at the above problems, we propose a novel

EEG artifact removal method based on discrete wavelet transform, complete

empirical mode decomposition for adaptive noise (CEEMDAN) and ICA in

this paper. First, the input signals are transformed by discrete wavelet (DWT),

and then CEEMDAN is used to solve the overcomplete and mode aliasing

problems, meeting the a priori conditions of the ICA algorithm. Finally, the

components belonging to EOG artifacts are removed according to the sample

entropy value of each independent component. Experiments show that this

method can e�ectively remove EOG artifacts while solving the overcomplete

and modal aliasing problems.
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Introduction

EEG (Saeidi et al., 2021) is a non-linear and non-stationary

electrophysiological signal of the central nervous system that

contains rich information about brain activity. It is an important

information source for human brain research, disease diagnosis

and rehabilitation engineering. It also has rich rhythmic activity

and can be used to characterize the dynamic changes in brain

function. EEG signal acquisition equipment is required to be

more portable and easier to use with the application of brain

computer interfaces (BCIs). The fewer the number of channels

is, the better in some special application scenarios, such as

portable anesthesia depth monitoring, portable emotional state

recognition (Wan et al., 2022) and portable sleep monitoring

(Kwon et al., 2021), in which only a single channel is needed.

However, EEG signals are easily contaminated by physiological

and non-physiological artifacts, such as EOG (Miao et al.,

2021), electromyogram (EMG) (Meng et al., 2022) and

electrocardiogram (ECG) artifacts (Mourad, 2022). As a result,

the brain function information in EEG signals is concealed by

artifacts, which results in inaccurate classification. EOG artifacts

have the highest amplitude and strongest randomness compared

with the other two kinds of artifacts. The presence of artifacts

makes EEG signals prone to obvious distortion (Jiang et al.,

2019; Gu et al., 2021), interferes with the inherent information

expression of neuronal electrical activity, weakens the signal-to-

noise ratio and increases the difficulty of preprocessing in the

recording process (Dora and Biswal, 2020; Liu et al., 2021; Sun

et al., 2021).

In recent years, many classical methods, such as average

artifact regression analysis (Semlitsch et al., 1986), principal

component analysis (PCA) (Vigon et al., 2000), and ICA

(Makeig et al., 1996; Jiang et al., 2020; Yuan et al., 2020), have

been widely used to remove EOG artifacts from multichannel

EEG signals. In the first method, it is assumed that the

conductivity between the electrode collecting EOG signal and

other electrodes remains unchanged. Then, the correlation

between the EOG channel and other channels is estimated, and

the EOG signals are removed from each channel according to

the conductivity. In the PCA method, the EEG and EOG signals

need to be recorded at the same time during the experiment, and

the artifacts are removed by analyzing the main components.

Different from the first method, the ICA method obtains

each independent source signal and separates the features only

according to its statistical characteristics and the observed signal

when the source signal and transmission channel parameters are

unknown (Li et al., 2013).

The above methods are all difficult to apply to a single-

channel portable BCI system, as they require more EEG

channels to achieve a better separation effect. Kumar proposed

a method that removes single-channel EOG artifacts by using a

wavelet transform soft threshold (Kumar et al., 2008). However,

this method requires much prior knowledge and is highly

subjective, and directly removing the wavelet coefficients will

negatively impact the components of the EEG source signal.

Mammone proposed a WT-ICA algorithm to remove EOG

artifacts based on both wavelet transform (WT) and ICA

(Mammone et al., 2012). This algorithm meets the ICA a

priori condition by wavelet decomposition of the single-channel

EEG signal. However, the wavelet transform not only increases

the observation signals but also decomposes the source signal

into several subsource signals, which leads to the overcomplete

problem. The empirical mode decomposition (EMD) (Wu and

Huang, 2011) proposed by Huang is an adaptive time-frequency

decomposition method that can better deal with non-linear and

non-stationary signals (Park et al., 2011). However, there will

be intermittent phenomena due to abnormal events (such as tip

signals, pulse interference and noise) in the EMD process, which

results in mode aliasing and causes the IMF component to lose

its specific physical significance.

FIGURE 1

Flowchart of DWT-CEEMDAN-ICA.
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FIGURE 2

Original signal.

FIGURE 3

Signal after consistency check and interpolation.

Aiming at the problem that the ICA method cannot be used

to solve the overcomplete and modal aliasing problems caused

by using empirical mode decomposition to make the number

of observed signals greater than that of the source signals in

the process of single-channel EOG artifact removal, we propose

a single-channel EOG artifact removal algorithm (DWT-

CEEMDAN-ICA) based on DWT, CEEMDAN and ICA in this

paper. First, the source signals are transformed by a discrete

wavelet and decomposed by the CEEMDANmethod so that they

meet the a priori condition of the ICA algorithm, which solves

the overcomplete and mode aliasing problems. Experiments

show the effectiveness and stability of this algorithm compared

with the other EOG artifact removal algorithms.

FIGURE 4

Spectrogram after bandpass filtering.

FIGURE 5

Spectrogram after bandstop filtering.

This paper is organized as follows. Related work is

introduced in Section 2. In Section DWT-CEEMDAN-ICA

algorithm, the proposed method is described in detail.

Experiments are presented in Section 4, and some concluding

remarks are given in the last section.

Related works

Discrete wavelet transform

The idea of wavelet transform is to gradually refine the signal

at multiple scales through expansion and translation operations
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so that it can be subdivided according to time in the high-

frequency domain and subdivided according to frequency in the

low-frequency domain. The EEG signal after wavelet transform

has better frequency resolution corresponding to the two

different domains, which automatically meets the requirements

of time-frequency signal analysis and focuses on any detail. The

window function is given by:

ψa,b (t) =
1
√
a
ψ(

t − b

a
) (1)

Where a and b are the scale displacement and time

displacement, respectively.

In the DWT method, the parameter α, τ of wavelet basis

functionψ(α, τ ) needs to be limited to discrete points. The basis

function is:

ψj,k (t) = 2−
j
2ψ(2−jt − kτ0) (2)

Where j and k are the frequency resolution and time

translation, respectively; then, the DWT at this time is:

Wψ f
(

j, k
)

=
∫

f (t) ψ
∗
j,k(t)dt (3)

Complete empirical mode
decomposition

The idea of Empirical mode decomposition (EMD) is to

decompose the signal step by step according to the fluctuation

or trend to produce a series of data sequences with different

characteristic scales. Each sequence is called an intrinsic mode

function (IMF) (Boda et al., 2021) and meets the following

conditions: The number of extreme points and zero crossings

in the whole data segment is equal or has no more than one

difference. The average value of the upper and lower packet

routes formed by the local maximum and minimum points is

zero and locally symmetrical about the time axis at any time.

However, due to the large amount of noise, jumping change

of the time scale and boundary effect in the actual signal, the

phenomenon of mode aliasing will be caused in the process of

EMD. The EMD formula is as follows:

x (t) =
∑N

i=1
an (t)+ rn(t) (4)

Where an(t) is the nth-order IMF, rn(t) is the remainder, and

N is the number of IMFs.

To solve the problem of mode aliasing in the EMD

method, Torres et al. proposed a complete empirical mode

decomposition (CEEMDAN) algorithm that can adapt to noise

(Xu et al., 2018). White noise is added to the residual value, and

the mean value is calculated for each IMF component and then

iterated step by step.

The method is described as follows:

1: Add Gaussian white noise to the

original signal:

xj (t) = x (t)+ σ0wj(t) (5)

Where σ0 is the standard deviation of the

noise. wj(t) is the white noise added by the

j-th decomposition, which is subject to the

N(0, 1) distribution.

2: xj(t) is decomposed by EMD N times. After the

first decomposition, the mean value is taken

to obtain the first-stage modal component

ĨMF1(t), as shown in Equation (6):

ĨMF1 (t) =
1

N

∑N

j=1
IMF

j
1 (t) = ĨMF1(t) (6)

3: Obtain the first-stage residual by

Formula (7)

r1 (t) = x (t)− ĨMF1(t) (7)

4: When the number of extreme points of r1(t)

exceeds two, the first-stage residual r1(t) is

added to the first-stage modal operator to

form a new residual signal r1 (t)+ σ1M1[w
j(t)], and

then EMD is carried out to obtain the

second-stage modal component ĨMF2(t):

ĨMF2 (t) =
1

N

∑N

j=1
M1{r1 (t)+ σ1M1[w

j(t)]} (8)

Where σ1 represents the second-stage standard

deviation of the noise and Ma[·] is the stage

IMF mode operator after EMD of the signal.

5: Repeat step 4 until the residual can no

longer be separated, and the original signal

x(t) is decomposed as shown in Equation (9):

x (t) = R (t)+
∑K

k=1
ĨMFk (9)

where K and k represent the number of times

and layers of modal decomposition,

respectively. The k-stage residual rk(t) in the

kth layer decomposition is calculated by

Equation (10):

rk (t) = rk−1 − ĨMFk(t) (10)

The k+1 stage modal component is calculated by

Equation (11):

ĨMFk+1 (t) =
1

N

∑N

j=1
M1{rk (t)+ σkMk[w

j(t)]} (11)

Algorithm 1. CEEMDAN
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EEG signals and EOG artifacts partially coincide in the time

domain and frequency domain of the low-frequency band. If

the artifacts are directly removed from the result of the discrete

wavelet transform, part of the EEG signal will be lost, resulting

in distortion. In addition, the a priori condition of the ICA

method will no longer bemet. Therefore, we use the Algorithm 1

(CEEMDAN method) to decompose the wavelet coefficients

after wavelet transform into several IMFs.

Independent component analysis and
sample entropy

The original signal collected through the electrode is the

linear instantaneous mix of EEG signals and EOG artifacts,

which are independent of each other. Therefore, the ICAmethod

can be used to decompose the original signal into multiple

independent component spaces to realize the separation of

EEG signals and EOG artifacts. Let S = [S1, S2, . . . , SM]

be the M mutually statistically independent source signal.

X = [x1, x2, . . . , xN ] is the n-dimensional observation signal

generated by the linear mixing of S through an unknown matrix

A, i.e., X = A × S. Under the condition that both A and S

are unknown, the ICA method uses the assumption that X and

S are statistically independent to find a linear transformation

separation matrix W to make the output signal approach S as

much as possible. The FastICA (Chen et al., 2018) algorithm

takes the maximum negative entropy as the search direction

and can sequentially extract independent sources. In addition, it

adopts fixed-point iteration to make the convergence faster and

more robust. Therefore, we use this method to process the IMF

and obtain the source signal S.

The EEG signal comes from brain bioelectric activity and

contains much physiological and pathological information,

while the EOG signal only represents eye movement and

blinking. Compared with EOG signals, EEG signals have more

complex characteristics. The higher the complexity is, the higher

the corresponding entropy. Therefore, the components with

FIGURE 6

Wavelet decomposition results.
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high entropy can be extracted as EEG signals. Compared with

the approximate entropy (Pincus and Goldberger, 1994; Li

et al., 2010), the sample entropy has a better estimation effect

in the time-domain statistics aspect (e.g., mean and variance)

and can be used to calculate the mixed signal composed of

the determined signal and random signal. Therefore, we use

Algorithm 2 (Calculate sample-entropy) to remove the EOG

artifacts in this paper. The Algorithm 2 is as follows:

1: Reconstruct the m-dimensional space vector

from the phase space

Xm (i) = [x (i) , x (i+ 1) , . . . , x (i+m− 1)]

S.t. 1 ≤ i ≤ N −m+ 1 (12)

Where Xm(i) represents the phase space position

of the ith point.

2: Calculate the distance d[Xm (i) ,Xm(j)] between

Xm(i) and Xm(j)

d
[

Xm (i) ,Xm

(

j
)]

= maxk=0,1,...,m−1(
∣

∣x
(

i+ k
)

− x(j+ k)
∣

∣)

S.t. k = 0, 1, . . . ,m− 1, i 6= j (13)

3: For a given Xm(i), count the number Bi of

Xm(j) satisfying d[Xm (i) ,Xm(j)] ≤ r, and then

Bmi (r) = Bi/(N −m)

S.t. 1 ≤ i ≤ N −m (14)

4: Calculate the average of Bmi

Bm =
∑N−m

i=1
Bmi /(N −m+ 1) (15)

5: Increase the dimension to m+ 1. When the

dimension is a finite value, calculate the

sample entropy:

S = −ln[Bm+1(r)/Bm(r)] (16)

Where r = (0.10− 0.25)D, D is the standard

deviation of { x(i)}.

Algorithm 2. Calculate sample-entropy sampEn(m, r,N)

DWT-CEEMDAN-ICA algorithm

The innovation of this algorithm is that it can effectively

solve the overcomplete and modal aliasing problem existing in

the current single-channel EEG removal algorithm, and improve

the retention of effective EEG information. The algorithm

proposed in this paper is described in detail as follows:

1: The collected EEG signal is transformed by db4 wavelet

to obtain a low-frequency approximate component

A7and seven high-frequency detail components Di(i =
1, . . . , 7) corresponding to different layers decomposed by

7 layers.

2: These components are single-branch reconstructed and

CEEMDAN decomposed to obtain several IMFs, and

FastICA decomposition is carried out to calculate several

independent components and their sample entropy.

3: The component corresponding to the sample entropy

satisfying the threshold discriminant proposed by Gomez-

Herrero et al. (2006) is regarded as an EOG artifact and

set to zero. Then, the inverse ICA transform is carried

out to obtain the EEG signal after the artifact is removed.

The threshold discriminant proposed by Gomez Herrero is

as follows:

ϕ(k+ 1)− ϕ(k) < ϕ(k)− ϕ(k− 1)

S.t. 1 < k ≤ [N/2] (17)

where ϕ(k) represents the entropy value of the k-th

independent component sorted in ascending order. The

ICA components corresponding to the top k entropy

values are regarded as EOG artifacts where k takes the

smallest integer which satisfies the above conditions.

4: Repeat steps 2–3 for the remaining wavelet coefficients to

obtain all the signals after removing artifacts and then carry

out wavelet reconstruction to obtain a complete EEG signal

without artifacts.

Figure 1 shows the flowchart of the proposed algorithm.

Experiments

In this section, a series of experiments are conducted to

evaluate the efficiency of the proposed algorithm compared

with a number of state-of-the-art algorithms used to remove

EOG artifacts. The algorithms in our comparisons include

the following:

1) Wave transform (WT) algorithm. First, the original

signals are decomposed by wavelet transform, then the

wavelet coefficients are denoised by the soft threshold

method, and finally the signal is reconstructed by

wavelet reconstruction.

2) WT-ICA algorithm. First, the original signals are

decomposed by wavelet transform, then all wavelet

coefficients are decomposed into independent

components by the ICA algorithm, and finally the

signals are reconstructed by ICA inverse transform of

these components.

3) EMD-ICA algorithm. The original signals are first

decomposed by empirical mode decomposition to
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FIGURE 7

CEEMDAN decomposition results on high-frequency detail coe�cient D5.

acquire a series of IMFs, and then they are decomposed

into independent components. Finally, the signals

are reconstructed by ICA inverse transformation of

these components.

The original signals used in the experiments are collected

from the FP1 channel by a single electrode EEG machine

(Mindwave) of NeuroSky Technology Company (NeuroSky).

The device runs TGAM EEG module and adopts Bluetooth plus

BLE dual-mode transmission. The sampling rate is 512Hz, and

the sampling time is 2min. First, the ears and forehead of the

subject were treated to remove grease and cutin to reduce the

components of EMG artifacts. Then, the subject was allowed

to close his eyes and rest for 2min. During the collection, the

subject was instructed to remain calm and blink several times

in the natural manner. As a result, the collected signals contain

fewer other artifacts, which can be approximately considered to

contain only EEG signals and EOG artifacts.

The root mean square error RMSE and correlation

coefficient R are introduced to evaluate the performance of

the algorithms. The smaller the RMSE is, the closer the signal

is to the original signals after artifact removal. The better the

removal effect is, the larger the correlation coefficient R and

the more complete the effective information of the signals that

is retained.

RMSE =
√

1

n

∑n

i=1
[xi − yi]

2 (18)

R =
∑n

i=1 (xi − x)(yi − y)
√

∑n
i=1 (xi − x)2

√

∑n
i=1 (yi − y)2

(19)
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FIGURE 8

ICA decomposition results.

Preprocessing

Signal jump and mechanical noise are generated in the

collection process, resulting in a certain amount of signals that

are logically unreasonable and exceed the normal range of the

original EEG signals. These signals affect the analysis quality

of EEG signal data. Therefore, it is necessary to check the

consistency and remove the unreasonable information from the

original signals and estimate and supplement the defective signal

by using the mean difference method of surrounding signals

to restore continuity and time-frequency characteristics. The

original signals and the signals after the consistency check and

interpolation are shown in Figures 2, 3, respectively.

The frequency used to analyze the characteristics of EEG

signals is mainly below 64Hz, so it is necessary to filter and

eliminate frequency interference by using a 0.05–64Hz bandpass

filter and a 50Hz band-stop filter, respectively. Figures 4,

5 are the spectrum diagrams after bandpass and band-stop

filtering, respectively.

Experimental results and analysis

It can be seen from the preprocessed signals that the artifacts

are mainly concentrated on the sampling points in the range

of 30,000–40,000. Therefore, the points in this range were

used to compare the effectiveness of removing EOG artifacts.

The retention degree for effective information is obtained by

comparing the correlation coefficients of the sampling points in

the range of 50,000–55,000 before and after being processed by

the DWT-CEEMDAN-ICA algorithm.

Figure 6 shows the results of the preprocessed signals after

wavelet decomposition. Then, CEEMDAN decomposition is

carried out to obtain IMFi (i = 1.0.0.15) components for each
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TABLE 1 Sample entroy.

Component Entropy value Component Entropy value Component Entropy value

ICA1 0.1226 ICA6 0.3407 ICA11 0.0429

ICA2 0.2962 ICA7 0.0218 ICA12 0.4822

ICA3 0.2241 ICA8 0.1047 ICA13 0.0567

ICA4 1.4709 ICA9 0.0633 ICA14 1.2973

ICA5 0.5457 ICA10 2.0395 ICA15 2.1393

FIGURE 9

D5 signal and clean D5 signal.

FIGURE 10

Original signal and clean signal.

wavelet coefficient. Take the high-frequency detail coefficient D5

as an example. Figure 7 shows the decomposition results. All

the IMF components are decomposed by the ICA algorithm

to obtain each independent component, as shown in Figure 8.

Finally, the sample entropy of each ICA component is calculated,

FIGURE 11

Raw EEG signal and result of WT.

FIGURE 12

Raw EEG signal and result of WT-ICA.

as shown in Table 1. From the table, we can see that the more

complex the independent component is, the higher the sample

entropy. Therefore, the component corresponding to the sample

entropy satisfying the threshold discriminant is regarded as an
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FIGURE 13

Original signal and EMD-ICA algorithm signal.

FIGURE 14

Comparison results between the errors and correlation

coe�cients of each algorithm.

EOG artifact and set to zero. Figure 9 shows the comparison

result of D5 between its original value and the value after filtering

the EOG artifacts by the DWT-CEEMDAN-ICA algorithm. We

can see from the figure that our proposed algorithm has a very

good effect in removing EOG artifacts.

However, there is still a gap between the original signals

and the signals reconstructed only from the D5 coefficient.

To prevent distortion and retain more effective EEG signals,

other wavelet coefficients also need to be processed by the

DWT-CEEMDAN-ICA algorithm and then reconstructed by

wavelet reconstruction to obtain the final clean EEG signals

without EOG artifacts. The result is shown in Figure 10.

From this figure, it is shown that the algorithm removed

EOG artifacts well and had a high degree of fitting for the

EEG signals.

Figures 11–13 show the results of the other three algorithms

on EOG artifact removal. We can see that the WT algorithm

can not only effectively remove EOG artifacts but can also

remove many valuable EEG signals, resulting in serious signal

distortion. Moreover, this algorithm is highly subjective and

the threshold and basis function need to be manually selected.

Compared with the WT algorithm, the WT-ICA algorithm

can retain more original EEG signals. Because of the problem

of overcompleteness and the subjectivity of judgment, the

effect is different every time, and the fitting of the original

EEG signals is not good. The EMD-ICA algorithm cannot

effectively remove EOG artifacts because of mode aliasing

and noise.

Figure 14 shows the correlation coefficient R and root mean

square error RMSE calculated by using the four algorithms for

sampling points in the range of 50,000–55,000. The algorithm

proposed in this paper obtains the largest correlation coefficient

and the smallest root mean square error, which proves that it

not only solves the overcomplete and modal aliasing problems

but also effectively removes the EOG artifacts and retains more

valuable original information.

Conclusion

As a result of the problems of overcompleteness and

mode aliasing in the single-channel EOG signal removal

algorithm, the single-channel EEG equipment is restricted by

few acquisition channels and lack of a reference electrode,

so EOG artifacts cannot be effectively removed. We propose

a novel method in this paper that integrates the discrete

wavelet transform, complete empirical mode decomposition

for adaptive noise, independent component analysis and

the sample entropy algorithm. We carry out a series of

experiments to demonstrate its effectiveness. Compared with

some existing methods, our method can effectively identify and

remove EOG artifacts from original signals while solving the

above problems.
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