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HIGHLIGHTS

� This study used both human samples and iPSC-CMs to evaluate the effects of hypoxia on CM proliferation.

� The degree of hypoxia and the manner in which O2 decreases both contribute to the cell cycle activity of post-natal

human CMs.

� From the perspective of CM proliferation and protection, it has been unclear why moderate hypoxia (SaO2:75% to 85%) is

targeted by many children’s medical centers when children with CHD are being transported.

� A target was provided that can be used for antioxidant DNA damage to protect the proliferation of post-natal human CMs.
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ABBR EV I A T I ON S

AND ACRONYMS

CHD = congenital heart disease

CM = cardiomyocytes

IF = immunofluorescence

iPSC = induced pluripotent

stem cell

LV = lentivirus

O2 = oxygen

pATM = phosphorylated ataxia

telangiectasia mutated

pHH3 = phospho-histone H3

qPCR = quantitative

polymerase chain reaction

SaO2 = blood oxygen

saturation

sh = short hairpin

TOF = tetralogy of Fallot

YAP1 = yes-associated prot
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Blood oxygen saturation (SaO2) is one of the most important environmental factors in clinical heart protection.

This study used human heart samples and human induced pluripotent stem cell�cardiomyocytes (iPSC-CMs) to

assess how SaO2 affects human CM cell cycle activities. The results showed that there were significantly more

cell cycle markers in the moderate hypoxia group (SaO2: 75% to 85%) than in the other 2 groups (SaO2 <75% or

>85%). In iPSC-CMs 15% and 10% oxygen (O2) treatment increased cell cycle markers, whereas 5% and rapid

change of O2 decreased the markers. Moderate hypoxia is beneficial to the cell cycle activities of post-natal

human CMs. (J Am Coll Cardiol Basic Trans Science 2020;5:447–60) ©2020TheAuthors. PublishedbyElsevier

on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C ongenital heart disease (CHD) is the
leading cause of birth defect�related
mortality (1,2). Although corrective

surgery enables young patients to survive
most forms of CHD, such patients remain at
risk of developing chronic heart failure (3),
which is characterized by loss of cardiomyocytes
(CMs). In addition, after cardiopulmonary bypass, it
is possible that these patients will experience low car-
diac output syndrome due to anoxia-induced CM
impairment. Low cardiac output syndrome is one of
the most serious physiological abnormalities arising
from cardiac surgery (4). Recently, our research group
(along with other groups) showed that there were
significantly more cell cycle active CMs in young pa-
tients (5–7). Furthermore, CMs are important contribu-
tors to post-natal heart growth (7). Thus, it is essential
that young CMs are protected and that their limited
proliferative function is maintained during CHD
surgery.

Blood oxygen saturation (SaO2) is one of the most
important indexes of heart and brain protection dur-
ing the peri-operative period (8). However, oxygen
(O2) is deemed a “double-edged sword” when it
comes to cardiac function and repair (9); the effects of
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hypoxia on CM proliferation are associated with its
stage of development (10). Paradis et al. (11) reported
that hypoxia/anoxia in newborns inhibits CM prolif-
eration. Conversely, Puente et al. (12) showed that the
O2-rich post-natal environment induces CM cell cycle
arrest, whereas hypoxia facilitates the proliferation of
young CMs. One possible explanation for the con-
flicting results between these 2 studies is that they
used different methods. Paradis et al. (11) exposed
neonatal mice to an environment that contained
approximately 0.2% O2 for d10 min, whereas Puente
et al. (12) exposed mice to an environment that con-
tained approximately 15% O2 for 7 days. It is likely
that too much or too little O2 inhibits the cell cycle
activities of CMs, and that a moderate supply of O2

represents a more optimal scenario. This is also why
many children’s centers aim to supply moderate
levels of SaO2 during transportation (13).

When O2 levels increase, mitochondrial oxidative
phosphorylation increases accordingly. This phe-
nomenon facilitates increased free radical produc-
tion, causing increased DNA damage (14,15).
Conversely, severe hypoxia results in the down-
regulation of antioxidant defenses, making cells
vulnerable to oxidative damage and promoting
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increased DNA damage (16,17). Current evidence
suggests that DNA damage is a critical factor in the
suppression of CM proliferation (12,18). We specu-
lated that dramatic increases or decreases in post-
natal O2 contribute to an increase in mitochondrial
content, thereby activating the DNA damage response
and causing permanent cell cycle arrest in CMs.

Yes-associated protein 1 (YAP1) is closely related to
the regulation of CM proliferation (19–21). For
example, the study by van Gise et al (20) demon-
strated that activated YAP1 can promote the prolif-
eration of mouse CMs after birth, and our previous
studies showed that YAP1 plays an important role in
the post-natal proliferation of human CMs (6). Studies
on neuronal cells have shown that YAP1 degradation
plays an important role in DNA oxidative damage by
inhibiting neuronal cell proliferation (22,23). For
example, Lehtinen et al. (22) and Xiao et al. (23)
demonstrated that O2 free radical-mediated DNA
damage could activate the Hippo/mammalian STE20-
like protein kinase (MST) signaling pathway, which,
in turn, phosphorylates and leads to the degradation
of YAP1, and ultimately, to the inhibition of neuronal
cell proliferation (22,23). Thus, we also set out to
investigate the role of YAP1 in hypoxia-induced CM
proliferation.

METHODS

Primers, reagents, and antibodies are detailed in
Supplemental Tables S1 and S2.

STUDY POPULATION AND TISSUE SAMPLING. We
collected 30 right ventricular outflow myocardial tis-
sue specimens from resections that were required to
relieve obstruction in patients with tetralogy of Fallot
(TOF) at the Shanghai Children’s Medical Center
(Shanghai, China) between January 2018 and July
2018. Each specimen was preserved in liquid nitrogen
and later divided into 3 portions, which were used for
DNA extraction, quantitative polymerase chain reac-
tion (qPCR), and immunofluorescence (IF). All pro-
cedures conformed to the principles outlined in the
Declaration of Helsinki and were approved by The
Animal Welfare and Human Studies Committee at
the Shanghai Children’s Medical Center. Parental
written informed consent was obtained before
study initiation.

CM DIFFERENTIATION, MAINTENANCE, AND O2

TREATMENT OF HUMAN-INDUCED PLURIPOTENT

STEM CELLS. We purchased the human-induced
pluripotent stem cell (iPSC) line del-AR1034ZIMA
001 from Allele Biotechnology (San Diego, Califor-
nia). The cells were differentiated under normal O2

conditions and maintained with the STEMdiff
Cardiomyocyte Differentiation Kit (STEMCELL Tech-
nologies, Vancouver, British Columbia, Canada)
according to the manufacturer’s instructions. After
15-day induction, approximately 90% of the cells
were beating and positive for both cardiac troponin T
and sarcomeric a-actinin. We re-seeded the cells and
cultured them in different O2 concentrations (21%,
15%, 10%, and 5%) in incubators for 7 days. To pro-
duce rapid changes in O2, we incubated cells at 21% O2

for 2 days, and then changed the O2 level to 15% for
2 days, 10% for 2 days, and finally, 5% for 2 days. After
7 days of culture, we subjected the cells to DNA
extraction, qPCR, and IF.

YAP1 OVEREXPRESSION BY ADENOVIRUS

HARBORING YAP1—COMPLEMENTARY DNA. We
purchased YAP1 complementary DNA and negative
control lentiviral vector from GeneChem (Shanghai,
China). YAP1-complementary DNA or negative control
was cloned into pDC315 plasmid (GeneChem)
harboring the cytomegalovirus promoter. The
pDC315-YAP1 plasmid or control plasmid was co-
transfected with pBHGloxDE1,3Cre (GeneChem) into
HEK293 cells using Lipofectamine 2000 (Invitrogen,
Waltham, Massachusetts). After 2 rounds of virus
amplification, the supernatant was filtered at
0.45 mm, and purified using the Adeno-XTM Virus
Purification kit (Takara, Clontech, Dalian, China).
YAP1 adenovirus transfections were performed over
8 h and confirmed by Western blotting and IF. At 72 h
after transfection, we cultured the cells in incubators
at an O2 concentration of 5% for 7 days. After washing
cells with phosphate-buffered saline, they were har-
vested and subjected to qPCR, Western blotting,
and IF.

YAP1 KNOCKDOWN BY LENTIVIRUS HARBORING

YAP SHORT-HAIRPIN RNA. Short-hairpin (sh) RNA
(shYAP1:50-GACTCAGGATGGAGAAATTTA-30) target-
ing a specific region of human YAP1 mRNA
(NM_006106), and a scrambled negative control (sh-
con, 50-TTC TCC GAA CGT GTCACG T-30), were cloned
into the GV248 vector (GeneChem). Lentivirus (LV)
gene transfer vectors encoding gene fluorescent pro-
tein (GFP)-shYAP1 (LV-GFP-shYAP1) and a scrambled
shRNA used as the negative control (LV-GFP-sh-con)
were synthesized by GeneChem. Transfections were
performed over 8 h and confirmed by Western blot-
ting and IF. At 72 h after transfection, cells were
cultured in incubators at an O2 concentration of 10%
for 7 days. After washing cells with phosphate-
buffered saline, we harvested the cells and sub-
jected to them qPCR, Western blotting, and IF.

IF. Slides or cells were washed 3 times with
phosphate-buffered saline, fixed with 4%

https://doi.org/10.1016/j.jacbts.2020.02.008
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paraformaldehyde for 10 min, permeated with 0.5%
Triton X-100 for 15 min, blocked in 10% donkey serum
for 30 min, and stained with primary antibodies
overnight at 4� C. After an additional 3 washes, we
incubated the sections or cells with secondary anti-
bodies and 40,6-diamidino-2-phenylindole for 30 min.
Three researchers who were blinded to the sample
identity quantified cellular Ki67, phospho-histone H3
(pHH3), and aurora B by either manual counting or
digital thresholding (image segmentation and crea-
tion of a binary image from a grayscale). We analyzed
the converted binary images using ImageJ software
(National Institutes of Health, Bethesda, Maryland).

qPCR ANALYSIS. For mRNA quantification, mRNA
was extracted and purified using the PureLink RNA
Micro Scale Kit (Life Technologies, Carlsbad, Califor-
nia). Reverse transcription was performed using the
PrimeScriptTM reagent kit. The qPCR reactions were
carried out using SYBR Green Power Premix Kits
(Applied Biosystems, Foster City, California) accord-
ing to the manufacturer’s instructions. The reactions
were performed with the 7900 Fast Real-Time PCR
System (Applied Biosystems) under the following
conditions: 1 cycle at 95�C for 10 s, followed by 40
cycles of 95�C for 15 s, and 60�C for 60 s. The primers
were obtained from Generay Biotech Co., Ltd
(Shanghai, China).

For mitochondrial DNA quantification (24), DNA
was extracted and purified from tissue samples
following proteinase K digestion and phenol and/or
chloroform extraction. Mitochondrial DNA was
quantified by qPCR, and quantification was per-
formed using the SYBR Green PCR Master Mix and
7900 Sequence Detection System (Applied Bio-
systems). The relative mitochondrial DNA copy
number was calculated from the ratio of mitochon-
drial DNA copies to nuclear DNA copies per gram of
tissue. Then the relative fold change was then
calculated using the DDCT method.

WESTERN BLOT ANALYSIS. Proteins were extracted
with Radio Immunoprecipitation Assay (RIPA)
(Beyotime, Shanghai, China) Lysis Buffer according to
the manufacturer’s instruction, separated on 10%
sodium dodecyl sulfate(SDS) (Beyotime, Shanghai,
China) polyacrylamide gels, and transferred onto
polyvinylidene fluoride membranes (Merck, Milli-
pore, Billerica, Massachusetts). Then, the membranes
were blocked in 5% nonfat milk in Tris-buffered sa-
line with Tween 20 for 1 h at room temperature and
incubated with primary antibodies overnight at 4�C.
After 3 washes with Tween 20, the membranes were
incubated with second antibodies for 1 h at room
temperature, and proteins were detected using the
Bio-Rad ChemiDoc Imaging Systems (Bio-Rad, Her-
cules, California).

STATISTICAL METHODS. Continuous data were
expressed as mean � SD. Differences were tested with
1-way analysis of variance test and Student’s
Newman-Keuls for post hoc test. Categorical variables
were compared by the Wilcoxon test. The values of
p < 0.05 were considered statistically significant. Sta-
tistical analyses were performed using SAS (software
version 9.4, SAS Institute Inc., Cary, North Carolina).

RESULTS

BASELINE PATIENT CHARACTERISTICS. Thirty in-
fants with TOF were included in the study. Because
age and pressure load could affect CM proliferation
(6,8,15), patients were selected to ensure that there
were no significant differences in age, sex, or pul-
monary arterial pressure (increasing right ventricular
pressure load) among the 3 groups (Supplemental
Table S3). The only factor that significantly differed
among the groups was SaO2 (p < 0.001; n ¼ 10). In
clinical practice, patients were divided into 3 groups
according to SaO2 levels: >85% was defined as mild
hypoxia (group A); 75% to 85% was defined as mod-
erate hypoxia (group B); and <75% was defined as
severe hypoxia (group C) (13). Ten patients from each
group were analyzed to test our hypothesis that
SaO2 influenced CM cell cycle activities. Patient
characteristics were deemed well balanced and suit-
able for studying the effects of SaO2 on CM cell
cycle activities.

CELL CYCLE ACTIVITY OF CMs IN THE DIFFERENT

SaO2 GROUPS. Because Ki67 is present during all
active phases of the cell cycle (G1, S, G2, and mitosis),
we measured Ki67-positive cells in all 3 groups. As
shown in Figures 1A and 1B, the percentage of Ki67-
positive CMs in groups A, B, and C was 0.99 �
0.25%, 6.08 � 2.51%, and 2.47 � 2.64%, respectively
(p < 0.001), which suggested that cell cycle activities
in those with moderate hypoxia CMs were upregu-
lated. Next, we detected the mitotic marker pHH3 and
found that the percentages of pHH3-positive CMs in
groups A, B, and C was 0.10 � 0.04%, 0.53 � 0.13%,
and 0.23 � 0.10%, respectively (p < 0.001) (Figures 1C
and 1D). This indicated that CMs in the mitotic stage
in group B also increased, although the percentage of
pHH3-positive CMs was only 10% of Ki67-postive
CMs. A combination of aurora B�positive, midbody
position, and daughter nuclei distance that indicated
CM proliferation was recently demonstrated (25), so
we also counted aurora B�positive CMs. None was
found in most of the sections from groups A and C
(mild and severe hypoxia, respectively), but the
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FIGURE 1 Higher Cell Cycle Activity of Human CMs in Moderate SaO2 Conditions

(A) Representative Ki67-positive cardiomyocytes (CMs) in group B; cardiac troponin-T (cTnT) (red), Ki67 (green), and 40,6-diamidino-2-phenylindole (DAPI) (blue)

stainings are shown. The arrow indicates proliferating CMs. (B) Quantification of Ki67-positive CMs: 1-way analysis of variance (ANOVA), Student Newman Keuls (SNK),

n ¼ 10; **p < 0.01. (C) Representative phospho-histone H3 (pHH3)�positive CMs in group B; cTnT (red), pHH3 (green), and DAPI (blue) stainings are shown; the arrow

indicates proliferating CMs and hatch sign indicates proliferating non-CMs. (D) Quantification of pHH3-positive CMs; 1-way ANOVA, SNK, n ¼ 10; **p < 0.01.

(E) Representative aurora B-positive CMs in group B; cTnT (red), aurora B (green), and DAPI (blue) stainings are shown; the arrow indicates proliferating CMs.

(F) Quantification of aurora B-positive CMs; 2-way ANOVA, SNK, n ¼ 10; **p < 0.01. We used quantitative polymerase chain reaction (qPCR) to analyze the expression

of mRNA levels of (G) Ki67, (H) cyclin D2, and (I) AURKB in CMs treated with different levels of oxygen saturation (SaO2). Our results indicated that Ki67, cyclin D2, and

AURKB mRNA were significantly increased in the moderate SaO2 group compared with the other 2 groups. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

served as a control; 1-way ANOVA, SNK, n ¼ 10; **p < 0.01.
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percentage of aurora B�positive CMs in group B was
0.04 � 0.03% (Figures 1E and 1F). These results indi-
cated that moderate SaO2 levels promoted
CM proliferation.

To confirm these results, we also performed qPCR
to detect the mRNA levels of Ki67, cyclin D2, and
aurora B. As shown in Figures 1G to 1I, the relative
expression of Ki67, cyclin D2, and aurora B (AURKB)
in group B was significantly increased. This result
confirmed that moderate SaO2 increased the cell cycle
activities of CMs.

CELL CYCLE ACTIVITY OF HUMAN

iPSC-CMs CULTURED AT DIFFERENT

O2 CONCENTRATIONS

The previously mentioned results suggested that
moderate SaO2 was beneficial to CM cell cycle activ-
ity; however, it remains unclear if this is true in vitro.
Therefore, we set up 5 different O2 concentrations
and treatment methods to observe the effect of SaO2

on CM proliferation. As shown in Figure 2, 15% O2 and
10% O2 treatment for 7 days significantly increased
the percentage of Ki67-, pHH3-, and aurora
B�positive CMs, whereas 5% O2 and rapidly changing
O2 (21% to 5%) treatment decreased this percentage
compared with normal O2 (21%) treatment. This sug-
gested that both O2 concentrations and treatment
methods contributed to the cell cycle activities of
human iPSC-CMs in vitro. The percentage of Ki67-
positive human iPSC-CMs cultured in vitro in
normal O2 was as high as 20%, which suggested that
the cell cycle activity of iPSC-CMs in vitro was much
higher than that of human CMs in vivo.

REDUCED OXIDATIVE DNA DAMAGE IN MODERATE

SaO2-TREATED CMs. Puente et al. (12) previously
reported that reduced mitochondrial DNA content
might be an indicator of reduced oxidative DNA
damage. The latter form of damage is a critical in-
hibitor of cell proliferation. In this study, we analyzed
mitochondrial DNA content in heart tissue from
patients with TOF. As expected, mitochondrial DNA
levels were significantly reduced in the moderate
SaO2 group compared with the other 2 groups
(Figure 3A), which suggested that moderate SaO2

levels might protect CMs by inhibiting DNA damage.
To validate this result, we monitored levels of 8-
oxoguanine (one of the most common DNA lesions
that results from reactive oxygen species) in all 3
groups (26). As shown in Figures 3B and 3C, 8-
oxoguanine levels were significantly reduced in the
moderate SaO2 group. We also detected a DNA dam-
age response marker, namely, phosphorylated ataxia
telangiectasia mutated (pATM). Similarly, pATM
levels were significantly reduced in the moderate
SaO2 group (Figures 3D and 3E). Because paired like
homeodomain 2 (Pitx2) is a critical antioxidant factor
and promotes CMs proliferation (27), we also detected
its expression in the 3 different SaO2 groups. The re-
sults showed that Pitx2 was significantly upregulated
in the moderate SaO2 group (Figures 3F and 3I).
These results suggested that moderate SaO2 levels
facilitated the protection of CMs by reducing
DNA damage.

In accordance with the cell cycle activity of
human iPSC-CMs cultured at different levels of O2,
expression of 8-oxoguanine, mitochondrial DNA, and
pATM was reduced in the 15% and 10% O2-treated
groups but was increased in the 5% and 21% to 5% O2-
treated groups compared with the normal O2-treated
groups (Figures 4A to 4E). The expression of Pitx2
was upregulated in the 15% and 10% O2-treated
groups but was downregulated in the 5% and 21%
to 5% O2-treated groups compared with the normal
O2-treated groups (Figures 4F to 4I).

HIGHER EXPRESSION AND OVEREXPRESSION OF

YAP1. Higher expression of YAP1 occurred in the
moderate hypoxia group, overexpression of YAP1
rescued the cell cycle activities of human iPSC-CMs in
the 5% O2-treated group, and knockdown reduced
activities in the 10% O2-treated group

YAP1 is a critical co-transcription factor in the
regulation of CM proliferation. To investigate its role
in inhibiting oxidative DNA damage to CMs, we first
investigated the expression of YAP1 in human heart
samples. We found a significant increase of YAP1
expression in the moderate SaO2 group compared
with the other 2 groups (Figures 5A and 5B). Consis-
tent with our observations in heart samples, there
was also more abundant expression of YAP1 in the
10% O2-cultured human iPSC-CMs, especially in the
nuclei (Figures 5C and 5E). When YAP1 was overex-
pressed in 5% O2-treated iPSC-CMs (Figures 5F to 5H),
the percentage of Ki67-, pHH3-, and aurora
B�positive CMs significantly increased (Figures 5I and
5J) (p < 0.01; n ¼ 10). In contrast, when YAP1 was
knocked down in 10% O2-treated iPSC-CMs
(Figures 5K to 5M), the percentage of Ki67-, pHH3-,
and aurora B�positive CMs was significantly reduced
(Figures 5O and 5P) (p < 0.01; n ¼ 10).

REDUCED OXIDATIVE DNA DAMAGE AFTER OVER-

EXPRESSION OF YAP1 IN HUMAN iPSC-CMs

CULTURED IN 5% O2. To cross-check the effects of
YAP1 overexpression, we detected mitochondrial DNA
and 8-oxoguanine expression in human iPSC-CMs
and found that both markers were downregulated in
the YAP1 overexpression group (Figures 6A to 6C).



FIGURE 2 Higher Cell Cycle Activity of Human iPSC-CMs in 10% and 15% O2-Treated Conditions

(A) Ki67-positive CMs, sarcomeric a-actinin (SAA) (red), Ki67 (green), and DAPI (blue) stainings are shown; the arrow indicates proliferating CMs, and the hatch sign

indicates proliferating non-CMs. (B) Quantification of Ki67-positive CMs for each group: 1-way ANOVA, SNK; **p < 0.01, n ¼ 10 fields for each group from 3 inde-

pendent experiments. (C) pHH3-positive CM: SAA (red), pHH3 (green), and DAPI (blue) are shown; the arrow indicates proliferating CMs, and the hatch sign indicates

proliferating non-CMs. (D) Quantification of pHH3-positive CMs for each group: 1-way ANOVA, SNK; **p < 0.01, n ¼ 10 fields for each group from 3 independent

experiments. (E) Aurora B-positive CM: SAA (red), aurora B (green), and DAPI (blue) stainings are shown; the arrow indicates proliferating CMs, and the hatch sign

indicates proliferating non-CMs. (F) Quantification of aurora B-positive CMs for each group: 1-way ANOVA, SNK; **p < 0.01, n ¼ 10 fields for each group from 3

independent experiments. We used qPCR to analyze mRNA levels of (G) Ki67, (H) cyclin D2, and (I) AURKB in CMs treated with different levels of oxygen (O2). Our

results indicated that Ki67, cyclin D2, and AURKBmRNA were significantly increased in 15% and 10% O2-treated human induced pluripotent stem cell�cardiomyocytes

(iPSC-CMs). GAPDH served as a control; 1-way ANOVA, SNK, n ¼ 3; *p < 0.05; **p < 0.01. Abbreviations as in Figure 1.
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FIGURE 3 Oxidative DNA Damage Was Significantly Reduced in Moderate Hypoxia Human CMs

(A) We used qPCR to analyzemitochondrial DNA (mtDNA) levels in the hearts of patients with tetralogy of Fallot (TOF). Our results indicated thatmtDNAwas significantly

decreased in themoderate SaO2 group compared with the other 2 groups: 1-way ANOVA, SNK, n¼ 10 samples; **p<0.01. (B) 8-oxoguanine (8-oxoG) in mild, moderate,

and severe hypoxia heart samples; cTnT (white), 8-oxoG (red), and DAPI (blue) stainings are shown. (C) Quantification of 8-oxoG immunofluorescence (IF) intensity in

mild, moderate, and severe hypoxia heart samples: 1-way ANOVA, SNK, n ¼ 10 samples, **p < 0.01, compared with group B (moderate hypoxia). (D) Phosphorylated

ataxia telangiectasia mutated (pATM) in mild, moderate, and severe hypoxia heart samples; cTnT (green), pATM (red), and DAPI (blue) staining are shown.

(E) Quantification of pATM IF intensity in mild, moderate, and severe hypoxia heart samples. One-way ANOVA, SNK, n¼ 10 samples; **p< 0.01, compared with group B

(moderate hypoxia). (F) IF graph of Pitx2 in mild, moderate, and severe hypoxia heart samples; cTnT (red), Pitx2 (green), and DAPI (blue) staining are shown.

(G)Quantification of Pitx2-positive CMs inmild, moderate, and severe hypoxia heart samples. One-way ANOVA, SNK, n¼ 10 samples; **p<0.01, compared with group B

(moderate hypoxia). (H)Western blot graph of Pitx2 inmild, moderate, and severe hypoxia heart samples. (I)Quantification of Pitx2 densitometry inmild, moderate, and

severe hypoxia heart samples. One-way ANOVA, SNK, n ¼ 10 samples; **p < 0.01, compared with group B (moderate hypoxia). Abbreviations as in Figures 1 and 2.
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FIGURE 4 Oxidative DNA Damage Was Significantly Reduced in 10% and 15% O2-Treated Human iPSC-CMs

(A) 8-oxoG in normal and 15% O2-Treated Human iPSC-CMs; cTnT (red), 8-oxoG (green), and DAPI (blue) stainings are shown. (B) Quantification of 8-oxoG IF intensity

in differently O2-treated human iPSC-CMs; 1-way ANOVA, SNK; *p < 0.05; **p < 0.01, n ¼ 10 fields from 3 independent experiments, compared with normal. (C)

Quantification of mtDNA content in differently O2-treated human iPSC-CMs; 1-way ANOVA, SNK; **p < 0.01, n ¼ 3 replicates compared with normal. (D) pATM in

normal, 10%, and 5% O2-treated human iPSC-CMs; cTnT (green), pATM (red), and DAPI (blue) stainings are shown. (E) Quantification of pATM IF intensity in

differently O2-treated human iPSC-CMs; 1-way ANOVA, SNK; *p < 0.05; **p < 0.01, n ¼ 10 fields from 3 independent experiments compared with normal. (F) IF

graph of Pitx2 in normal, 10% hypoxia, and 5% hypoxia iPSC-CMs; cTnT (green), Pitx2 (red), and DAPI (blue) staining are shown. (G) Quantification of Pitx2

positive CMs in normal, 10% hypoxia, and 5% hypoxia iPSC-CMs. One-way ANOVA, SNK, n ¼ 10 fields from 3 independent experiments; **p < 0.01, compared

with group B (moderate hypoxia). (H) Western blot graph of Pitx2 in normal, 10% hypoxia, and 5% hypoxia iPSC-CMs. (I) Quantification of Pitx2 densitometry in

normal, 10% hypoxia, and 5% hypoxia iPSC-CMs. One-way ANOVA, SNK, n ¼ 3 samples; **p < 0.01, compared with group B (moderate hypoxia). Abbreviations as

Figures 1 to 3.

J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 5 , N O . 5 , 2 0 2 0 Ye et al.
M A Y 2 0 2 0 : 4 4 7 – 6 0 Blood SaO2 During CM Cycle Activities

455



FIGURE 5 Higher Expression of YAP1 in Moderate SaO2 Human CMs and 10% O2-Treated Human iPSC-CMs; Overexpression of YAP1 Protected the Proliferative

Potential of Human iPSC-CMs From Oxidative DNA Damage

Continued on the next page
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FIGURE 6 Reduced Oxidative DNA Damage After OP of YAP1 in 5% O2-Treated Human iPSC-CMs

(A) Representative 8-oxoG IF in the 5% O2, 10% O2, 5% O2-treated, and YAP1 OP group; cTnT (red), 8-oxoG (green), and DAPI (blue) stainings are shown. (B)

Quantification of 8-oxoG IF intensity; 1-way ANOVA, SNK; **p < 0.01, n ¼ 10 fields from 3 independent experiments compared with the 5% O2 group. (C) Reduced

mtDNA content in YAP1 OP group; 1-way ANOVA, SNK; **p < 0.01, n ¼ 5 replicates compared with the 5% O2 group. Abbreviations as in Figures 1 to 5.

J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 5 , N O . 5 , 2 0 2 0 Ye et al.
M A Y 2 0 2 0 : 4 4 7 – 6 0 Blood SaO2 During CM Cycle Activities

457
DISCUSSION

CM proliferation contributes to post-natal heart
growth in young humans, and their protective
FIGURE 5 Continued

(A) Representative yes-associated protein 1 (YAP1) IF in human heart sam

IF intensity in human CMs; 1-way ANOVA, SNK; **p < 0.01, n ¼ 30 slides

as measured by Western blot. (D) Quantification of YAP1 expression; *p <

group as measured by IF. (F) YAP1 overexpression (Op) in the 5% O2-trea

n¼ 3 replicates. (H) YAP1 OP in the 5% O2-treated group as verified by IF

B�positive human iPSC-CMs in 5% O2-treated and YAP1 OP groups. (J)

O2-treated, 5% O2-treated and YAP1 OP group; 1-way ANOVA, SNK; **p

(K) YAP1 knockout (KO) in the 10% O2-treated group as verified by Weste

the 10% O2-treated group as verified by IF; cTnT (white), YAP1 (green),

human iPSC-CMs in 10% O2-treated and YAP1 KO groups. (O) Quantifica

YAP1 KO group; 1-way ANOVA, SNK; **p < 0.01, n ¼ 10 fields from 3 in
attributes are important in cardiac surgery and heart
failure therapy (28). Currently, pharmacological
treatment regimens are still the mainstay for heart
failure in children. However, many of the drugs that
ples; cTnT (red), YAP1 (green), and DAPI (blue) stainings are shown. (B) Quantification of YAP1

, compared with the moderate group. (C) Higher expression of YAP1 in 10% O2-treated group

0.05; n ¼ 3 replicates. (E) Higher expression and nuclear location of YAP1 in 10% O2-treated

ted group as verified by the Western blot. (G) Quantification of YAP1 expression; **p < 0.01;

; cTnT (red), YAP1 (green), and DAPI (blue) stainings are shown. (I) Ki67-, pHH3-, and aurora

Quantification of Ki67-, pHH3-, and aurora B�positive CMs in the 10% O2-treated, 5%

< 0.01, n ¼ 10 fields from 3 independent experiments compared with the 5% O2 group.

rn blotting. (L) Quantification of YAP1 expression; **p< 0.01, n¼ 3 replicates. (M) YAP1 KO in

and DAPI (blue) staining are shown. (N) Representative Ki67-, pHH3-, and aurora B�positive

tion of Ki67-, pHH3-, and aurora B�positive CMs in the 10% O2-treated, 10% O2-treated, and

dependent experiments compared with the 10% O2 group. Abbreviations as in Figures 1 to 4.
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have been developed for heart failure (including beta-
blockers and angiotensin-converting enzyme in-
hibitors) in adult patients are ineffective in pediatric
patients (28,29). Furthermore, newer, more prom-
ising drugs have not been subjected to randomized
clinical trials in pediatric patients (30,31). Because
prevention is better than therapy, there is increasing
awareness of the importance of protecting the young
human heart. Therefore, new therapeutic paradigms
for pediatric heart failure are now under investiga-
tion (32). This study is the first to focus on the
relationship between CM proliferation and heart
protection in children. We are hopeful that this
research will provide a platform from which the
potential pediatric heart failure therapies may be
further investigated.

O2 balance is extremely important in CHD therapy;
too much or too little O2 can be harmful to neonates
with CHD. For example, excessive O2 administration
to newborns with single ventricle physiology can lead
to circulatory collapse by increasing pulmonary blood
flow at the expense of systemic perfusion, whereas
insufficient O2 may cause acidosis and subsequent
brain damage (33). However, until now, researchers
did not realize that balanced O2 is also required for
myocardial protection. During cardiopulmonary
bypass, the myocardium is protected by 2 methods,
hypothermia and potassium-induced electrome-
chanical cardiac arrest, both of which reduce O2

consumption in the heart (34,35). This study sug-
gested that during the peri-operative period, moder-
ate SaO2 may be beneficial to CM cell cycle activities.
Clinical investigations from other institutions also
demonstrated that children who had severe SaO2

deprivation needed more inotrope intervention (31).
The underlying mechanism might be associated
with oxidative DNA damage. We found that both too
much and too little O2 increased oxidative DNA
damage (Figures 3A to 3J). As suggested by Schoots
et al. (36), an imbalance between reactive O2 species
and antioxidants, because of hypoxia, caused damage
to DNA.

In addition to observing how O2 affects human CM
proliferation, we investigated the effects of different
concentrations of O2 on the proliferation of iPSC-CMs
in vitro. The results showed that 15% and 10% O2

cultures significantly promoted the proliferation of
CMs, but the effects of these 2 levels were similar.
Conversely, 5% O2 culture and a progressively hyp-
oxic culture inhibited CM proliferation. These results
suggested that a proper level of hypoxia was neces-
sary during clinical monitoring, but excessive
hypoxia or a rapid change in O2 levels was not
conducive to the recovery of the child’s heart.

This study also helped reconcile the current inter-
national controversy of whether hypoxia is beneficial
to CM proliferation. Our research showed that the
answer is not simply yes or no but depends on the
specific degree of hypoxia and whether it is acute or
chronic progressive hypoxia. Studies at the Sadek
Laboratory (University of Texas Southwestern Medi-
cal Center, Dallas, Texas) showed that progressive
hypoxia in vivo is beneficial for CM proliferation. Our
study contradicted those observations. There are 2
possible reasons for this. First, the differences be-
tween in vivo and in vitro experiments, and second,
the Sadek Laboratory researchers induced progres-
sive hypoxia by reducing the O2 concentration by
1%/h, whereas we reduced it by 5% every other day.
Thus, changes to the O2 concentration in our study
were more dramatic; such intense changes are not
conducive to CM growth. Consistent with the previ-
ously mentioned observations, the manner of hyp-
oxia exposure caused oxidative DNA damage
(Figures 3F to 3J). Cai et al. (37) found that chronic
intermittent hypoxia increased oxidative damage in
the neonatal rat liver.
STUDY LIMITATIONS. Our results indicated that YAP1
served as an anti-oxidative DNA damage transcription
factor in the regulation of CM proliferation. However,
by what signaling pathway YAP1 plays such a role
is still unknown, although some studies indicated
that it might participate in the DNA base excision
repair pathway (38). Another limitation of this study
is that we still do not know how SaO2 is converted
into O2 concentration in vitro. This limitation may
impede the translation of our results into clin-
ical application.

When considering the effects of hypoxia, the
role of hypoxia-inducible factor 1 alpha must be
considered. As expected, higher expression of
hypoxia-inducible factor 1 alpha was found in the
severe hypoxia group (Supplemental Figure S1);
however, it has not been positively correlated with
CM proliferation rate. The role of hypoxia-inducible
factor-1 alpha in the regulation of CMs proliferation
is complex. Paradis et al. (11) showed that when
neonatal rat hearts were exposed to hypoxia
in vivo, there was a significant increase in hypoxia-
inducible factor-1 alpha protein but CMs prolifera-
tion was inhibited. Their results showed that in this
process, endothelin-1 might be the major responsive
factor. In contrast, Kimura et al. (39) showed that
stabilization of hypoxia-inducible factor-1 alpha was

https://doi.org/10.1016/j.jacbts.2020.02.008


PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: SaO2 is one of

the most important indexes of heart and brain protection during

the peri-operative period. However, O2 is deemed a double-edged

sword regarding cardiac function and repair, and effects of hyp-

oxia on CM proliferation are associated with its stage of develop-

ment. The findings of this study demonstrated that moderate

hypoxia benefits human CM proliferation both in vivo and in vitro.

This phenomenon was associated with reduced oxidative DNA

damage and upregulation of YAP1, the overexpression of which

protects CM from oxidative DNA damage.

TRANSLATIONAL OUTLOOK: Moderate hypoxia benefits

human CM proliferation, providing a rationale for why moderate

hypoxia is targeted by many children’s medical centers when

children with CHD are being transported in preparation for car-

diac surgery. A slower process to recover 100% SaO2 may be

considered for reperfusion after CPB. YAP1-modified RNA may be

applied to protect the heart from oxidative DNA damage. Further

research is necessary to develop more effective methods to

promote CM proliferation because the CM turnover rate is low.
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critical for stem or progenitor cells, mapping the
proliferating CMs. How hypoxia-inducible factor-1
alpha, YAP1, and Pitx2 work together in the
heart to regulate CMs proliferation needs more
investigation.

CONCLUSIONS

Moderate hypoxia (SaO2: 75% to 85%) is beneficial for
the cell cycle activities of postnatal human CMs and a
reduction in DNA damage and upregulation of YAP1
appear to be the underlying mechanisms.
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