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Neural prostheses enable users to effect movement through a variety of actuators
by translating brain signals into movement control signals. However, to achieve more
natural limb movements from these devices, the restoration of somatosensory feedback
is required. We used feature-learnability, a machine-learning approach, to assess
signal features for their capacity to enhance decoding performance of neural signals
evoked by natural tactile and proprioceptive somatosensory stimuli, recorded from the
surface of the dorsal column nuclei (DCN) in urethane-anesthetized rats. The highest
performing individual feature, spike amplitude, classified somatosensory DCN signals
with 70% accuracy. The highest accuracy achieved was 87% using 13 features that
were extracted from both high and low-frequency (LF) bands of DCN signals. In
general, high-frequency (HF) features contained the most information about peripheral
somatosensory events, but when features were acquired from short time-windows,
classification accuracy was significantly improved by adding LF features to the feature
set. We found that proprioception-dominated stimuli generalize across animals better
than tactile-dominated stimuli, and we demonstrate how information that signal features
contribute to neural decoding changes over the time-course of dynamic somatosensory
events. These findings may inform the biomimetic design of artificial stimuli that can
activate the DCN to substitute somatosensory feedback. Although, we investigated
somatosensory structures, the feature set we investigated may also prove useful for
decoding other (e.g., motor) neural signals.

Keywords: feature learnability, neural prosthesis, supervised back-propagation artificial neural network, brain-
machine interface, cuneate, gracile

INTRODUCTION

Neural prostheses enable users to control robotic limbs, computer cursors, or even effect movement
of the users own limbs, by translating brain signals into movement control signals (Ethier et al.,
2012; Hochberg et al., 2012; Collinger et al., 2013; Gilja et al., 2015; Jarosiewicz et al., 2015; Bouton
et al., 2016; Capogrosso et al., 2016; Ajiboye et al., 2017). Currently, neural prosthetic performance
is still poor compared to natural limb movements, particularly for dexterous object manipulation.
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However, motor control performance can be significantly
improved by restoring somatosensory feedback that rapidly
updates limb status.

Several groups have stimulated monkey or human
somatosensory cortex to evoke percepts such as vibration,
pressure, and stimulus location, and have shown that this
somatosensory feedback improves dexterous manipulation
capabilities of motor neural prostheses (O’Doherty et al., 2009,
2019; Tabot et al., 2013; Klaes et al., 2014; Kim et al., 2015;
Flesher et al., 2016, 2019; Salas et al., 2018). However, we
have recently suggested that the dorsal column nuclei (DCN)
and their associated external cuneate nuclei, nuclei X, and Z
(DCN-complex) have anatomical advantages over the cortex
as a sensory neural prosthesis target (Loutit and Potas, 2020a;
Loutit et al., 2020). Activating the DCN-complex with a neural
prosthesis capable of mimicking natural somatosensory signals
has the potential to simultaneously inform not only the cortex
but several other regions essential for motor control, including
the cerebellum and tegmentum that are bypassed by a cortical
neural prosthesis.

While the DCN has begun to receive attention as a neural
prosthetic target, microelectrode arrays have been chronically
implanted in macaque DCN (Richardson et al., 2015; Sritharan
et al., 2016; Loutit et al., 2017, 2019; Suresh et al., 2017; Loutit
and Potas, 2020a). To date, these DCN rigid chronic electrode
array implants have resulted in some failures due to head and
neck movements damaging the wire bundles or dislodging the
array from the brain tissue (Suresh et al., 2017). However,
rapidly advancing soft implantable electrode technologies, such
as microelectrode ‘‘threads’’ that can be sewn into brain tissue
at densities of approximately 3,000 electrodes/25 mm2 (Musk
and Neuralink, 2019), present a promising solution for targeting
the DCN (Loutit and Potas, 2020a). Yet, knowledge of DCN
neurophysiology and how to effectively activate DCN neural
populations to restore somatosensory feedback is limited. Some
state-of-the-art peripheral somatosensory neural prostheses use
biomimetic stimulus patterns to mimic attributes of fast- or
slowly-adapting afferents, by modulating stimulus frequency
or amplitude at the onset, offset, static or dynamic phases
of stimuli (Valle et al., 2018; George et al., 2019). These
biomimetic stimulus patterns were reported to elicit more
naturalistic sensations and improved object discrimination
performance, compared to linear feedback algorithms that
simply increase stimulus intensity (amplitude or frequency)
with increased force applied to a robotic force sensor. To
construct such biomimetic stimulus patterns for the DCN, we
first need to determine which properties of DCN neural activity
are most relevant to somatosensory stimuli from which they
were evoked.

We previously devised a metric, which we termed feature-
learnability, for quantifying information relevance of DCN
neural signal features for discriminating somatosensory stimuli
(Loutit et al., 2019). Using feature-learnability, we demonstrated
that electrical stimulation of peripheral afferents results in robust
and reproducible DCN neuronal activity, within and across
animals. This suggests that different animals undergo the same
DCN neural processes in response to an electrically-evoked

peripheral event. But how reproducible is DCN activity under
conditions of naturally presented stimuli? In the present
study, we used feature-learnability to assess a battery of
DCN neural signal features for their information content
about the natural peripheral stimuli from which they were
evoked. Natural stimuli consist of a degree of mixed tactile
and proprioceptive events; i.e., some tactile stimuli generate
digit movement, and it is not possible to move a joint
without distorting the skin around that joint. To study how
tactile and proprioceptive information is captured by DCN
signal features and how consistent this is across animals,
we contrived tactile- and proprioceptive-dominant stimuli,
whilst recording somatosensory-evoked DCN signals using a
surface multielectrode array (sMEA). These stimuli are not
exclusively tactile or proprioceptive, but rather, they mainly
recruit one type of afferent whilst minimizing recruitment of
the other.

In the present study, we aimed to explore the feature-
learnability of DCN somatosensory potentials evoked by
tactile- and proprioceptive-dominant stimuli. We use feature-
learnability to evaluate a diverse set of neural signal features
for information content relevant to decoding mechanically
evoked tactile- and proprioception-dominated stimuli. From
somatosensory-evoked DCN neural signals, we extracted 22
features from four categories: two categories, high-frequency
(HF) and low-frequency (LF), were derived from time-domain
signals, and the remaining two categories were derived from
frequency-domain features; HF power spectral density (HF
PSD), and LF power spectral density (LF PSD) features. As
signal features represent underlying neuronal processes, high
feature-learnability indicates the presence of a robust and
reproducible neuronal process for natural stimuli. Furthermore,
high feature-learnability across animals indicates that a similar
neural process is present across different animals. How
feature-learnability changes as a function of time throughout
a dynamic stimulus indicates the changing importance of
that feature to a peripheral event during different phases
of its progression, and therefore is valuable for future
biomimetic stimulation applications. While our primary focus
was to investigate features of somatosensory DCN signals,
the feature set and our approach to determining the most
information-rich features for decoding neural signals may
provide insight into other neural signal decoding applications,
such as motor systems.

MATERIALS AND METHODS

Animals
We used 8-week-old male Wistar rats (283–464 g; n = 6;
Australian Phenomics Facility, Canberra, ACT, Australia). There
were 1–3 animals housed per cage, with a 12/12-h light/dark
cycle. Food and water were available for animals to access
ad libitum. All procedures were approved by the Australian
National University Animal Experimentation Ethics Committee
(A2014/52) and adhered to the Australian code of practice for the
care and use of animals for scientific purposes.

Frontiers in Systems Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 46

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Loutit and Potas Feature-Learnability of Brainstem Somatosensory Signals

Surgery
Rats were anesthetized with urethane (1.4g kg−1 i.p.). A
tracheotomy was performed, and a breathing tube inserted to
aid natural respiration. Rats were placed in a stereotaxic frame
with head flexion at −20◦; (Stoelting Instruments). The dorsal
skin and muscles of the neck, and the dura and arachnoid mater
were excised between the foramen magnum and the C1 vertebra
to expose the dorsal surface of the brainstem. In most cases,
the C1 vertebra was cut away with rongeurs to aid placement
of an adapted surface multi-electrode array (sMEA; Nucleus
22 Auditory Brainstem Implant, Cochlear Limited). Details of the
electrode dimensions are shown in the inset in Figure 1, and
further details of the electrode can be found in Chelvanayagam
et al. (2008). A flexible plastic rod held by a micromanipulator on
the stereotaxic frame was lightly pressed onto the sMEA to hold
it symmetrically over the brainstem midline.

Stimulation and Recording
We applied two types each of tactile- and proprioception-
dominated stimuli to the rat limbs amounting to 16
(4 stimuli × 4 limbs) possible mechanical stimulus conditions.
The tactile-dominated stimuli were applied by pressing either
a wooden dowel rod (diameter: 2.0 mm) or brush into the
palmar/plantar pads of the paws. The brush was 25 mm in
length, with diameter: 5.0 mm that tapered to a point over
the last 10 mm. The rod and brush were fixed at the end of
a flexible tube to deliver 20 g of force. The proprioception-
dominated stimuli were applied to the rat by flexing or extending
the rat’s limbs. The rats’ limbs were fixed to a dowel rod
with ethyl cyanoacrylate instant adhesive (Loctiter, Henkel
Adhesive Technologies) which enabled the experimenter to
directly manipulate the limbs. Both flexion and extension
involved the movement of the hip, knee, and ankle joints for
the lower limbs, and the shoulder, elbow, and wrist joints
in the forelimb. Therefore, the proprioceptive-dominated
stimuli activated afferents across the entire limb, spanning
three joints, and the associated muscles, in addition to the
cutaneous afferents activated throughout the limbs by the
movement. We do not describe the stimuli as exclusively
tactile or proprioceptive, because the application of the
tactile-dominated stimuli might also activate receptors
in the joints and intrinsic muscles of the paw, and the
proprioception-dominated stimuli undoubtedly activated
tactile receptors associated with hair and skin throughout
the limbs, in addition to the proprioceptive receptors in the
skin, muscles, tendons, and joints. All stimuli were applied
by the experimenter who was triggered by the timing of
a metronome.

Stimuli were applied for 2.4 s with a rest period of 2.4 s.
Tactile-dominated stimuli had a stimulus on/off pattern (4.8 s per
trial), but proprioception-dominated stimuli also had a 2.4 s
period which was used to return the limb to the resting state,
where it remained in resting state for 2.4 s (7.2 s per trial). Stimuli
were applied in 10 sets of 10 trials (100 stimuli per type), with 30 s
rest between sets.

DCN electrical signals were acquired through seven electrodes
of the sMEA and filtered (50 Hz notch filter; 10 kHz low-pass

filter) through custom-built amplifiers. The signals were then
digitally recorded (40 kHz sample rate) through a PowerLab
16/35 acquisition system and viewed in LabChart Pro software
(Version 8.1.1, AD Instruments, Bella Vista, NSW, Australia).
The seven electrodes of the sMEA are referred to from rostral
to caudal as follows: left side electrodes: e1, e2; midline
electrodes: e3, e4, e5; right side electrodes: e6, e7 (Figure 1A,
right insert), and all seven electrodes combined are referred to
as e1–7.

The large electrodes in this surface array were able to cover
most, if not all, of the gracile nuclei, approximately three-
quarters of the cuneate nuclei, and parts of the external cuneate
nuclei. These electrodes allow acquisition of neural activity from
large populations of neurons simultaneously and thereby permit
finding the most salient and information-rich signal features
that dominate somatosensory-evoked activity across most of the
DCN, and how these features vary over time.

Signal Processing and Feature Extraction
Signal processing, feature extraction, and analysis were
performed offline (MATLAB version R2018a, MathWorks).
We used 22 DCN signal features as artificial neural network
(ANN) inputs. The names, descriptions, and examples of feature
extraction for all 22 features are shown in Figure 2. Features
were categorized into LF (<200 Hz) and HF (>200 Hz) bands
for analysis. Others have used a similar frequency (usually
between 100 and 300 Hz) to separate LF activity that typically
represents local field potentials, calcium spikes, and intrinsic
neural membrane potentials, from HF activity that typically
represents a single unit or multiunit spiking activity (Buzsáki
et al., 2012). Four features were extracted from HF filtered
(bandpass 0.55–3.3 kHz; 5-order Butterworth filter) signals
(HF features; Figures 2A–D), and five from LF signals (LF
features; Figures 2E–I), which were quantified from the HF
signals after they had been rectified and low-pass filtered
(<80 Hz; 5-order Butterworth filter). For all time-domain
signals in which peak amplitudes were measured, we used
the prominence output variable from the findpeaks MATLAB
function. Thirteen features were extracted from frequency
spectrograms (spectrogram MATLAB function) of DCN signals
bandpass filtered between 4–5,000 Hz (8-order Butterworth).
Eight of these features were quantified from the peak power
spectral density of HF bands (HF PSD features): 200–600 Hz,
600–1,000 Hz, 1,000–1,500 Hz, 1,500–2,000 Hz, 2,000–2,500 Hz,
2,500–3,000 Hz, 3,000–3,500 Hz, 3,500–4,000 Hz (Figure 2J).
The other five spectral features were quantified from the
peak power spectral density of LF bands (LF PSD features):
4–8 Hz, 8–13 Hz, 13–40 Hz, 40–80 Hz, 80–200 Hz (Figure 2K).
For all filtering, we used a zero-phase response filter: filtfilt
function (MATLAB).

HF and LF features contain multiunit activity information,
which in some cases outperforms spiking activity or local field
potentials in offline decoding of motor tasks (Stark and Abeles,
2007) and has been used to control motor neural prostheses
in tetraplegic patients (Flint et al., 2013; Bouton et al., 2016).
The HF PSD features have been minimally investigated, but
similar frequency band ranges have been used to decode motor

Frontiers in Systems Neuroscience | www.frontiersin.org 3 July 2020 | Volume 14 | Article 46

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Loutit and Potas Feature-Learnability of Brainstem Somatosensory Signals

FIGURE 1 | Mechanical stimulation conditions, recording arrangement, and example signals recorded from the dorsal column nuclei (DCN). (A) A schematic
diagram of the mechanical stimulation and surface array recording paradigm. Each of the four limbs was individually stimulated with a mechanical stimulus as shown
in the left insert, amounting to 16 possible combinations of stimulus type and location. The two possible tactile-dominated stimuli comprised a phase that applied a
20-g force with a dowel or a brush to the palmar or plantar surface; the two possible proprioceptive-dominated stimuli applied extension or flexion to one of the limbs
which included move, hold, and return phases. Dorsal column nuclei signals were simultaneously recorded from seven electrodes of a surface multi-electrode array
(right insert). (B) Examples of 5 s of DCN signal recordings in response to stimulation of the left forelimb with each of the four stimulus types. Signals are color-coded
according to their corresponding recording electrode shown in the right insert of (A). The timing of stimulus phases is shown below each signal example for each
stimulus type. Gray lines indicate the start and end of stimulus-on/-off periods. Abbreviations: DCN, dorsal column nuclei; e1, electrode 1; e2, electrode 2; e3,
electrode 3; e4, electrode 4; e5, electrode 5; e6, electrode 6; e7, electrode, 7; SEM, standard error of the mean.

signals in a neural prosthesis capable of effecting limb movement
through neuromuscular stimulation (Bouton et al., 2016). The LF
PSD features have been widely investigated in the motor cortex
during reaching and grasping movements or used as decoding
features for electrocorticographic or electroencephalographic
neural prosthetic control (Wolpaw et al., 1991; Kostov and
Polak, 2000; Leuthardt et al., 2004; Rickert et al., 2005; Flint
et al., 2012; Chen et al., 2013; Marathe and Taylor, 2013;
Bundy et al., 2016).

Standardized Artificial Neural Network for
Machine-Learning
Individual signal features extracted from each of the seven
electrodes were paired to the stimuli that generated them, to
create input/output pairs for machine-learning. All machine-
learning experiments used a standardized ANNwith a supervised
learning classification algorithm (patternnetMATLAB function).

The standardized ANN comprised 42 hidden neurons and
16 output neurons corresponding to the 16 possible stimuli
(four stimulus types, presented to four different limbs). We
selected the number of hidden neurons by increasing their
number between 16 (the number of outputs) and 154 (the
highest possible number of inputs from our feature set). For each
number of hidden neurons, we determined the average feature-
learnability with the minimum (7) and maximum (154) number
of features included in the input set and found that 42 hidden
neurons produced the highest average feature-learnability. Thus,
only the input neurons were altered, depending on the number
of input features required for each experiment. The ANN used
gradient descent with momentum and the adaptive learning
rate backpropagation training function traingdx. The hyperbolic
tangent sigmoid function, tansig, was used in the hidden layer
units, and a softmax transfer function (softmax) was used in the
output layer. Both inputs and output targets were normalized

Frontiers in Systems Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 46

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Loutit and Potas Feature-Learnability of Brainstem Somatosensory Signals

FIGURE 2 | Four categories of 22 dorsal column nuclei signal features extracted for artificial neural network machine-learning. Descriptions and examples of
individual features, extracted from dorsal column nuclei signals at various time windows, used to calculate feature-learnability (Loutit et al., 2019) are shown.
Individual features were divided into four categories (color-coded): four HF (A–D); five LF (E–I); eight HF PSD (J); and five LF PSD (K). The red line in (J) and (K)
indicates stimulus onset. Abbreviations: HF, high-frequency, LF, low-frequency; HF PSD, high-frequency power spectral density; LF PSD, low-frequency power
spectral density.

such that all values fit between −1 and 1, as per the patternnet
default setting. For training, cross-validation, and testing, the

inputs were separated into training, validation, and test subsets,
using the patternnet default settings.
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Feature-Learnability of Individual Features
and Selection of Benchmark Input Feature
Sets
Feature-learnability provides a stable measure of relevant
information content provided by input features including
a measure of the information content variability (Loutit
et al., 2019). We used the Within Individual Animal (WIA)
approach (Loutit et al., 2019) for all feature-learnability testing
unless otherwise specified. In this approach, input/output pairs
from 1,600 stimuli were generated for each animal. For each
animal, ten repeated training (70%), validation (15%), and testing
(15%) machine-learning cycles were performed under random
initializing conditions. These ten confusion matrices were
averaged to produce a single representative confusion matrix for
each animal, then the representative confusion matrices for all
animals were averaged. Feature-learnability was determined by
the mean ± SEM derived from the diagonal of this matrix. To
determine the feature-learnability of an individual feature, the
inputs to the standardized ANN were restricted to the single
input feature in question, resulting in a total of seven inputs (the
signal feature extracted from each electrode).

To obtain a measure that represents the maximum possible
information content contained in signal features, a benchmark
feature set was determined that produces the highest feature-
learnability outcomes. This feature-learnability benchmark
facilitates comparisons of information content contained by
individuals or subsets of input features. Individual features were
extracted from all seven electrodes over the first 1,000 ms from
stimulus onset, and feature-learnability determined. Individual
features were then ranked from highest to lowest feature-
learnability, prioritized by the largest means and smallest SEM
(Loutit et al., 2019). Input feature selection was performed
using an adapted sequential forward floating search algorithm
(Whitney, 1971; Pudil et al., 1994). Our approach differed from a
typical sequential forward floating search algorithm as we added
four features (one from each feature category) to the input set
per round of feature-learnability testing, rather than one feature.
We also used a sequential backward search in each round to test
whether removing features improved feature-learnability. The
search was continued until the possible feature combinations
presented by this method were exhausted and the maximum
feature-learnability was determined.

A second benchmark was determined for features extracted
over an optimal short-time window length (described below).
The identical approach was used as for the 1,000 ms window
benchmark, except that features were extracted from the shorter
time course.

Signal Feature Robustness Across Animals
To determine the generalisability of the features across animals
we used the 1,000 ms window benchmark feature set to compare
feature-learnability using a leave-one-out (LOO) approach. We
randomly assigned input/output pairs from five animals into
training (70%) and validation (30%) sets, and testing was
performed on the remaining animal (100%). The LOO approach
was applied such that each of the six animals was examined as the

test data set once. For more details on these methods see Loutit
et al. (2019).

Feature-Learnability of Different Time
Windows and Optimal Short-Time Window
Selection
We sought to determine feature-learnability based on a
shorter time-window for two purposes. Firstly, the features
we investigated may be useful for decoding neural signals
unrelated to DCN-specific signal features, such as neural
signals from motor systems. Typical motor decoding algorithms
use time windows ranging from 50–100 ms (Lebedev and
Nicolelis, 2017), which trades classification accuracy for a
feasible reduction in time required for real-time applications.
Secondly, some peripheral somatosensory neural prostheses use
stimulus patterns that mimic natural peripheral afferent firing
properties, like variations in firing rate shown by fast and slowly-
adapting afferents at the onset and offset of a stimulus. These
biomimetic approaches have succeeded in eliciting more natural
somatosensory percepts than simpler stimulus patterns that use
only amplitude or frequency modulation to encode stimulus
intensity (Valle et al., 2018; George et al., 2019). Therefore,
determining feature-learnability over shorter time windows may
help determine which features could inform the construction of
artificial stimulus patterns during different stimulus events, such
as contact onset, static holding, and contact offset. Extraction of
features over longer time windows might mix those encoding
onset, hold, and offset, and therefore be less informative to a
decoding algorithm.

To determine an optimal short-time window that provides
the highest feature-learnability in the shortest time, we tested
windows between 20 ms to 150 ms with 10 ms increments,
250 ms, and 500 ms, in addition to the 1,000 ms windows
described above. All windows started at the time of stimulus
onset. We plotted feature-learnability against time windows for
each feature and used the findchangepts MATLAB function to
determine the most abrupt change in feature-learnability. We
then averaged the changepoint values across all features and
rounded to the nearest time window. A benchmark set of signal
features was determined for the optimal short-time window
(described above).

Feature-Learnability Variations in Time
During Stimulus Presentation
Once we established the optimal short-time window, we sought
to use the short rolling window to extract features throughout
stimulus presentation and determine how feature-learnability
varied over time. To do this we extracted the 22 features from
the optimal short-time window, sampled at 1,000 ms before the
stimulus, then every 10 ms from 200 ms pre-stimulus to 4,000 ms
post-stimulus. Finally, we tested feature-learnability for each of
the features extracted from each of the 421 windows.

Statistical Analysis
We used R (version 3.4.4; R Core Team, 2018) for all statistical
analyses with the RStudio integrated development environment
(version 1.1.442). For comparison of the feature-learnability
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benchmark within and across animals we used a linear model
(LM; R lm function, stats package). For all other comparisons,
we used a linear mixed-effects model (LMER; lmer function
from the lmerTest package; Kuznetzova et al., 2019). Multiple
comparisons were performed using estimated marginal means
comparisons with Tukey p-value adjustments [R emmeans
function, emmeans package (Lenth et al., 2019)]. We verified
the model fitting by examining model residuals for normality.
Where required, log or logit transformations (car package;
Fox and Weisberg, 2019) were applied to the data before
statistical modeling. All data are expressed as means ± SEM
unless otherwise stated. Probabilities of p < 0.05 were
deemed significant.

RESULTS

All raw data and extracted features from six animals are available
in an open data repository (Loutit and Potas, 2020b).

Tactile- and Proprioceptive-Dominated
Stimuli Evoked Distinct Patterns of Neural
Activity
Preliminary observations of the data revealed neural activity
was greatest on midline electrodes and those ipsilateral to the
site of stimulus. Tactile-dominated stimuli evoked activity that
was greatest at stimulus onset and/or offset. Dowel stimuli
generally evoked a short and sharp burst of neural activity that

peaked within 10 ms of stimulus contact/removal, whereas the
brush stimuli evoked a longer, ramped burst of neural activity
that was comparatively delayed at onset/offset and to reach
maximum (20–30 ms). In some cases, brush stimuli evoked
two initial bursts at stimulus onset. Proprioception-dominated
stimuli evoked more neural activity than tactile-evoked stimuli.
In general, flexion resulted in greater neural activity compared to
extension, however, the time to reach maximum neural activity
was similar for both proprioception-dominated stimuli, which
was at approximately the midpoint of the movement. Examples
of filtered signals (0.55–3.3 kHz) acquired from seven electrodes
in response to the four types of stimuli applied to the left forelimb
are shown in Figure 1B. Features representing neural signals are
shown in Figure 2.

Feature-Learnability of Individual Features
We sought to rank individual features for their capacity to be
informative of stimulus type and location. Figure 3A shows the
rank order of feature-learnability for all 22 features extracted
from the first 1,000 ms following the stimulus onset across
all seven electrodes. All 22 features performed significantly
greater than chance levels of 6.25%. Feature-learnability ranking
clustered into three groups: (1) highest-performing features,
comprising three of the four HF and one of the five LF features;
(2) middle performing features, comprising the remaining LF
and all but one of the HF PSD features; and (3) the lowest-
performing features, comprising mainly LF PSD feature and the
remaining HF and HF PSD features, all of which still performed

FIGURE 3 | One-thousand milliseconds window benchmark determined from individual and combined signal features. (A) Feature-learnability was derived from
dorsal column nuclei signal features extracted from 1,000 ms windows starting at the onset of each stimulus. Features are ordered in feature-learnability rank order
(Loutit et al., 2019) from highest to lowest feature-learnability from left to right. Colors indicate the feature category that individual features belong (as described in
Figure 2). Gold arrows indicate the 13 signal features that comprise the 1,000 ms window benchmark configuration also indicated in panel (B).
(B) Feature-learnability was determined after consecutively adding individual features from the same category (within-category features) that improved classification
accuracy. The number of individual features included in within-category combinations is indicated by the bottom x-axis; curves are color-coded according to the
within-category features. Feature-learnability was also determined by combining the within-category features from all four categories (combined-category features,
plotted in cyan). The total number of individual features included in the combined-category feature combinations is indicated by the top x-axis; the gold arrow
indicates the 1,000 ms window benchmark configuration for all subsequent comparisons. The black line indicates a chance level of classification (6.25%).
Feature-learnability data expressed as mean ± SEM. Abbreviations: HF, high-frequency, LF, low-frequency; HF PSD, high-frequency power spectral density; LF PSD,
low-frequency power spectral density. See Figure 2 for feature name descriptions.
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three times greater than chance levels. These findings indicate
that time-domain HF features are the most informative for
determining a combination of stimulus location and type.

Establishing a 1,000 ms Window
Feature-Learnability Benchmark
We previously demonstrated that combinations of LF and HF
signal features improvemachine-learning outcomes (Loutit et al.,
2019). We, therefore, sought to determine a combination of
input features that produced the highest feature-learnability
and to establish a benchmark for subsequent comparisons.
Combinations derived from the best performing pair of features
from within the HF, LF, and HF PSD categories resulted
in significant feature-learnability improvements, compared to
single features (p ≤ 0.01, LMER, Tukey), but tended to
plateau after adding the second feature (Figure 3B). The best
performing pair of frequency-domain features in the LF PSD
category was not better than the best performing single LF PSD
feature (p = 1.0, LMER, Tukey). The highest-ranked learnability
from within-category feature combinations was achieved by
combining all four HF features (86.5%). However, this HF
4-feature combination was not significantly greater than the 2 or
3-feature HF combinations (p = 1.0, LMER, Tukey), all of which
also significantly out-performed the best individual HF feature
and all other within-category combinations (p ≤ 0.0003, LMER,
Tukey; Figure 3B).

To determine if combinations of features from different
categories improved feature-learnability, we combined the
highest-ranked feature from each category (i.e., a combination
with 4 features). This combination yielded significantly greater
feature-learnability than all LF, LF PSD, and HF PSD highest-
ranked feature combinations (p ≤ 0.0063, LMER, Tukey).
Compared to the HF feature category, the 4-feature across-
category combination was only significantly greater than the
highest-ranked single HF feature (p< 0.0001, LMER, Tukey), but
was not significantly different when additional HF features were
added (p = 1.0, LMER, Tukey; Figure 3B).

To find the combination with the highest-ranked feature-
learnability, we sequentially added the next best features in
groups of four (i.e., the next best individual feature from each
of the four categories). The highest-ranked feature-learnability
achieved was 87.2 ± 1.3% with 13 features which we defined
as our 1,000 ms window feature-learnability benchmark for
subsequent comparisons. Despite improved feature-learnability
with 13 features compared to 4, 8, or 11 features, there were
no significant differences between feature-learnability outcomes
of any of the across-category combined feature sets (p ≥
0.66, LMER, Tukey; Figure 3B). The individual features that
contribute to the 1,000 ms benchmark combination are indicated
in Figure 3A, and their confusion matrices are shown in
Figures 4A–D.

In summary, time-domain HF features resulted in the highest
feature-learnability rankings, and although the benchmark
feature set included 13 features from all four categories,
benchmark feature-learnability was not significantly higher than
the combination of two HF features (HF spike amplitude and HF
spike count).

How Well do Individual Features Predict
Different Mechanical Somatosensory
Stimuli?
To determine what information the 1,000 ms benchmark input
features contribute to feature-learnability, we plotted confusion
matrices for all 13 features (Figure 4). Correct predictions
(i.e., the diagonal) of each matrix are replotted with their SEM
in the right panels of Figures 4E–H to facilitate performance
comparisons of each feature and to provide a measure of
variability among animals.

The HF feature category (Figure 4A) significantly
outperformed all other categories (p ≤ 0.001, LMER, Tukey).
Proprioception-dominated stimuli were significantly better
classified than tactile-dominated stimuli by all categories
(p < 0.0001, LMER, Tukey), except the LF PSD category
(Figure 4H, p = 0.74, LMER, Tukey). The forelimbs were
significantly better classified than hindlimbs across all
categories (p ≤ 0.004, LMER, Tukey), and for both tactile-
and proprioceptive-dominated stimuli (p < 0.0001, LMER,
Tukey). HF spike amplitude was the best predictor of tactile-
dominated stimuli and significantly outperformed all other
features (p ≤ 0.0026, LMER, Tukey; Figures 4E–H). HF integral
was the best predictor of proprioceptive-dominated stimuli and
significantly outperformed most other features (p ≤ 0.0019,
LMER, Tukey), except HF spike count and LF sum burst
amplitudes (p 1.0, LMER, Tukey; Figures 4E–H). Interestingly,
the LF burst count predicted proprioceptive-dominated stimuli
significantly better when evoked from right limbs compared to
left limbs (p = 0.035, LMER, Tukey; Figure 4F).

HF Feature Quantification
To investigate how HF spike amplitude predicted tactile stimuli
significantly better than all other features, including the next
highest performing feature HF spike count, we quantified
HF spike amplitude and compared this to HF spike count
acquired from each electrode and animal. We previously
demonstrated that a feature’s learnability is correlated to
the number of instances different stimuli evoke significantly
different magnitudes of that feature (Loutit et al., 2019). We,
therefore, quantified the two features from anatomically relevant
electrodes, i.e., features acquired from stimuli applied to left
forelimbs were quantified from left electrodes (e1 and e2), right
forelimbs from right electrodes (e6 and e7), and hindlimbs from
midline electrodes (e3, e4, e5).

Although the effect size was small, HF spike amplitude
evoked by dowel stimuli (30.2 ± 1.2 µV) were significantly
higher than brush stimuli (29.7 ± 1.0 µV; p = 1.3e-4, paired
t-test), as were HF spike counts (dowel, 41.6 ± 2.5 events;
brush, 40.0 ± 1.9 events; p = 0.041, paired t-test). HF spike
amplitudes evoked by flexion (32.4 ± 1.2 µV) were significantly
higher than when evoked by extension (31.1 ± 1.2 µV;
p = 2.1e-12, paired t-test), as were HF spike counts (flexion,
129.1 ± 8.2 events; extension 87.9 ± 5.9 events; p = 3.3e-
14). Moreover,HF spike amplitude of proprioception-dominated
stimuli (31.7 ± 0.5 µV) was significantly higher than when
evoked from tactile-dominated stimuli (29.8± 0.5µV; p = 0.013,
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FIGURE 4 | Machine-learning outcomes for individual and combinations of 1,000 ms window benchmark features. Panels (A–D) shown are confusion matrices
(mean of six animals) of machine-learning outcomes from 13 features comprising the benchmark feature set (Figure 3A) grouped by their four categories (Figure 2).
Features in the left column were the first four features combined (blue curve, Figure 3B), and each confusion matrix to the right shows successive additions to the
feature set. The black arrow on the color bar below confusion matrices indicates a chance level (6.25%). (E–H) The diagonal of each confusion matrix is plotted in
the line graphs, with features in (A–D) corresponding to line graphs (E–H), respectively. Dark lines in (E–H) show means of six animals and the corresponding pale
bars indicate ± SEM; colors that are arbitrarily chosen. Superimposed is the benchmark feature-learnability (gold) for comparison; black straight lines indicate
classification chance level (6.25%). See Figure 2 for feature descriptions.

Student’s t-test), and proprioception-evoked HF spike counts
(108.5 ± 5.7 events) were more than 2.5 times larger than when
tactile-evoked (40.8± 2.0 events; p = 8.4e-24, Student’s t-test).

In summary, despite small effect sizes, the difference in
the HF spike amplitude evoked from dowel vs. brush stimuli
resulted in a much smaller probability value compared to
HF spike counts, which may account for the improved tactile
classification outcome from HF spike amplitude. Dowel, flexion,
and proprioception-dominated stimuli evoke higher HF spike
amplitudes and HF spike counts than a brush, extension, and
tactile-dominated stimuli, respectively.

Signal Feature Robustness Across Animals
How generalizable are signal features of the 1,000 ms benchmark
across different animals? To answer this question, we used

the LOO approach to measure how features extracted from
an individual animal perform when presented to a neural
network trained by the same features derived from the remaining
cohort of animals. This approach measures how features from
one animal generalize to all other animals (Loutit et al.,
2019). Compared to the WIA approach derived from neural
networks optimized for individual animals using 13 features
over 1,000 ms (Figure 5A), feature-learnability determined by
the LOO approach (Figure 5B) was significantly reduced, by
almost half to that of the WIA approach (Figure 5C; p < 2.2e-16,
LMER). More than 50% of the reduction in feature-learnability
derived by the LOO approach was accounted for by greater
confusion errors associated with tactile-dominated stimuli,
specifically, that dowel and brush stimuli were generally poorly
discriminated, which were exacerbated by left/right errors for
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FIGURE 5 | Feature robustness across animals. Confusion matrix means are
shown for WIA and LOO machine-learning models. These models use
identical neural network architecture extracted from 1,000 ms post-stimulus
onset, but differ by their training, validation, and testing data partitioning
approaches. (A) The confusion matrix shows the mean values derived using
the WIA approach for all six individual animals using the 13 mixed features
that constitute the 1,000 ms feature-learnability benchmark (Figure 3). The
WIA approach partitions training, validation, and testing datasets from within
individual animals (Loutit et al., 2019), thus machine-learning models are
optimized for each animal. (B) The confusion matrix shows the mean values
derived using the LOO approach for all six individual animals on the same
input data set as (A). The LOO approach trains machine-learning models
from all other (n = 5) animals and tests on the remaining animal, and thereby
quantifies feature-learnability for each animal against the background of all
others. (C) A comparison of the feature-learnability (left bars) for the WIA (gold
bars) and LOO (gray bars) approaches are shown [derived from the
means ± SEM of the diagonals in (A,B) respectively]. The large significant
reduction of feature-learnability indicates that a large portion of information
encoded in the signal features was unique to individual animals, but that a
significant portion also generalizes across animals. The right bars show
classification accuracy for stimulus classes across limbs (derived from
means ± SEM calculated from the six confusion matrices from all animals) for
WIA (gold) and LOO (gray) approaches. LOO output demonstrates

(Continued)

FIGURE 5 | Continued
the 13 signal features are highly informative for all animals for the forelimb
proprioception class, but significantly less informative for all hindlimb and
tactile classes. (D) Same analysis as (A), but WIA inputs restricted to the two
best HF features (HF spike amplitude and HF spike count; Figure 3). (E)
Same data set as (D) using the LOO approach. (F) Identical analysis as per
(C) but for the two best features (D–E). The LOO approach output for these
two best features demonstrates a similar pattern shown for the 13 best
features shown in (C), indicating that HF spike amplitude and HF spike count
generalize across animals for decoding forelimb proprioception-dominated
stimuli. The black arrow on the color bar below confusion matrices indicates a
chance level (6.25%). Abbreviations: WIA, within individual animals; LOO,
leave-one-out; LF, forelimb; HF, hindlimb. *p < 0.05, **p < 0.01, ***p < 0.001.

the hindlimb (Figures 5B,C). Compared to the WIA approach,
proprioception-dominated stimuli from the LOO approach
demonstrated an insignificant 11% reduction in classification
accuracy at the forelimb (p = 0.25, LMER, Tukey), but a 43%
reduction associated with the hindlimb (p < 0.0001, LMER,
Tukey; Figure 5C). These results indicated that the 13 features
contain information that is highly generalizable among animals
for proprioceptive-dominated stimuli of the forelimb, but much
less so for hindlimb proprioception and forelimb and hindlimb
tactile-dominated stimuli.

Combining the two highest-ranked HF features (Figure 3)
resulted in WIA feature-learnability (85.6 ± 1.2; Figure 5D)
not significantly different from the combination of 13 features
(87.2 ± 1.3; Figure 5A, p = 0.13, LMER). To determine
how these two features alone generalize across animals, the
LOO approach was applied (Figures 5E,F). The LOO approach
restricted to the two highest-ranked HF features revealed an
almost identical pattern as the 13 features data set, but with the
addition of forelimb/hindlimb confusion for tactile-dominated
stimuli (Figures 5E,F). Compared to the 13-feature combination,
LOO feature-learnability of the 2-feature combination was
overall significantly reduced (p = 0.002, LMER; Figure 5F),
which resulted because of reduced tactile stimulus classification
accuracy that was generalized across both hind- and forelimbs
(p = 0.025, Tukey; Figures 5E,F). Interestingly, there was no
significant reduction in proprioception performance in the
LOO approach between the 13- and 2-feature sets (p = 0.37,
LMER, Tukey).

These results indicate that the two HF features extracted over
1,000 ms can provide almost all of the information provided by
the larger 13-feature set for forelimb proprioceptive-dominated
stimulation, but the other 11 features contribute some additional
information, common across all animals, which is important to
discriminate hindlimb proprioceptive-stimuli as well as fore-and
hindlimb tactile-dominated stimuli.

Learnability of Features Extracted Over
Different Time Windows
Features extracted over a 1,000 ms period have little practical
value for neural prosthetic feedback control. A DCN-targeted
neural prosthetic device would need to provide stimulus features
over shorter time windows to enable rapid updating of limb
sensory status. To determine how learnable DCN signal features
are over shorter periods, feature-learnability was calculated
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FIGURE 6 | Benchmark signal features for an optimal short-time window. (A–D) Feature-learnability of features extracted from time windows of varying lengths from
20 ms to 1,000 ms is shown in their HF (A), LF (B), HF PSD (C), and LF PSD (D) signal feature categories. Colored lines and shading indicate the feature-learnability
(mean ± SEM) for each signal feature (colors arbitrarily chosen). Gold lines indicate the 1,000 ms window benchmark feature-learnability ± SEM (see Figure 4D) for
comparison; black straight lines indicate classification chance level (6.25%). Arrows indicate the 60 ms window as the optimized duration across all features where
the return of feature-learnability diminishes for increasing time windows. (E) Feature-learnability ranking of individual signal features is shown for the optimized
short-time window (i.e., 60 ms). Gold arrows indicate the 13 signal features that comprise the benchmark configuration. (F) Benchmark signal features were
determined for the optimized short-time window using the identical algorithm applied to determine the 1,000 ms window benchmark feature set shown in Figure 3A;
blue curve shows feature-learnability from combining across categories; gold arrow indicates benchmark configuration of 17 features (indicated in E). For
comparison, the 1,000 ms window benchmark feature-learnability is shown (gold curve); the black straight lines indicate classification chance level (6.25%). See
Figure 2 for feature descriptions and abbreviations.

for each signal feature extracted over time windows ranging
from 20–500 ms starting from stimulus onset (Figures 6A–D).
A window of 60 ms was determined as the time of most

abrupt change in feature-learnability across all features (see
arrows, Figures 6A–D) before reaching a plateau, where feature-
learnability improved slightly, or not at all until much larger time
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windows (≥250 ms). Feature-learnability rank order derived
from features extracted from 60 ms windows (Figure 6E) was
altered compared to 1,000 ms windows (Figure 3A). Notably,
HF integral out-rankedHF spike amplitude (the best feature from
1,000mswindows), although these features were not significantly
different (p = 0.052, LMER, Tukey; Figure 6E), and the second-
ranked feature was LF sum burst amplitudes (ranked 4th from
1,000 ms windows). HF’s mean width remained the lowest-
ranked feature.

Combining the best two features (HF integral + LF sum burst
amplitude) did not significantly improve feature-learnability
(41.8± 2.2) compared to HF integral alone (41.0± 2.5, p = 0.09,
paired t-test). A combination of four signal features that included
the highest-ranked feature from each category extracted from
60 ms, significantly improved feature-learnability compared to
most within-category combinations, except for the combination
of two or more HF features (p ≥ 0.76) and five or more HF PSD
features (p ≥ 0.35, LMER, Tukey; Figure 6F). Also noteworthy
was that feature-learnability from combining HF integral and
HF spike amplitude was significantly greater than all other
within-category feature combinations, except for three or more
combined HF PSD features, all of which were not significantly
different (p ≥ 0.6, LMER, Tukey). The 60 ms benchmark feature
set, determined by the continual addition of the next best features
from each category (where possible), resulted in a feature-
learnability outcome of 59.4% from 17 features (gold arrows,
Figures 6E,F).

Temporal Profiles of Feature-Learnability
During Mechanical Stimuli
To measure how informative signal features, extracted over
a short period, are throughout stimulus presentation, we
determined a feature-learnability time-series by extracting DCN
signal features from 60 ms rolling windows (Figure 7). We
started by examining the feature-learnability temporal profile
for the 60 ms benchmark 17-features set (indicated by gold
arrows, Figure 6E). This produced a complex waveform (gold
trace, Figure 7A) with three distinct peaks: the 1st is an abrupt,
relatively sharp peak coinciding with the stimulus onset; the 2nd
and 3rd peaks were broadened and peaked at the approximate
midpoint of the stimuli and beginning of the stimulus-off/return
phase, respectively. To establish which stimuli contributed to
these peaks, neural networks were restricted to input/output data
sets of tactile- or proprioception-dominated stimuli (Figure 7A,
red and blue traces, respectively). This revealed that the 1st
peak arose from tactile-dominated stimuli, the 2nd peak arose
from proprioceptive-dominated stimuli, whereas the 3rd peak
arose from both tactile- and proprioceptive-dominated stimuli.
Another interesting observation was that during the stimulus-
off/return phase, feature-learnability was significantly elevated
from chance levels, indicating that the input features during this
period were informing the neural network of some information
about the stimulation being performed.

To determine how individual features contribute to feature-
learnability over this time course, we examined feature-
learnability time profiles for each of the 60 ms benchmark
features (Figures 7B–D). For all features, the 3rd peak coincided

FIGURE 7 | Evolution of feature-learnability from 60 ms windows during
natural mechanical stimuli. (A) Feature-learnability time-series determined by
extracting features from a 60 ms sliding window advanced every 10 ms are
shown for the 60 ms benchmark feature set of 17 features (Figure 6E) for all
stimuli (gold trace), as well as modified neural networks restricted to
proprioceptive- or tactile-dominated inputs/outputs only (indicated by blue
and red traces respectively). Expected feature-learnability by chance is
indicated for all (gold) and proprioceptive- and tactile-dominated (black)
stimuli. (B–E) Feature-learnability time-series at 1,000 ms pre-stimulus and
from 200 ms pre-stimulus to 4,000 ms post-stimulus are shown in their HF
(B), LF (C), HF PSD (D), and LF PSD (E) signal feature categories. Colored
lines and shading indicate the feature-learnability (mean ± SEM) for each
signal feature (colors arbitrarily chosen). Gold lines indicate the 60 ms window
benchmark feature-learnability ± SEM (Figure 6F) for comparison; black
straight lines indicate classification chance level (6.25%). See Figure 2 for
feature descriptions and abbreviations.

with the commencement of the off-stimulus period and their
amplitudes never exceeded their respective 1st or 2nd peaks.
Of the four time-domain HF features, the maximum peak for
three of these coincided with the 1st (tactile) peak, whereas the
HF integral maximum fell on the 2nd (proprioceptive) peak
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(Figure 7B). Feature-learnability returned to near-chance levels
during the stimulus-off/return period for all HF features except
HF spike amplitude, which remained significantly elevated. Of
the five time-domain LF features, the maximum peak for two
of these coincided with the 1st peak (LF max burst amplitude
and LF mean burst amplitude), whereas the other three features
had similar 1st and 2nd peak magnitudes (Figure 7C). Feature-
learnability returned to chance levels during the stimulus-
off/return period for all LF features.

Of the eight HF PSD features, the maximum peak coincided
with the 1st peak for two features derived from frequencies
between 0.2–1.0 kHz, whereas maximum feature-learnability
coincided with the 2nd peak for features derived from
frequencies between 1.5–4.0 kHz (Figure 7D). All HF PSD
features remained elevated above chance levels during the
stimulus-off period, with frequencies closer to the 2 kHz range
demonstrating greater feature-learnability during the stimulus-
off/return period. For all five LF PSD features, the maximum
peak coincided with the 1st peak, and all remained slightly
elevated above chance levels during the stimulus-off/return
period (Figure 7E).

To gain insight into why feature-learnability remained above
chance levels during the stimulus-off/return period, we inspected
confusion matrices from all animals for features associated
with above-chance performance at 1-s pre-stimulus. Figure 8
shows examples of two features (HF spike amplitude and HF
PSD 2.0–2.5 kHz), which demonstrates that increased feature-
learnability 1 s before stimulus arose for different reasons
across different animals, but similar reasons within animals.
One common theme was that the correct limb was identified
for the two stimulus categories. In all but one animal, one or
more outputs were correctly classified with >35% accuracy. To
investigate if there were learning differences at the beginning
vs the end of trials, we then divided data sets into thirds for:
(i) each of the 10 trials; and (ii) for the 100 sequential stimulus
presentations, to see if repeated stimuli within and across the
trials contributed to improved outcomes.We found no difference
in feature-learnability between the first-third and last-third of
stimulus presentation within-trial sets, or across all 100 trials,
indicating that there were no changes to feature-learnability as
a result of repeating trials.

In summary, for 60 ms rolling windows some features
performed better over periods rich in tactile-stimulus
information and others over the proprioception-rich periods.
PSD features derived from <1kHz, contributed more during
tactile-rich periods, whereas that >1.5kHz contributed more
toward proprioception-rich periods, while feature-learnability
during the stimulus-off/return period was greatest for PSD
features around 2 kHz and reduced for lower and higher
frequencies. The reasons for above-chance performance during
the stimulus-off/return period appears non-generalizable
because it was different for each animal.

DISCUSSION

Our study used feature-learnability to reveal several neural
signal features that facilitate excellent decoding accuracy for

FIGURE 8 | Individual animal machine learning outcomes for 60 ms window
at 1 s pre-stimulus. Each confusion matrix shows the machine learning
outcomes for individual animals (rows) for two features (columns) which
demonstrated feature-learnability significantly above chance levels at 1 s
pre-stimulus. Note the similarity within animals, but lack thereof across
animals. The black arrow on the color bar below confusion matrices indicates
a chance level (6.25%).

mechanically-evoked tactile- and proprioception-dominated
stimuli over a range of frequencies (4–4,000 Hz). We
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demonstrated that individual features extracted over 1,000 ms
of data from the HF category generally outperformed those
from other categories and that only two HF features from
somatosensory DCN-signals were required to achieve the
1,000 ms feature-learnability benchmark. With a shorter
time-window of 60 ms—one that is compatible with real-time
applications—decoding accuracy and robustness of signal
features were greatly improved by adding relevant and diverse
features, and reasonable classification accuracy was achieved
despite sampling from electrodes with poor spatial resolution.
We found proprioception-dominated stimuli were more
accurately classified than tactile-dominated stimuli, and
stimuli presented to the forelimbs were predicted better than
hindlimbs. Our study established time courses that track how
information content, for each feature, varies as a function of the
mechanical stimulation phases. We discuss these findings below
concerning the underlying DCN physiology after the following
methodological considerations.

The sMEA used to capture surface potentials had relatively
poor spatial resolution and a low number of electrodes. Others
have shown that recording with higher electrode densities will
permit greater classification accuracy (Mehring et al., 2003;
Bansal et al., 2011; Wong et al., 2016). Despite the low
resolution, however, we found several features that reproducibly
represent encoded somatosensory signals in the DCN leading
to high classification accuracy. This suggests that many of
the investigated features accurately predict DCN population
activity, without the need for precise spatial resolution, and
are therefore common or salient DCN activity features that
may be used to inform the creation of biomimetic stimulus
patterns (Saal and Bensmaia, 2015; George et al., 2019; Loutit
and Potas, 2020a). For example, some LF features showed
high feature-learnability at stimulus onset, but low feature-
learnability during later phases of the stimulus. If LF features
represent large populations of neural activity (see ‘‘LF Features’’
section) then stimuli could be constructed to generate bursts of
activity in large populations of neurons to signify the onset of
a stimulus, but other features (likely HF features) may inform
how to activate specific neurons during the later phases of
the stimuli when many neurons have adapted to a stimulus.
We, therefore, suggest that future DCN stimulation approaches
would benefit from strategically placed, high-density electrode
arrays that can activate specific neural populations within
the DCN.

We described our stimuli as either tactile- or proprioception-
dominated. While these stimuli target most of the intended
afferents under investigation, we must acknowledge the diversity
of afferents being recruited by our natural stimuli. For example,
the 20 g force applied by the tactile-dominated stimuli to the
palmar/plantar surfaces are likely to have also moved wrist/ankle
and finger/toe joints, while the proprioception-dominated
stimuli are likely to have activated hair and skin afferents
around joints, on resting surfaces of the limb, and the skin
where the actuator was attached that moved the limbs. These
stimuli, therefore, do not activate tactile and proprioception
afferents in isolation; however, the time courses of neural
responses were characteristic of tactile and proprioceptive

afferent firing, indicating that most intended afferents were
appropriately activated. It is also worth noting that any natural
stimulus will activate a mix of afferent populations and therefore
activation of a pure afferent type would be a rare occurrence
in nature.

Prediction of Somatosensory Stimuli From
Dorsal Column Nuclei Signals
Across all individual features and our benchmark feature
set, proprioception-dominated stimuli were generally predicted
better than tactile-dominated stimuli, and forelimbs were
predicted better than hindlimbs. More accurate proprioception
classification compared to tactile is likely to have resulted
because there was a clear significant separation in the neural
activity evoked by flexion and extension (indicated by the
HF spike count feature alone), and both these proprioceptive
stimuli evoked activity that was significantly different to both
tactile stimuli, whereas, the significant difference and effect
size was much less between the two tactile stimuli. Greater
proprioception evoked activity may have resulted from activating
more receptors and/or evoking more action potentials from
each activated receptor, as described above. Furthermore,
tactile stimuli evoked most activity at stimulus onset, then
appeared to quickly adapt (Figures 1B, 7A), whereas moving
the limb evoked high activity levels throughout the entire
duration of both proprioceptive stimuli, thus the potentially
higher number of proprioceptors were also active for a
longer duration.

Forelimbs may have been predicted better than hindlimbs
because most hindlimb activities were acquired by the same
midline electrodes which spanned across the two gracile
nuclei on both sides, whereas each cuneate nucleus on
either side had its electrode, thereby facilitating better spatial
discrimination. Some of the hindlimb errors resulted from
confusing tactile- and proprioceptive-dominated stimuli
of the same limb (Figures 4A–D, 5B,E). Most hindlimb
proprioceptive afferents either project onto DCN neurons
in the ventral gracile nuclei or to nuclei X and Z, which
are rostral nuclei that form part of the DCN-complex (for
a comprehensive review see Loutit et al., 2020). Although
both hindlimbs tactile and proprioceptive afferents project
to the DCN, the proprioceptive DCN regions may be too
deep to acquire HF features, while nuclei X and Z were
not covered by the placement of our electrode array. Thus,
prediction of hindlimb stimuli may have relied mostly on
tactile information to discriminate between the tactile and
proprioceptive-dominated stimuli and were confined to
midline electrodes, thereby reducing overall lower hindlimb
prediction accuracy. Meanwhile, the external cuneate nuclei,
part of the DCN-complex that exclusively receives forelimb
proprioceptive afferents (Loutit et al., 2020), were located
partially under the lateral electrodes. Thus, tactile evoked
forelimb activity was mainly acquired from both lateral and
midline electrodes, whereas proprioceptive evoked forelimb
activity was acquired mainly from lateral electrodes. The
segregation of proprioceptive information across separate
electrodes for forelimbs, but not hindlimb-evoked activity, is
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likely to explain the reduced feature-learnability derived from
hindlimb stimuli.

Feature-Learnability Within and Across
Animals
To determine if benchmark features are generally useful for
robust decoding of mechanical stimuli in different animals
and not unique to individual animals, we quantified feature-
learnability using the LOO approach. This approach trains the
machine-learning algorithm on features extracted from all other
animals and tests on the remaining animal. We previously
established that comparing feature-learnability under LOO and
WIA conditions provide insight into how well, or poorly,
DCN-signal extracted features generalize across animals (Loutit
et al., 2019).

Forelimb flexion and extension were minimally perturbed
under LOO conditions, indicating that 1,000 ms benchmark
features were highly relevant across all animals for forelimb
proprioception stimuli. However, LOO conditions reduced
feature-learnability by 37%, which was mostly due to a more than
50% reduction in the ability to predict tactile stimuli and a 40%
reduction in the ability to predict hindlimb proprioception-
dominated stimuli. This indicates that a significant portion of the
information contained within benchmark features are no longer
relevant, or as generalizable, for tactile- and hindlimb-presented
stimuli across the different animals.

Hindlimb stimuli classification errors (both tactile- and
proprioception-dominated) mainly resulted from confusing the
side of the body that a stimulus was presented. Signal asymmetry
across the DCN surface, as we have previously shown for
hindlimb stimulated nerves (Loutit et al., 2017, 2019), could lead
to larger signal variations in left and right limb-derived activity,
across the different animals we observed in the present study.

High-Frequency Features
HF spike amplitude was the best performing feature for the
1,000 ms windows, and fourth in the 60 ms window, yet, to
our knowledge, this signal feature has not been previously used
for neural decoding. The HF spike amplitude feature resulted
in fewer errors when classifying brush and dowel stimuli of
the same limb, compared to all other features (Figure 4),
which implies that the machine-learning algorithm detected
greater contrast in this feature’s magnitude under the two
tactile stimulus conditions compared to other features. We
observed that at stimulus onset, dowel stimuli produced more
precisely timed bursts of activity than brush stimuli. This may
have facilitated the improved dowel/brush classification from
the HF spike amplitude feature because spikes from multiple
neurons or afferent fibers arriving at an electrode simultaneously
(i.e., responses evoked by dowel stimuli) will summate, and
therefore show higher average peak amplitudes than single
spikes that have less temporal overlap (i.e., brush stimulus-
evoked responses). This explanation is supported by the observed
significantly greater HF spike amplitude evoked by a dowel,
compared to brush stimuli.

The combination of HF spike amplitude and HF spike
count features, extracted over 1,000 ms, was sufficient to

achieve feature-learnability performance equivalent to the 87%
feature-learnability benchmark. Furthermore, this 2-feature
input configuration resulted in no confusion errors under
WIA, and very few under LOO conditions, between the
tactile and proprioception stimulus categories (i.e., no and
few confusion errors in the lower left and upper right
quadrants of Figures 5D,E respectively). This result can
be explained by the significant difference for HF spike
amplitude and the >2.5-fold difference in HF spike count
when tactile-, compared to proprioception-dominated stimuli
were used.

For a fixed time-window, HF spike count provides
information about spike frequency and the total number of
action potentials generated by peripheral afferents. The large
difference in this feature between tactile- and proprioception-
dominated stimuli may have resulted from the relatively small vs.
larger receptive field sizes respectively that these stimuli engaged.
HF spike amplitude captures spiking temporal alignment (as
discussed above) and spike magnitudes. Spike magnitudes are
influenced by neuron and or axon size, as well as the event’s
distance from the electrode (Gasser and Grundfest, 1939; Hunt,
1951; Nelson, 1966; Buchwald and Grover, 1970; Grover and
Buchwald, 1970). Group I proprioceptive afferents generally
have larger diameters than Aβ tactile afferents (Gasser, 1941).
In addition to the laterally placed external cuneate nucleus,
proprioceptive afferents preferentially terminate deep on
ventral DCN neurons (Campbell et al., 1974), which have a
high proportion of large somas (Cheema et al., 1983) that are
located 500–700 µm below the brainstem surface in rats (Li
et al., 2012). Tactile afferents terminate on smaller neurons in
a cluster zone that is located at approximately half the depth
as the ventral DCN neurons (Li et al., 2012). How these two
neuronal populations (larger somas located deeper vs smaller
somas located more superficially) affect spike magnitudes
measured from the surface is difficult to assess without dedicated
experiments, however, these anatomically segregated neuronal
populations likely evoke different shaped spike waveforms.
The combination of stimulus-evoked spike-timing, the signal
location, and neuronal types responsible for generating the
signal may, therefore, result in unique amplitude profiles
for each of the stimuli, and thereby contribute to improved
stimulus classification.

Low-Frequency Features
LF features are measures of the rectified signal envelope and
therefore capture various aspects of spike bursts. For example,
LF sum burst amplitude, LF max burst amplitude, and LF
burst count provide information about burst frequency and
magnitudes combined, the largest burst, and the frequency
of bursts respectively. The LF feature category demonstrated
varied feature-learnability, with its best performer, LF sum burst
amplitudes, ranking in the top four features in the 1,000 ms
and 60 ms windows. This feature likely represents very similar
activity to HF integral, as both are extracted from rectified
HF signals, and summing envelope peaks captures related
information to the integral of the signal. Congruently, LF
sum burst amplitudes and HF integral showed very similar
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feature-learnability characteristics (compare Figures 2A, 6E,
7B,C) and confusion errors (Figures 4A,B), and combining
these two features did not significantly improve feature-
learnability from HF integral alone. These features may capture
a combination of HF events, slower synaptic activity, or
subthreshold events, representing a measure of the signal energy
in a neural population.

Power Spectral Density Features
The HF PSD feature set was similar to that used by Bouton
et al. (2016) who extracted features over 100 ms windows
for motor signal decoding in a brain-machine interface
capable of effecting limb movement through neuromuscular
stimulation. This feature set represents frequency power in
the multiunit activity range, which is typically considered to
be about 300–6,000 Hz (Stark and Abeles, 2007; our range:
200–4,000 Hz). We found these features generally to be good
predictors of somatosensory DCN signals. In our 60 ms
window data, the frequency bands of 1.5–2.5 kHz were of
interest because: (1) the highest decoding for both tactile-
and proprioception-dominated stimuli were found for this
feature category over this range; and (2) frequency bands above
1.5 kHz showed a peak in the proprioception-dominated phase,
while bands below 1.5 kHz, including the LF PSD features,
had peaked in the tactile-dominated phase. Each of the eight
HF PSD bands appeared to add some unique information
not captured by the other bands, as successive additions of
these features continued to improve feature-learnability until
all the HF PSD features were exhausted (see the yellow line,
Figure 6F). However, feature-learnability derived from all eight
HF bands was not significantly greater than combining HF
integral and HF spike amplitude, indicating that these features
could offer superior neural decoding compared to all HF
PSD features.

Feature-Learnability Temporal Profiles
Figure 7 provides insight into how neural activity captured
by individual features is altered within 60 ms time windows
across the dynamic stimuli. The best performing features
over a specific period of the stimuli indicates that there are
statistically different neural spiking behaviors (Loutit et al.,
2019) across the different stimuli for the 60 ms window
over which the feature was quantified. Tactile-dominated
stimuli evoked small bursts of activity at stimulus onset,
while proprioception-dominated stimuli evoked little activity
at stimulus onset, but larger amounts during the middle
of the stimulus and return periods on anatomically relevant
electrodes (Figure 1B). These phases of activity were captured
by the peaks of the feature-learnability temporal profile (gold
curve, Figure 7A). The 1st peak of this temporal profile
reflects the period where considerable tactile information is
presented to the ANN because this peak is abolished when
tactile data were omitted from the learning algorithm (blue
curve, Figure 7A), but remains when tactile data is present
and proprioceptive data were omitted (red curve, Figure 7A).
The same logic dictates that the 2nd peak is attributed to
the duration when maximum proprioceptive information is

present. Interestingly, the tactile-dominated feature-learnability
temporal profile coincides with the stereotyped characteristics
of fast and slowly adapting afferent activity, whereas the
proprioception feature-learnability temporal profile is consistent
with the dynamic movement of the proprioceptive stimuli,
with its peak coinciding when the limbs were maximally
flexed or extended (i.e., at the midpoint of the Move
phase, Figure 7).

The feature-learnability temporal profiles of individual
features (Figures 7B–E) provide insight into how significantly
different a feature is for the different stimuli (and locations)
throughout the progression of the mechanical stimuli (Loutit
et al., 2019). HF features capture information about single or
multiunit spiking activity, for example, HF integral, HF spike
count and HF spike amplitude provide information about signal
energy, spiking frequency and amplitude respectively; the latter
may relate to the anatomical location relative to the recording
site. As LF features capture measures of spike bursts, greater
feature-learnability of LF features over the time course of the
stimuli indicates the phases of the stimulus where the bursting
activity feature is significantly different across the stimuli. For
example, LF PSD signal features below 200 Hz do not differ
greatly across the proprioceptive-evoked regions of the stimuli,
whereas their differences are greater and therefore contribute
more toward decoding tactile events. The data suggests that most
of the features were able to extract some level of information
from single-/multi-unit spikes as well as burst behavior of neural
activity during the initial contact of the tactile stimuli, which
might reflect the afferent volley of sensory information arriving
at the DCN.

Rest Period Activity
Feature-learnability remained above chance levels 1 s before
stimuli were presented (Figure 7) for theHF spike amplitude and
all HF PSD features. This indicates that during the rest periods,
some information specific to the limb and/or the stimulus being
presented was encoded in these DCN signal features. That
the more successful predictions were not consistent across all
animals (Figure 8), suggests that the prediction is not based
on some residual activity from particular stimuli, but rather,
multiple features in the same animal contributed information
that was unique to that animal for a combination of stimulus
and location. Furthermore, it was unlikely that above-chance
level classification arose from some learned effect during
repetitive stimulus presentations because feature-learnability was
not different when comparing the first and last third of trials,
although, it should be noted that training/testing data sets
were also reduced to one third, making accurate classification
more challenging.

What then could account for this predictive capacity before
the stimuli? One possibility is that the limb undergoing repetitive
stimulation experienced a different afferent activation status
during the stimulus-off period compared to the remaining
limbs. This could have arisen from continued reactivation
of slowly adapting afferent activity during the off-stimulus
period because of the continued interruption of the repetitive
stimulation cycles, whereas the slowly adapting activity from
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the non-stimulated limbs would have greater opportunity to
cease firing. An alternative explanation could be from activity
resulting from long-lasting membrane potential depolarizations
seen in DCN cells in response to sensory stimulation (Canedo
et al., 1998), or rhythmic activity that outlasts stimulation
periods (Nuñez and Buño, 1999). We have not found
evidence from other studies finding similarly high decoding
accuracy in stimulus off periods. Nevertheless, this phenomenon
demonstrates remarkable sensitivity of the HF PSD and HF
spike amplitude features for capturing status differences in
afferent populations.

CONCLUSION

Feature-learnability enables us to assess the information
contained in DCN surface potentials for decoding natural
tactile- and proprioceptive-dominated somatosensory events.
We identified individual, and combinations of signal features
with superior decoding capacity, some of which, to our
knowledge, are not currently routinely used for neural
decoding. Generally, HF time-domain features are most
informative for decoding somatosensory-evoked neural signals
compared to frequency-domain features. These features
may likely translate to the decoding applications for other
neural signals (e.g., motor). For sufficiently large time
windows, only two HF time-domain features are adequate
to achieve benchmark decoding accuracy, but for shorter time
windows that are more practical for real-time applications,
increasing the number and diversity of features improves
the decoding robustness and accuracy. We showed that a
feature’s decoding capacity is altered throughout a dynamic
event. Knowledge of how the feature-learnability of different
features varies throughout stimulus durations may inform

future biomimetic stimulation patterns for a neural prosthesis
capable of activating DCN neural populations to restore
somatosensory feedback.
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