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Abstract

In single-cell RNA-seq (scRNA-seq) experiments, the number of individual cells has

increased exponentially, and the sequencing depth of each cell has decreased significantly.

As a result, analyzing scRNA-seq data requires extensive considerations of program effi-

ciency and method selection. In order to reduce the complexity of scRNA-seq data analysis,

we present scedar, a scalable Python package for scRNA-seq exploratory data analysis.

The package provides a convenient and reliable interface for performing visualization, impu-

tation of gene dropouts, detection of rare transcriptomic profiles, and clustering on large-

scale scRNA-seq datasets. The analytical methods are efficient, and they also do not

assume that the data follow certain statistical distributions. The package is extensible and

modular, which would facilitate the further development of functionalities for future require-

ments with the open-source development community. The scedar package is distributed

under the terms of the MIT license at https://pypi.org/project/scedar.

This is a PLOS Computational Biology Software paper.

Introduction

Cost-effective large-scale transcriptomic profiling of individual cells is enabled by the develop-

ment of microfluidic, nanodroplet, and massively parallel sequencing technologies. Using

these technologies, single-cell RNA-seq (scRNA-seq) experiments usually generate transcrip-

tomic profiles of thousands to millions of individual cells [1]. Therefore, scRNA-seq has

become more commonly used to either study specific biological questions or comprehensively

profile certain tissues or organisms [2–4].

Analyses of scRNA-seq datasets therefore require efficient computational programs and

sophisticated statistical methods. The programs should be able to manage memory efficiently,

exploit multiple cores of the processing units, and handle errors and exceptions gracefully. The

statistical methods must be able to function against high dimensionality, low signal-to-noise

ratio, and different characteristics of data generated from different technologies and protocols
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[5–7]. Such requirements can become a barrier between experimental design and biological

interpretations of the results.

In order to be scalable, methods have been designed to minimize the usage of hardware

resources, so that a large-scale scRNA-seq dataset can be analyzed using a desktop computer,

such as Seurat v3.0 [8] and Scanpy [9]. Seurat is an R package providing visualization and

robust statistical methods to explore and interpret the heterogeneity of the dataset. Scanpy is a

Python package providing efficient reimplementations of pre-existing statistical methods and

analytical workflows, which can be used to perform general exploratory data analysis and spe-

cial inferences.

Here, we attempt to achieve the scalability of scRNA-seq data analysis through an alterna-

tive approach, which is to enable the user to exploit powerful analytical methods using modern

high-performance computing architectures [10–12], such as servers and clusters with large

amount of memory, multiple central and graphical processing unit cores, and solid-state drives

(SSD) with higher read and write speed than traditional hard disk drive (HDD). Such compu-

tational resources have been made easily accessible by cloud computing services like Amazon

Web Services, Google Cloud, and Microsoft Azure. Applying this approach, we designed the

analytical methods to be able to run in parallel processes with minimized memory overhead.

Additionally, we also aim to develop robust exploratory data analysis (EDA) methods, so

that they could be applied to various datasets generated by different experimental designs,

technologies, and protocols. Single-cell RNA-seq datasets have distinct statistical characteris-

tics if generated from different scRNA-seq technologies and platforms [6,7,13], such as SMAR-

Ter [14], Drop-seq [15] and 10x Genomics [16]. In order to avoid assumptions on the

statistical distributions of the datasets, we incorporated efficient implementations of machine

learning methods into the data exploration process. Through extensive exploration, the statis-

tical properties of the data could be observed and used to guide the selection of appropriate

methods for biological interpretation [17].

Therefore, we developed a scalable and reliable Python package, single-cell exploratory data

analysis for RNA-seq (scedar), to facilitate the exploration of large-scale scRNA-seq datasets.

Scedar provides analytical routines for visualization, gene dropout imputation, rare transcrip-

tomic profile detection, clustering, and identification of cluster separating genes. The visualiza-

tion methods are integrated with the efficient scRNA-seq data structures to provide intuitive,

convenient, and flexible plotting interfaces. We implemented methods to impute gene drop-

outs (Algorithm A in S1 Text) and detect rare transcriptomic profiles (Algorithm B in S1 Text)

based on the k-nearest neighbor (KNN) algorithm. The detected rare transcriptomic profiles

could be compared with their nearest neighbors in detail to identify rare cell states or types.

For clustering analysis, we provide a novel cell clustering algorithm: Minimum Description

Length (MDL) Iteratively Regularized Agglomerative Clustering (MIRAC), shown in Algo-

rithm 1. To identify genes that distinguish cell clusters we provide a method utilizing XGBoost,

a sparsity-aware gradient boosted tree system [18].

Methods

Scedar package design

We designed scedar in an object-oriented manner for quickly exploring large-scale scRNA-seq

transcription level matrices on a remote server utilizing parallel computing techniques, in

order to provide a robust and extensible platform for EDA, rather than surpassing the analyti-

cal performance of any of� 275 existing scRNA-seq data analysis methods [17]. The applica-

tion programming interface (API) is designed to be intuitive to users familiar with the R

programming language. The standard analysis workflow is to explore the dataset, cluster cells,
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and identify cluster separating genes (Fig 1), which is implemented as four main modules: data

structure, KNN, clustering and visualization.

The core data structure stores each transcription level matrix as a standalone sparse matrix

or full array instance, and it can easily be extended to support customized analytical proce-

dures. The built-in extensions include common procedures like pairwise distance computa-

tion, Principal Component Analysis (PCA), t-SNE [19], UMAP [20], and k-nearest neighbor

graph [21]. We optimized time and memory efficiency with the following design patterns: par-

allel computing, lazy loading, caching and copy-on-write.

The KNN and clustering modules utilize the data structure and parallel computing to effi-

ciently perform analytical procedures, and the results are stored in the data structure for fur-

ther reference.

The visualization module contains plotting methods optimized for large datasets, especially

for plotting heatmaps. For example, it takes less than two minutes to generate a heatmap

image from a 50,000 x 20,000 matrix containing random standard normal entries.

Preprocessing is implemented as selection and transformation routines of the core data

structure, which is not a focus of scedar. The package is designed to identify the necessity of

certain preprocessing procedures by extensively exploring the original state of the data.

Although preprocessing, such as batch effect correction and normalization, could facilitate the

detection of biological variances between cells, applying preprocessing methods correctly

requires careful validation of their assumptions, otherwise they may introduce unwanted bias

or variability [22].

Fig 1. Demonstration workflow using scedar to analyze an scRNA-seq dataset with 3005 mouse brain cells and 19,972 genes generated using the STRT-Seq UMI

protocol by Zeisel et al. [53]. Procedures and parameters that are not directly related to data analysis are omitted. The full version of the demo is available at https://

github.com/logstar/scedar/tree/master/docs/notebooks.

https://doi.org/10.1371/journal.pcbi.1007794.g001
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Minimum description length iteratively regulated agglomerative clustering

Minimum description length (MDL) iteratively regulated agglomerative clustering (MIRAC)

extends hierarchical agglomerative clustering (HAC) [23] in a divide and conquer manner for

scRNA-seq data. Input with raw or dimensionality reduced scRNA-seq data, MIRAC starts

with one round of bottom-up HAC to build a tree with optimal linear leaf ordering [24], and

the tree is then divided into small sub-clusters, which are further merged iteratively into clus-

ters. Because each individual cluster becomes more homogenous with higher number of clus-

ters, the iterative merging process is regularized with the MDL principle [25]. The asymptotic

time complexity of the MIRAC algorithm is O(n4+mn2) where n is the number of samples,

and m is the number of features. The space complexity is O(n2+mn). Relevant mathematical

theories and notations of MDL are briefly described in the following section. The pseudo-code

of MIRAC is shown in Fig 2.

Comparing to HAC, MIRAC is not designed to be faster but rather to improve the cluster

robustness. The asymptotic time complexity of MIRAC is the same as HAC with optimal leaf

ordering. However, the use of MDL rather than deterministic similarity metrics, improves the

noise tolerance by estimating similarity with probabilistic models to give more weight on sig-

nal and less weight on noise, assuming that the signal is stronger than noise.

Rationale. The rationale behind MIRAC is to reduce the number of cell partitions that

need to be evaluated and find a good one among them.

The number of all possible partitions of a set with n elements is the Bell number, which

could be computed with the following recurrence

Bn ¼
Xn� 1

k¼0

Bk
n � 1

k

� �

where n�1 and B0 = 1 [26]. It is computationally intractable to compute the code lengths of Bn
partitions, so we reduced the number of cell partitions to evaluate with the following steps:

1. We only evaluate the partitions of n cells that consecutively divide the optimal HAC tree T
leaf ordering. The HAC tree with optimal leaf ordering maximizes the sum of similarity

measurements between adjacent items in the leaf ordering [24], which could be computed

with an algorithm developed by Bar-Joseph et al. that runs in time O(n4). The number of

partitions that consecutively divide an ordering is the same as the number of compositions

of n, which is Cn = 2n−1. Because this number still grows exponentially with regard to n, it is

necessary to further reduce the set of partitions for evaluation.

2. Within step 1 partitions, we only evaluate those with all clusters having�t cells. The num-

ber of such partitions is the same as the compositions of n with all summands�t, which is

Cft;tþ1;...;ng
n ¼

Xbn=tc

k¼1

ð
n � kðt � 1Þ � 1

k � 1
Þ

given by [27]. The growth rate of Cft;tþ1;...;ng
n with regard to n is smaller, but we still need to

reduce it further. For example, Cf20;21;...;ng
n for n in an h20, 40, 60, 80, 100, 120, 140, 160, 180,

200i are h1, 2, 23, 274, 2695, 24941, 232016, 2184520, 20628613, 194570810i, and the values

of 2n are h1048576, 1099511627776, . . ., 1.607 x 1060i.

3. Within step 2 partitions, we only evaluate the ones that could be generated by merging adja-

cent clusters of a specific partition Ps ¼ fPs
1
; Ps

2
; . . . ; Ps

kg, where Ps is generated by recur-

sively dividing the root HAC tree T until the partitioned subtree has�t−1 leaves. Thus, dn/

(t−1)e�k�n. Let M(Ps) denote the number of step 2 partitions that could be generated by
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Fig 2. The minimum description length iteratively regulated agglomerative clustering (MIRAC) algorithm. MIRAC extends hierarchical

agglomerative clustering (HAC) in a divide and conquer manner for scRNA-seq data. Input with raw or dimensionality reduced scRNA-seq data,

MIRAC starts with building an HAC tree (Line 1–3), and the tree is then divided into small sub-clusters (Line 4–5), which are further merged

iteratively into clusters (Line 9–37). The rationales and detailed procedures are described in the Methods section.

https://doi.org/10.1371/journal.pcbi.1007794.g002
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merging adjacent clusters of Ps. The upper bound of M(Ps) is the same as the number of

step 2 partitions, which could be reached when k = n. The lower bound of M(Ps) is not

straightforward, since the merged partitions should have all clusters with�t cells.

In order to find a good cell partition Pg in the subset of all possibles, we iteratively inspect

each cluster of Ps and merge it with either its left or right adjacent cluster according to the sim-

ilarity determined by the two-stage MDL scheme described in the following sections. The pro-

cedure has the following steps:

1. Merge Ps clusters in the beginning of the optimal ordering until the merged set contains�t
cells (line 9 Algorithm 1).

2. Similarly, merge Ps clusters at the end of the optimal ordering until the merged set contains

�t cells (line 11 Algorithm 1).

3. For every cluster Ps
i in the middle, determine the similarity between Ps

i and the cluster on

the left and right, and merge Ps
i with the more similar cluster (line 20–26 Algorithm 1).

Although the cluster on the left Ps
i� 1

always has� ncluster
min cells, the cluster on the right Ps

iþ1

may have a minimum of one cell, so that the determined similarity between Ps
i and Ps

iþ1
is

sensitive to noise. In order to improve the robustness of similarity comparison, instead of

determining the similarity between Ps
i and Ps

iþ1
, we determine the similarity between Ps

i and

Ps
rmm ¼ Ps

iþ1
[ Ps

iþ2
[ . . . [ Ps

iþm (line 20 Algorithm 1), where

jPs
rmmj � ncluster

min ; jPs
rmmj � Ps

iþm < ncluster
min , and rmm is the shorthand for right minimax.

4. Once jPs
i j � ncluster

min , determine the similarity between Ps
i� 1

and Ps
i and merge them if their

similarity is above a certain threshold, otherwise split them (line 32–36 Algorithm 1). The

code length of merged XlistðPsi� 1
[Psi Þ

is

Lm ¼ LðXlistðPsi� 1
[Psi Þ
Þ:

The code length of divided XlistðPsi� 1
[Psi Þ

is

Ld ¼ LðXlistðPsi� 1
[Psi Þ
; fPs

i� 1
; Ps

igÞ:

If Ld � Lm � � rmdl
minabsðLmÞ, merge Ps

i� 1
and Ps

i , otherwise split them. This conditional state-

ment generalizes the situations where Lm is either non-negative or negative.

5. Continue inspecting the next cluster in Ps.

6. After inspecting all middle clusters, Pg is the final updated Ps.

We use a standard HAC tree to perform MIRAC when the number of samples is larger

than ten thousand, which usually results in decreased but still acceptable performances (Fig 3).

Although the optimal leaf ordering of the HAC tree is an important assumption, its computa-

tion takes too long when the number of samples is large. For example, it takes more than a

week to compute the optimal leaf ordering of a dataset with about 68,000 samples. However,

the time complexity of computing a good HAC linear ordering could be significantly reduced

by implementing other ordering techniques [28].

Analysis of complexity. The time complexity of MIRAC is (n4+mn2), where n,m�1. The

time complexity of computing the HAC tree with optimal leaf ordering is O(n4) [24]. The time

complexity of finding Pg is O(mn2), which is briefly analyzed as following.
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The time complexity is O(nm) for computing the code length L(Xn×m,P). In computing L
(Xn×m,P) we compute the code lengths of each cluster and their labels. Since it takes O(n) time

to compute the code length of n observations with a single feature, computing the code length

of all clusters and features individually takes O(nm) time, and computing the code length of n
labels take O(n) time.

Similarly, the time complexity is O(n1m+n2m) for computing the code length of Xn1�m

encoded by a model fitted with Xn2�m
. Fitting a model on Xn2�m

takes O(n2m) amount of time.

Using the model to encode Xn1�m
takes O(n1m) amount of time.

The time complexity of searching for Pg is O(mn2). In the worst-case scenario, |Ps| = n, and

the inspecting cluster is always merged with the left-hand side cluster in step 4. However, the

impact of ncluster
min and step 3 on the time complexity is not straightforward, so we divide the step

3 code length computation into three parts and analyze the upper bound of them individually.

The divided three parts are the left cluster, inspecting cluster, and right minimax cluster.

Fig 3. Clustering method benchmarks on experimental datasets. (A) Runtimes. (B) CCRs on different datasets, with

different points of each dataset representing different numbers of clusters. For each dataset, the numbers of clusters are

the same across all compared clustering methods.

https://doi.org/10.1371/journal.pcbi.1007794.g003
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Because we keep increasing the size of the left cluster, the upper bound of computing the left

cluster code length throughout the execution is O(mn2). The maximum size of the inspecting

cluster is ncluster
min � 1, so the upper bound of computing the inspecting cluster code length is also

O(mn2), when every middle singleton is evaluated ncluster
min � 1 times before merging with the

left. The maximum size of the right minimax cluster is 2ncluster
min � 1, so the upper bound of eval-

uating the right minimax cluster is also O(mn2), when every increment of the left cluster takes

ncluster
min times of evaluating the right minimax cluster. Summarizing these three parts, the overall

upper bound is therefore O(mn2).

The space complexity of MIRAC is O(nm+n2), which could be decomposed into the follow-

ing three parts. The space complexity of storing the n×m data matrix X is O(mn). The space

complexity of storing the HAC tree with optimal leaf ordering is O(n). The space complexity

of storing the pairwise distance matrix is O(n2).

Extension with community detection. We extended MIRAC with community detection

to improve scalability. We apply MIRAC on a relatively large number of detected single-cell

communities to identify final clusters. We used the Leiden algorithm for community detection

on KNN graphs [29]. We also provide a KNN graph construction method that supports

approximate nearest neighbor (ANN) search using a Hierarchical Navigable Small World

(HNSW) graph [30].

Cluster separating genes identification

We use XGBoost [18], a scalable and sparsity-aware boosted tree system, to identify genes that

are able to separate a specific set of clusters. This method is designed for data exploration after

applying any one of a number of various statistical approaches that have been developed to

identify differentially expressed genes [31–35], in order to quickly identify genes or sets of

genes that are able to separate an arbitrary set of clusters for further inspection.

Rather than providing a meticulous p-value for each gene among the compared clusters, we

rank the genes by their individual importance on separating the clusters under comparison.

The importance of a gene in the trained classifier is the number of times it has been used as an

inner node of the decision trees. We use cross validation to train an XGBoost classifier on the

compared clusters, and the classifier is essentially a bag of decision trees [18]. In order to allevi-

ate the influences of stochasticity on interpretation, we use bootstrap with feature shuffling to

better estimate the importance of genes in separating the compared clusters. The obtained list

of important genes could be further explored by inspecting transcription level fold changes

and decision tree structures.

Comparing to NSForest [36], a method based on random forest [37,38] to identify a parsi-

monious set of cluster separating genes from scRNA-seq data, our method identifies all possi-

ble cluster separating genes using gradient boosting. Practically, NSForest version 1.3 is

distributed on GitHub as a Python script without encapsulation or testing (checked on Oct 11,

2018), but our method is distributed through the Python Package Index, comprehensively

tested, and easy to use through the user-friendly API. With regard to scalability, our method

uses a scalable implementation of gradient boosting algorithm [18], whereas NSForest uses the

implementation of random forest in scikit-learn [38].

K-nearest neighbor methods

A k-nearest neighbor analytical strategy exploits the similarity between data points for classifi-

cation, regression, and imputation [39,40]. In k-nearest neighbor methods, samples are con-

sidered as points in a space with each dimension representing a measured property, which is

often referred to as a feature, of the samples. The similarity between samples can be evaluated
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with various distance metrics, which is extensively reviewed by Bellet et al. [41]. Generally, a

distance metric is a function that takes two samples and output a numeric value to represent

the distance between the two samples in their feature space. For example, the Euclidean dis-

tance metric is the following function,

dðp; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðqi � piÞ
2

s

where the p and q are two samples, and qi and pi are the data values on their ith dimension.

The k-nearest neighbors of a sample are the k number of other samples that have the smallest

distances from the sample. The k-nearest neighbors of a sample are informative, due to their

similarity, to determine the category of the sample in classification, the relevant continuous

property in regression, and the missing values in imputation.

We developed two methods based on the KNN algorithm to facilitate the exploration of

scRNA-seq datasets. For a relatively large number of cells profiled in each scRNA-seq experi-

ment, we assume that each one of the non-rare cells is similar to at least k other cells in their

transcriptomic profiles. With this assumption, we impute gene dropouts and detect rare tran-

scriptomic profiles. In the scedar implementation, we also support approximate nearest neigh-

bor (ANN) search using Hierarchical Navigable Small World (HNSW) graph [30], which

greatly improves the scalability of KNN graph construction.

Impute gene dropouts. In an scRNA-seq experiment, if a truly expressed gene is not

detected in a cell, the gene is considered a “dropout”, and such events are called gene dropouts

[32]. Gene dropouts may be caused by biological and technical reasons [32,42,43]. The ratio-

nale behind the possible causes of biological dropouts are related to phenomena such as tran-

scriptional bursting [44,45] and RNA degradation. With regard to technical dropouts, the

main concerns are the relatively small number of RNA transcripts of a gene, amplification effi-

ciency, and batch effects [13].

We exploit the transcriptomic profiles of the k-nearest neighbors of a cell to impute the

gene dropouts in the cell (Algorithm A in S1 Text). The algorithm could take multiple itera-

tions, so that the dropped-out genes that are expressed in all k-nearest neighbors could be

imputed at first, and the ones that are expressed in most but not all of k-nearest neighbors

could be imputed in the following iterations.

Detecting rare transcriptomic profiles. We mark transcriptomic profiles as rare if they

are distinct from their k-nearest neighbors, according to the pairwise similarity between cells

(Algorithm B in S1 Text). The algorithm could take multiple iterations, so that the most dis-

tinct transcriptomic profiles could be marked at first and less distinct ones in the following

iterations.

This method is provided mainly to facilitate detailed inspection of rare transcriptomic pro-

files rather than removing outliers from the data. Because rare transcriptomic profiles may

have various biological and technical causes, samples and features in a dataset should only be

removed after extensive exploratory data analysis and rigorous reasoning with domain specific

knowledge. Closely comparing rare transcriptomic profiles with their nearest neighbors may

also yield insights into their biological differences, which may further facilitate the identifica-

tion of rare cell types and states.

Benchmarking

We benchmarked the clustering and KNN performances of scedar on simulated and experi-

mental scRNA-seq datasets. We obtained previously published experimental scRNA-seq data-

sets (Table 1). We also generated 50 simulated scRNA-seq read count datasets with Splatter
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[13]. The simulation parameters are estimated by Splatter according to a Drop-seq dataset [15]

and a 10x Genomics GemCode dataset [16]. Within each simulated dataset, the cells have 8

clusters taking approximately the following proportions: h0.3, 0.2, 0.15, 0.15, 0.05, 0.05, 0.05,

0.05i, with a gene dropout rate around 5%.

We performed all benchmark analyses on a high-performance computing cluster, of which

the computing resources are strictly managed by Univa Grid Engine. The cluster nodes have

CPUs of Intel Xeon E5-2680 v3 or Intel Xeon E7-8880 v3. The memory sizes are either 128GB,

256GB, or 1TB. When scheduling analytical jobs for benchmarking, we make sure that the

number of cores and allocated memory are enough for the program.

Clustering. The clustering accuracy and stability of MIRAC were benchmarked together

with several other clustering methods on experimental scRNA-seq datasets listed in Table 1.

The following clustering methods are directly applied on the original data without

preprocessing.

• MIRAC on 2D t-SNE projection.

• Single-cell consensus clustering (SC3) version 1.7.7 [46]. SC3 is selected for comparison

because it was extensively compared with other methods on different experimental datasets.

• K-means clustering on 2D t-SNE projection.

• Hierarchical agglomerative clustering on 2D t-SNE projection.

• Density-based spatial clustering of applications with noise (DBSCAN) [47] on 2D t-SNE

projection.

• Community clustering on KNN graph constructed using the Euclidean distances of 100

principal components. We used the Leiden algorithm for community detection [29].

Although MIRAC could be directly applied on the expression matrix, dimensionality

reduction is able to improve the performance of similarity and density-based clustering meth-

ods when the number of features is high [48]. The mathematical influences of the high number

of features are briefly described in the previous sections.

Although t-SNE projections are stochastic and influenced by the perplexity parameter,

t-SNE is proved to be able to recover well-separated clusters [49] and t-SNE has been exten-

sively used as dimensionality reduction method for scRNA-seq data [3,15]. Thus, we chose to

use t-SNE for demonstration in this report, but we note that scedar also supports the use of

PCA and UMAP for MIRAC clustering, which can be applied just as easily as the t-SNE

method.

Table 1. Real scRNA-seq datasets for benchmark.

Publication # cells # genes Organism Tissue Protocol Raw Data Type

Deng et al. (2014) 268 22,431 Mus Musculus Embryo Smart-Seq/Smart-Seq2 Read count

Pollen et al. (2014) 301 23,730 Homo sapiens Dermal, blood, pluripotent and neural SMARTer TPM

Kolodziejczyk et al. (2015) 704 38,653 Mus Musculus Embryonic stem cell SMARTer Read count

Zeisel et al. (2015) 3005 19,972 Mus Musculus Brain STRT-Seq UMI Read count

Macosko et al. (2015) 44,808 23,288 Mus Musculus Retina Drop-seq Read count

Zheng et al. (2015) 68,579 33,694 Homo sapiens Peripheral blood mononuclear cell GemCode Read count

Han et al. (2018) 405,191 39,855 Mus Musculus Various tissues Microwell-Seq Read count

Cao et al. (2019) 2,058,652 26,183 Mus Musculus Embryo sci-RNA-seq3 Read count

Source: https://hemberg-lab.github.io/scRNA.seq.datasets/. TPM represents Transcripts Per Million in the raw data type column.

https://doi.org/10.1371/journal.pcbi.1007794.t001
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When benchmarking for accuracy, we cluster the cells in each experimental dataset using

the compared clustering methods with a grid of parameters. We use the maximum similarities

between the clustering results and the cell types from the publications in order to compare the

accuracy of different clustering methods. Although taking the maximum increases the chance

of overfitting, it resembles the procedure of clustering analysis in practice.

We also recorded the runtime of clustering methods on different datasets. In Fig 3A, SC3

was performed with 20 cores, and community clustering is performed with 60 cores. Other

clustering methods were performed with a single core. When running MIRAC, we did not

require the hierarchical tree to be optimal. The community-detection-extended MIRAC clus-

tering method was performed with 25 CPU cores, and other methods were performed with 60

CPU cores (S8 Fig, panel C).

We also benchmarked the influences of t-SNE random states on the clustering results (S1

Fig). The t-SNE embeddings generated with different random states may be distinct from each

other, although current mathematical results have shown that clustering using t-SNE embed-

dings is able to recover well separated clusters [49]. We characterized the stability to random

states of clustering methods by running them on each experimental dataset with the same

parameters but ten different random states. The similarity of clustering results between differ-

ent random states are used to compare the stability of different clustering methods. The stabil-

ity of community clustering is not characterized, because it is based on PCA.

Cluster similarity metrics. We use two cluster similarity metrics, cluster consistent ratio

(CCR) and adjusted Rand index (ARI) [50] for measuring the accuracy and stability of cluster-

ing methods respectively. When we have a coarse reference partition Pr and a finer clustering

partition Pc, the CCR is computed as the ratio of pairs within each cluster of Pc that are also in

the same cluster of Pr, with the number of clusters kept the same across compared methods.

The ARI is computed with the Python package scikit-learn [38] using the mathematical for-

mula given by Hubert and Arabie [50].

The reference partitions Pr of real datasets are obtained from their original publications

(Table A in S1 Text). The clusters in Deng et al. dataset [51] are experimentally determined by

manual single cell isolation. The clusters in Pollen et al. [14] are experimentally determined by

the cell line or tissue type of the isolated single cells. The clusters in Kolodziejczyk et al. [52]

are determined by the embryonic stem cell culturing conditions and batches. The clusters in

Zeisel et al. [53] are determined by the BackSPIN clustering method [53] and further inspected

with domain specific knowledge.

We choose CCR to measure clustering accuracy rather than ARI, because ARI greatly

penalizes the split of a large cluster in Pr into multiple smaller ones in Pc. This behavior of ARI

could prevent the evaluation of transcriptomic variabilities within a large group of cells in clus-

tering analysis, which is an important goal of scRNA-seq experiments that cannot be easily

achieved by bulk RNA-seq experiments. In addition, we also provide a method in scedar to

easily merge multiple clusters together, in case the users found the sub-types of a cell type are

very similar to each other.

However, we used ARI to measure clustering stability rather than CCR, because the differ-

ences between Pr and Pc are completely caused by different random states, hence splitting a

cluster in Pr should be penalized.

MDL is not used as a cluster similarity metric, even though MDL is used in MIRAC to

guide the process of finding good partitions. MDL is only used to guide and regularize the

merging process of local adjacent sub-clusters by evaluating their similarity, but it is not used

as an objective to be optimized globally. Using MDL as a benchmarking metric would intro-

duce a bias as among the various methods, MIRAC is the only method using MDL. Moreover,
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interpreting relative global MDL differences is not straightforward as it is not only affected by

cluster labels, but also transcription levels.

Detection of rare transcriptomic profiles. We visualize real datasets before and after

removing rare transcriptomic profiles in t-SNE projection and pairwise distance heatmaps,

without quantitative evaluations like receiver operating characteristic (ROC) curve, since rare

transcriptomic profiles are not well defined with a large number of genes [48]. Approaches to

identify rare data points in low-dimensional spaces (�3) do not scale well to higher dimen-

sions due to the exponentially decreased density of data points in space and increased instabil-

ity of distances, which is elaborated in the previous section about mathematical theories on

high-dimensional data analysis. KNN rare transcriptomic profile detection was performed

with 25 CPU cores, as shown in S8 Fig panel B.

It is important to note that rare transcriptomic profiles are detected to facilitate detailed

inspection rather than the removal of them from the data. The visualizations are only used to

illustrate the capability of the KNN method for detecting rare transcriptomic profiles.

Gene dropout imputation. We simulate gene dropouts using Splatter [13] to obtain a

dropout rate around 5%. Then, we benchmark the performance of imputing gene dropout as

two parts: detection and smoothing. On simulated data, because the true gene dropouts are

known, we use a ROC curve and mean squared errors (MSEs) to characterize the performance

of gene dropout detection and smoothing respectively. In Fig 4A, S7 Fig panel A, and S8 Fig

panel A, all imputation methods were executed with a single core. On real data, we visualize

the cells in 2D t-SNE space before and after imputation. The compared methods are KNN

gene dropout imputation (KNNGDI) version 0.1.5, SAVER version 1.0.0 [54], MAGIC version

1.1.0 [55], and scImpute version 0.0.6 [56].

Method speed-up by parallel processing. We characterized the analysis speed-up by par-

allel processing on different datasets (S9 Fig). KNN dropout imputation is not evaluated on

larger datasets, because the speed limiting step has not yet been parallelized. In addition to par-

allelizing the computation in the implemented methods, we also provide an easy-to-use utility

function (scedar.utils.parmap) to parallelly run analytical methods with different parameters,

which would significantly facilitate exploratory parameter search.

Results

Basic workflow of scedar

We illustrate the basic workflow of using scedar for scRNA-seq exploratory data analysis with

the dataset published by Zeisel et al. [53] (Fig 1). The dataset contains the RNA unique mole-

cule identifier (UMI) counts of 19,972 genes in 3005 cells from the mouse brain. We selected

this dataset for demonstration because it could be clearly visualized in small graphs, although

our package is capable of analyzing much larger datasets with over 2 million cells (S2 Fig, S3

Fig, S4 Fig and S5 Fig).

In Fig 1, each box represents a data analysis step, and they are consecutively executed

according to the arrow. The purpose and runtime are listed in the upper ribbon. The code that

is essential to the step is listed in the box, and their results are also shown.

The preparation step imports required packages and loads the data. The class SampleDis-

tanceMatrix is one of the core data structures in the package that is used to store the read

counts and pairwise distances of an scRNA-seq dataset. Because the pairwise distance compu-

tation is delayed until necessary, i.e. lazily loaded, this step only takes 12 seconds. We use

cosine distance rather than correlation distance to greatly speed up the computation, since we

implemented the computation procedure of pairwise cosine distances completely with NumPy

linear algebra operations with OpenBLAS backend [57,58].
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Fig 4. Gene dropout imputation method benchmarks. (A) Runtimes on 40 simulated 10x Genomics datasets. (B) ROC curves (± standard deviation) of dropout

detection on the simulated 10x Genomics datasets. (C) t-SNE scatter plots of the Zeisel et al. [53] dataset after gene dropout imputations.

https://doi.org/10.1371/journal.pcbi.1007794.g004
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The t-Distributed Stochastic Neighbor Embedding (t-SNE) scatter plot and KNN graph are

used to explore the dataset. The cell type labels published by Zeisel et al. [53] are truncated to

fit in the space. We also provide methods to visualize arbitrary statistics, e.g. number of

expressed genes, of individual cells as color gradient. The layouts of cells in t-SNE and KNN

graph are similar to each other. Although KNN graph is faster than t-SNE, the runtime for t-

SNE could be reduced by optimizing its parameters, e.g. lowering the number of iterations.

The MIRAC step clusters the cells and visualizes them with t-SNE scatter plot and pairwise

distance matrix heatmap. The heatmap generation procedure in scedar is optimized for large-

scale datasets, which is able to generate a heatmap with tens of thousands of columns and rows

in a few minutes. Users could also generate heatmaps for the read count matrix to directly

inspect the sparsity of datasets (all panels B in S2 Fig, S3 Fig, S4 Fig and S5 Fig).

The last step identifies cluster separating genes with XGBoost [18]. Users could choose an

arbitrary set of clusters to compare, and the genes are ranked by their importance in separating

the clusters. Then, the read counts of a gene across clustered labels could easily be visualized

by t-SNE scatter plot.

Performance of MIRAC clustering

We benchmarked several clustering methods on the datasets listed in Table 1 (Fig 3). Each

dataset is clustered multiple times with each clustering method to obtain different numbers of

clusters (Table A in S1 Text).

The t-SNE based clustering methods are faster than SC3 (Fig 3A). Also, the t-SNE based

clustering methods have similar runtimes (Fig 3A), since the time limiting step is the computa-

tion of t-SNE projection, when optimal hierarchical clustering ordering is not required in

MIRAC. When the optimal ordering is required, the time limiting step is the computation of

optimal ordering (Fig 1). With regard to practical usage, we recommend the users to explore

different parameters of MIRAC without optimal ordering. Once appropriate parameters have

been identified, users can perform MIRAC with optimal ordering. However, for datasets with

more than 10,000 cells, we recommend that users perform MIRAC without optimal ordering

(S2 Fig panel C and S3 Fig panel C). For datasets with more than 100,000 cells, we recommend

that users perform community-detection-extended MIRAC without optimal ordering (S8C

Fig), which takes for instance 2885.5 ± 176.0 (mean ± standard deviation) seconds on the

mouse organogenesis cell atlas (MOCA) dataset with 2,058,652 single cells using 25 CPU cores

(S8C Fig) [59]. We also performed clustering with the community clustering methods imple-

mented in scedar, Seurat [8] and Scanpy [9] on relatively large scRNA-seq datasets with more

than 10,000 cells (S8C Fig). The runtime of community clustering methods Seurat and Scanpy

is comparable to community clustering and community-detection-extended MIRAC (S8C

Fig), except that Scanpy and Seurat were not able to cluster the MOCA dataset that contain

2,058,652 single cells on a server with 1TB memory due to a mandatory conversion of the

sparse read count matrix into dense matrix.

The cluster consistent ratios (CCRs) of t-SNE based clustering methods are comparable to

SC3 (Fig 3B). The PCA based community clustering results showed relatively lower CCRs

than other clustering methods (Fig 3B), which might due to the non-optimal representation of

similarities between high-dimensional single cell read counts in the linear PCA space, compar-

ing to t-SNE embeddings that are optimized to capture the similarities between high-dimen-

sional single cell read counts. The representative MIRAC clustering results of Zheng et al. [16]

and Macosko et al. [15] datasets are visualized with t-SNE scatter plots and pairwise distance

matrix heatmaps (S2 Fig panel C and S3 Fig panel C). For smaller datasets, the representative

MIRAC results are shown (S6 Fig). Although t-SNE projections obtained with different
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random states are distinct from each other, the consistency of clustering results is comparable

to SC3 (S1 Fig).

Performance of imputing gene dropouts

We benchmarked several gene dropout imputation methods on the simulated 10x Genomics

(Fig 4) and Drop-seq (S7 Fig) datasets. K-nearest neighbor gene dropout imputation

(KNNGDI) is faster than other compared methods on relatively small datasets (Fig 4A) and is

capable of handling scRNA-seq datasets with over 10,000 cells (S8 Fig panel A). The runtime

of KNNDGI on 2,058,652 cells is 71.56 ± 1.71 (mean ± standard deviation) hours.

The performance of KNNGDI on detecting gene dropouts is comparable to SAVER and

better than scImpute and MAGIC. The ROC curve of scImpute sharply turns around

TPR = 0.25 (Fig 4B and S7 Fig panel B) because its threshold parameters, determining whether

a zero entry is a dropout or not, are not sensitive enough to achieve any higher TPRs. Although

the AUCs of KNNGDI and SAVER are higher than scImpute and MAGIC, they all have com-

parable performances when FPRs are lower than 0.05 (Fig 4B), except that MAGIC has worse

performance on the simulated Drop-seq datasets that have higher sparsity than the Zeisel et al.
[53] dataset (S7 Fig panel B).

The MSEs of KNNGDI on correcting gene dropouts are comparable to SAVER and smaller

than scImpute and MAGIC (S7 Fig panel C and S7 Fig panel D). However, these methods all

have MSEs many times higher than the MSEs of the observed counts to the true counts, which

implies that these methods all introduced many times more reads than the true dropout reads.

Despite different levels of MSEs, the t-SNE embeddings of the imputed read counts are consis-

tent with the t-SNE embeddings of original read counts (Fig 4C, and all panels E in S2 Fig, S3

Fig, S4 Fig and S5 Fig).

Performance of detecting rare transcriptomic profiles

We detected rare transcriptomic profiles in datasets listed in Table 1 with the KNN method

(Fig 5, and all panels F in S2 Fig, S3 Fig, S4 Fig, S5 Fig and S6 Fig) Although the detection

method has many limitations, rare transcriptomic profiles tend to be points on the t-SNE scat-

ter plots either far away from the majority of their same types or along the edges of a group of

Fig 5. KNN rare transcriptomic profile detection on the Zeisel et al. [53] dataset. (A) t-SNE scatter plot with colors labeling cell types and markers labeling common

or rare transcriptomic profiles. 9.3% cells are marked as rare. (B) Pairwise cosine distance heatmap with left strip as MIRAC labels and upper strip as common or rare

transcriptomic profiles labels. (C) Pairwise cosine distance heatmap with rare transcriptomic profiles removed.

https://doi.org/10.1371/journal.pcbi.1007794.g005
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agglomerated points. On the pairwise distance matrix heatmap, rare transcriptomic profiles

tend to be small chunks that are distinct from their neighbors, and the heatmap becomes

smoother after removing the rare transcriptomic profiles. The detected rare transcriptomic

profiles could be further inspected as potential rare cell types and states by comparing with

their nearest neighbors. The KNN rare transcriptomic profile detection method is also capable

of handling scRNA-seq datasets with over 10,000 cells (S8 Fig panel B), with a runtime of

22.14 ± 0.87 (mean ± standard deviation) minutes on 2,058,652 cells.

Identification of cluster separating genes

We used scedar to identify the genes distinguishing the MIRAC cluster 1, 15, and 22 of the Zei-

sel et al. [53] dataset (Fig 6 and Table B in S1 Text). In the original publication, the upper to

lower MIRAC clusters labeled 22, 1, and 15 in the t-SNE scatter plot are assigned to microglia,

endothelial cells, and astrocytes respectively (Fig 4C). We choose these three clusters to inspect

one of the discrepancies between cell types and MIRAC clustering results, where the small iso-

lated upper part of the MIRAC cluster 15 is assigned to microglia instead of endothelial cells in

the original publication.

The smaller upper isolated part of MIRAC cluster 15 might be a distinct cell sub-type of

microglia. Although it expresses a microglia marker gene C1qb (Fig 6B) [60], it does not

express Mrc1 or Apoe in the same pattern as the MIRAC cluster 22 (Fig 6B and 6C). According

to the transcription levels of the cluster separating genes (Fig 6C), the smaller upper isolated

part of MIRAC cluster 15, which is located at the top of the cluster 15 rows, has some genes

expressed in the same pattern as the microglia, but it also has some other genes expressed dis-

tinctly from the microglia.

Discussion

Comprehensive profiling of the transcriptomes of individual cells within an organism or tissue

by scRNA-seq is able to facilitate the systematic study of physiological or pathological states

[3,61,62]. Previous scRNA-seq experiments identified novel cell types or states [61], obtained

insights into the regulation of differentiation process [3,59,63,64], and inferred molecular

mechanisms of tissue functions [53,65,66].

The biological results of scRNA-seq experiments are obtained from extensive data analyses,

which could take more time than doing the experiments. As the size of scRNA-seq datasets

increases rapidly [1,67], computational methods also need to be scalable by exploiting hard-

ware and software techniques for big data analytics, in order to complete an analysis within a

reasonable amount of time.

Scedar is able to facilitate gene dropout imputation, rare transcriptomic profile detection,

clustering, and identification of cluster separating genes for scRNA-seq data by exploiting scal-

able system design patterns and high-performance computing architectures. We parallelized

time-consuming computational procedures by multi-processing without excessive copies of

shared data in memory. We also decompose the whole analytical procedure into multiple

steps, so that certain steps could be specifically optimized without repeating others. In addi-

tion, intermediate results, such as pairwise distances and t-SNE projections, are lazy loaded

and cached in a unified data structure to speed up analytical routines, prevent repeated com-

putations, and alleviate the burden on users to keep track of all intermediate results.

Comparing to other computational tools that were developed or updated for large scale

scRNA-seq data analysis, like PAGODA2 [68], Seurat v2.0 [8], and Scanpy [9], scedar distin-

guishes itself with an additional research focus on developing new analytical methods, includ-

ing those based on machine learning. In scedar, we adapted KNN, a typical machine learning
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Fig 6. Identified genes separating the MIRAC clusters 1, 15, and 22 of the Zeisel et al. [53] dataset. (A) t-SNE scatter plot with color as MIRAC cluster labels and

marker shape as compared or not compared. (B) t-SNE scatter plots of the compared clusters with color as log2(read count + 1) of the corresponding gene and marker

shape as MIRAC clusters. (C) Transcription level heatmap of the top 100 important cluster separating genes in the compared cells, with rows as cells ordered by cluster

labels and columns as genes ordered by importance. The color gradient is log2(clip(read count, 1, 100)), where the clip(read count, 1, 100) function changes any read

count below 1 to 1 and above 100 to 100, in order to better compare genes at different transcription levels.

https://doi.org/10.1371/journal.pcbi.1007794.g006
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algorithm, to impute gene dropouts and detect rare transcriptomic profiles. MDL principle, an

important concept in computational learning, is applied to cluster single cells [25]. A scalable

and sparsity-aware gradient boosted tree system XGBoost [18], which implements a typical

machine learning algorithm, is used to identify genes that are able to distinguish different clus-

ters. In addition, these machine learning methods are able to exploit modern high-perfor-

mance computing architecture, which improves the scalability of the package.

In scedar, we developed a clustering algorithm, MIRAC, for scRNA-seq data. MIRAC clus-

ters observations in three steps: 1) build a tree by hierarchical clustering, 2) divide the tree into

sub-trees, and 3) merge similar sub-trees into individual clusters. This clustering strategy

adapts the basic ideas of BIRCH [69] and BackSPIN [53]. Instead of building a balanced tree

structure, like the clustering feature tree in BIRCH for further partitioning, MIRAC divides

the tree structure built by hierarchical clustering optionally in a balanced manner (S10 Fig and

S1 Text section 1.4), which simplifies the clustering procedure. In BackSPIN, a sorted pairwise

correlation matrix is recursively bi-partitioned into clusters according to criteria based on the

normalized sums of correlation coefficients. In contrast, MIRAC iteratively merges the relatively

small sub-clusters according to criteria based on the MDL principle, which increases the robust-

ness for determining whether two groups of observations should be put in the same cluster or

not. Especially, when the number of observations is large within a group, finding an optimal bi-

partition is not straightforward, since there may be multiple distinct sub-groups. Although the

performance of MIRAC under certain metrics is comparable to other clustering algorithms, it is

able to provide distinct clusters that are sensitive to local structures, which could be used as

alternative perspectives to interpret the source of heterogeneity within the dataset.

There are still many possible improvements on scedar. To improve the scalability of

MIRAC, we could provide more efficient methods to obtain the optimal leaf ordering using

linear embedding techniques [28]. To improve the scalability of the backend data structure, we

could extend it with distributed analytic systems such as Apache Spark [10]. To visualize the

differences between different clusters, we could plot the fold changes of gene transcription lev-

els on the pathway maps in the KEGG (Kyoto Encyclopedia of Genes and Genomes) database

[70].

Scedar is at its core developed as an open-source, community-extensible package for

exploratory data analysis, with strong testing and code development standards (Table C in S1

Text). Scedar will continue to be developed in an open-source environment that can offer an

analytical platform for developing novel algorithms, support state-of-the-art software quality

control standards, and provide easy-to-use programming interfaces for exploratory data

research.

Code availability

The scedar package is distributed through Pypi https://pypi.org/project/scedar

The code and other resources are available in Github at https://github.com/logstar/scedar

Supporting information

S1 Text. Supplementary text. Algorithm A, Algorithm B and Table A, Table B, and Table C.

Includes discussion of scedar package development, minimum description length method,

two-stage coding scheme for clustered scRNA-seq, mathematical theories on high-dimen-

sional data analysis including distances between points in high dimensional space and the

Johnson-Lindenstrauss lemma. Discussion of the skewed root division of a hierarchical

agglomerative clustering tree.
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S1 Fig. Stability of clustering methods on experimental dataset. Similarity between cluster-

ing results generated with different random states but the same parameters, quantified by

adjusted rand index (ARI) [23].

(TIF)

S2 Fig. Scedar analysis of the scRNA-seq dataset containing 44,808 mouse retina cells gen-

erated by Drop-seq platform published by Macosko et al. [24]. (A) t-SNE scatter plot with

cell type labels. (B) Read count matrix heatmap with rows as cells, columns as genes, and black

color as� 1reads. (C) t-SNE scatter plot with MIRAC labels. (D) Pairwise cosine distance

heatmap with left strip as MIRAC labels and upper strip as cell type labels. (E) t-SNE scatter

plot after KNN gene dropout imputation with cell type labels. (F) pairwise cosine distance

heatmap with left strip as MIRAC labels and upper strip as common or rare transcriptomic

profile labels. (G) pairwise cosine distance heatmap with rare transcriptomic profiles removed.

(TIF)

S3 Fig. Scedar analysis of the scRNA-seq dataset containing 68,579 human peripheral

blood mononuclear cells generated by 10x genomics GemCode platform published by

Zheng et al. [25]. (A) t-SNE scatter plot with cell type labels. (B) Read count matrix heatmap

with rows as cells, columns as genes, and black color as� 1 reads. (C) t-SNE scatter plot with

MIRAC labels. (D) Pairwise cosine distance heatmap with left strip as MIRAC labels and

upper strip as cell type labels. (E) t-SNE scatter plot after KNN gene dropout imputation with

cell type labels. (F) Pairwise cosine distance heatmap with left strip as MIRAC labels and upper

strip as common or rare transcriptomic profile labels. (G) Pairwise cosine distance heatmap

with rare transcriptomic profiles removed.

(TIF)

S4 Fig. Scedar analysis of the scRNA-seq dataset containing 405,191 mouse cells from mul-

tiple tissues generated by Microwell-seq platform published by Han et al. [26]. (A) UMAP

scatter plot with cell type labels. (B) Read count matrix heatmap with rows as cells, columns as

genes, and black color as� 1 reads. (C) UMAP scatter plot with MIRAC labels. (D) Pairwise

cosine distance heatmap of downsampled 7449 cells with left strip as MIRAC labels and upper

strip as cell type labels. (E) UMAP scatter plot after KNN gene dropout imputation with cell

type labels. (F) Pairwise cosine distance heatmap of downsampled 7449 cells with left strip as

MIRAC labels and upper strip as common or rare transcriptomic profile labels. (G) Pairwise

cosine distance heatmap of downsampled 7449 cells with rare transcriptomic profiles

removed.

(TIF)

S5 Fig. Scedar analysis of the scRNA-seq dataset containing 2,058,652 mouse cells from

multiple tissues generated by sci-RNA-seq3 platform published by Cao et al. [27]. (A)

UMAP scatter plot with cell type labels. (B) Read count matrix heatmap of downsampled

20,403 cells with rows as cells, columns as genes, and black color as� 1 reads. (C) UMAP scat-

ter plot with MIRAC labels. (D) Pairwise cosine distance heatmap of downsampled 20,118

cells with left strip as MIRAC labels and upper strip as cell type labels. (E) UMAP scatter plot

after KNN gene dropout imputation with cell type labels. (F) Pairwise cosine distance heatmap

of downsampled 20,118 cells with left strip as MIRAC labels and upper strip as common or

rare transcriptomic profile labels. (G) Pairwise cosine distance heatmap of downsampled

20,118 cells with rare transcriptomic profiles removed.

(TIF)
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S6 Fig. MIRAC and KNN rare transcriptomic profile detection results of experimental

datasets. The sub-figures A, B, and C represent the results of scRNA-seq datasets published by

Pollen et al. [28], Deng et al. [29], and Kolodziejczyk et al. [30] respectively. Within each sub-

figure, the plots are 1) t-SNE scatter plot with cell type labels, 2) t-SNE scatter plot with

MIRAC cluster labels, 3) pairwise cosine distance heatmap with left strip as MIRAC labels and

upper strip as cell type labels, 4) t-SNE scatter plot with common or rare rare transcriptomic

profile labels, 5) pairwise cosine distance heatmap with left strip as MIRAC labels and upper

strip as common or rare transcriptomic profile labels, 6) pairwise cosine distance heatmap

with rare transcriptomic profiles removed.

(TIF)

S7 Fig. Benchmark results of gene dropout imputation methods. (A) Runtimes on 40 simu-

lated Drop-seq datasets. (B) ROC curves (± standard deviation) of dropout detection on simu-

lated Drop-seq datasets. (C) and (D) are mean squared error (MSE) ratios of different

methods on simulated Drop-seq and 10x Genomics datasets respectively, where the MSE ratio

is computed as the MSE of corrected read counts / MSE of true read counts.

(TIF)

S8 Fig. Runtimes of analytical methods implemented in scedar. (A) KNN gene dropout

imputation. (B) KNN rare transcriptomic profile detection. (C) Community clustering, com-

munity extended MIRAC clustering, Seurat clustering, and Scanpy clustering. These methods

were all performed on experimentally generated scRNA-seq datasets with 3005, 44808, 68579,

405191, and 2058652 cells [24–27,31], except that Scanpy and Seurat were not able to cluster

the mouse organogenesis cell atlas (MOCA) dataset that contain 2,058,652 single cells on a

server with 1TB memory due to a mandatory conversion of the sparse read count matrix into

dense matrix.

(TIF)

S9 Fig. Runtimes of analytical methods implemented in scedar with different number of

CPU cores for parallel computation. (A) All implemented methods performed on an

scRNA-seq dataset with 3005 single cells [31]. (B) KNN rare transcriptomic profile detection,

(C) community clustering, and (D) community extended MIRAC clustering performed on

two scRNA-seq datasets with 44,808 and 68,579 single cells [24,25].

(TIF)

S10 Fig. Skewed division of hierarchical agglomerative clustering tree. Tree leaves are sam-

ples, which are marked by upper case letters. Tree inner nodes are agglomerated samples by

arbitrary linkage, which are marked by number. The triangle under inner node 0 represents an

arbitrary valid subtree with� ncluster
min leaves. The root division procedure divides a tree into left

and right subtrees of the root node. The skewing procedure creates a minimum subtree of the

root with� ncluster
min leaves, where ncluster

min ¼ 3 in this specific case.

(TIF)
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23. Müllner D. Modern hierarchical, agglomerative clustering algorithms. arXiv [stat.ML]. 2011. Available:

http://arxiv.org/abs/1109.2378

24. Bar-Joseph Z, Gifford DK, Jaakkola TS. Fast optimal leaf ordering for hierarchical clustering. Bioinfor-

matics. 2001; 17 Suppl 1: S22–9.

25. Hansen MH, Yu B. Model Selection and the Principle of Minimum Description Length. J Am Stat Assoc.

2001; 96: 746–774.

26. Wilf HS. generatingfunctionology. AK Peters/CRC Press; 2005.

27. Abramson M. Restricted combinations and compositions. Fibonacci Quart. 1976; 14: 439–452.

28. Aydin K, Bateni M, Mirrokni V. Distributed Balanced Partitioning via Linear Embedding. Proceedings of

the Ninth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM;

2016. pp. 387–396.

29. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities.

Sci Rep. 2019; 9: 5233. https://doi.org/10.1038/s41598-019-41695-z PMID: 30914743

30. Malkov YA, Yashunin DA. Efficient and robust approximate nearest neighbor search using Hierarchical

Navigable Small World graphs. arXiv [cs.DS]. 2016. Available: http://arxiv.org/abs/1603.09320

31. Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data.

PLoS Comput Biol. 2015; 11: e1004333. https://doi.org/10.1371/journal.pcbi.1004333 PMID: 26107944

32. Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression

analysis. Nat Methods. 2014; 11: 740–742. https://doi.org/10.1038/nmeth.2967 PMID: 24836921

33. Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and differential analy-

sis with Census. Nat Methods. 2017; 14: 309–315. https://doi.org/10.1038/nmeth.4150 PMID:

28114287

34. Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analy-

sis. Nat Methods. 2018; 15: 255–261. https://doi.org/10.1038/nmeth.4612 PMID: 29481549

35. Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for identi-

fying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016; 17: 222. https://

doi.org/10.1186/s13059-016-1077-y PMID: 27782827

36. Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, et al. Cell type discov-

ery using single-cell transcriptomics: implications for ontological representation. Hum Mol Genet. 2018;

27: R40–R47. https://doi.org/10.1093/hmg/ddy100 PMID: 29590361

37. Breiman L. Random Forests. Mach Learn. 2001; 45: 5–32.

38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830.

39. Cover T, Hart P. Nearest Neighbor Pattern Classification. IEEE Trans Inf Theory. 2006; 13: 21–27.

40. Bezdek JC, Chuah SK, Leep D. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems. 1986;

18: 237–256.

41. Bellet A, Habrard A, Sebban M. A Survey on Metric Learning for Feature Vectors and Structured Data.

arXiv [cs.LG]. 2013. Available: http://arxiv.org/abs/1306.6709

PLOS COMPUTATIONAL BIOLOGY Scedar

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007794 April 27, 2020 22 / 24

https://doi.org/10.1038/ncomms14049
http://www.ncbi.nlm.nih.gov/pubmed/28091601
https://doi.org/10.1371/journal.pcbi.1006245
http://www.ncbi.nlm.nih.gov/pubmed/29939984
http://arxiv.org/abs/1802.03426
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
http://www.ncbi.nlm.nih.gov/pubmed/24914678
https://doi.org/10.1186/s13059-015-0679-0
http://www.ncbi.nlm.nih.gov/pubmed/26040460
http://arxiv.org/abs/1109.2378
https://doi.org/10.1038/s41598-019-41695-z
http://www.ncbi.nlm.nih.gov/pubmed/30914743
http://arxiv.org/abs/1603.09320
https://doi.org/10.1371/journal.pcbi.1004333
http://www.ncbi.nlm.nih.gov/pubmed/26107944
https://doi.org/10.1038/nmeth.2967
http://www.ncbi.nlm.nih.gov/pubmed/24836921
https://doi.org/10.1038/nmeth.4150
http://www.ncbi.nlm.nih.gov/pubmed/28114287
https://doi.org/10.1038/nmeth.4612
http://www.ncbi.nlm.nih.gov/pubmed/29481549
https://doi.org/10.1186/s13059-016-1077-y
https://doi.org/10.1186/s13059-016-1077-y
http://www.ncbi.nlm.nih.gov/pubmed/27782827
https://doi.org/10.1093/hmg/ddy100
http://www.ncbi.nlm.nih.gov/pubmed/29590361
http://arxiv.org/abs/1306.6709
https://doi.org/10.1371/journal.pcbi.1007794


42. Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extrac-

tion from single-cell RNA-seq data. Nat Commun. 2018; 9: 284. https://doi.org/10.1038/s41467-017-

02554-5 PMID: 29348443

43. Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis.

Genome Biol. 2015; 16: 618.

44. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. Mammalian genes are transcribed

with widely different bursting kinetics. Science. 2011; 332: 472–474. https://doi.org/10.1126/science.

1198817 PMID: 21415320

45. Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J-M, Robert M-C, et al. A single-molecule view

of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun. 2016; 7:

12248. https://doi.org/10.1038/ncomms12248 PMID: 27461529

46. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of

single-cell RNA-seq data. Nat Methods. 2017; 14: 483–486. https://doi.org/10.1038/nmeth.4236 PMID:

28346451

47. Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial

databases with noise. Kdd. 1996. pp. 226–231.

48. Aggarwal CC, Hinneburg A, Keim DA. On the Surprising Behavior of Distance Metrics in High Dimen-

sional Space. Database Theory—ICDT 2001. Springer Berlin Heidelberg; 2001. pp. 420–434.

49. Linderman GC, Steinerberger S. Clustering with t-SNE, Provably. SIAM Journal on Mathematics of

Data Science. 2019; 1: 313–332.

50. Hubert L, Arabie P. Comparing partitions. J Classification. 1985; 2: 193–218.
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