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Abstract

The annotation of the well-studied organism, Saccharomyces cerevisiae, has been improving over the past decade while
there are unresolved debates over the amount of biologically significant open reading frames (ORFs) in yeast genome. We
revisited the total count of protein-coding genes in S. cerevisiae S288c genome using a theoretical approach by combining
the Support Vector Machine (SVM) method with six widely used measurements of sequence statistical features. The
accuracy of our method is over 99.5% in 10-fold cross-validation. Based on the annotation data in Saccharomyces Genome
Database (SGD), we studied the coding capacity of all 1744 ORFs which lack experimental results and suggested that the
overall number of chromosomal ORFs encoding proteins in yeast should be 6091 by removing 488 spurious ORFs. The
importance of the present work lies in at least two aspects. First, cross-validation and retrospective examination showed the
fidelity of our method in recognizing ORFs that likely encode proteins. Second, we have provided a web service that can be
accessed at http://cobi.uestc.edu.cn/services/yeast/, which enables the prediction of protein-coding ORFs of the genus
Saccharomyces with a high accuracy.
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Introduction

Since Saccharomyces cerevisiae genome was first sequenced in 1996

[1,2], the well-studied annotation of this eukaryotic organism has

gone through a frequent update [3]. Many experimental studies

have been published and they provide the S. cerevisiae genome more

and more reliable reference sets. However, not all genes could be

validated by experiments because many genes express only in

some special conditions. Therefore, researchers may need to seek

alternative methods.

Many computational approaches have been applied to predict

functional ORFs and yielded various estimations. Initial sequenc-

ing of the yeast genome revealed about 6000 genes on 16

chromosomes [1]. The predicted number of genes varies

dramatically based on the compositional features of coding

sequences. Blandin et al. revisited the entire S. cerevisiae sequence

using the same criteria for all 16 chromosomes [4]. They proposed

that the actual protein-coding gene set of S. cerevisiae amounted to

at least 5600 genes. Zhang & Wang [5] predicted less than 5645

genes using YZ scores to identify coding and non-coding ORFs.

Wood et al.’s [6] prediction suggested 5807 genes, and the

number declined to 5570 after eliminating hypothetical ORFs.

Mackiewicz et al. [7] predicted 5300–5400 genes with an

asymmetry model, and suggested that many predicted numbers

were overestimated. Luo et al. rejected 470 spurious ORFs using

the inhomogeneity index to discriminate between coding and non-

coding ORFs [5–8].

Large-scale comparative genomic analyses within organisms in

the past decade made sparkling contributions to annotation

refining and updating. Specifically, independent comparative

analyses between yeast and other ascomycete species [9–11]

recommended to remove 402, 513 and 495 ORFs, respectively,

from the initial predicted ORF set according to poor cross-species

conservation. Those ORFs lacking evolutionary conservation are

named ‘‘orphan’’ ORFs, and a large portion of orphans overlap

with other genes [12,13].

While a gradual and steady increment has been seen in the

annotated genes verified by experimental results of transcriptome

and translated proteome, there are approximately 1700 ORFs

with unknown biological functions in the latest version of

Saccharomyces Genome Database (SGD) [14,15]. A study on

uncategorized ORFs with biological function proposed that the

majority of uncharacterized ORFs are bona fide genes according

to their sequence properties [16]. In addition, Li et al. [17]

suggested that many orphan ORFs, though with poor interspecies

homology in comparative genome analysis and thus previously

accepted as non-functional, might possess biological functions.

We sought to re-annotate the protein-coding genes in S. cerevisiae

S288c genome using Support Vector Machines (SVMs), combined

with six natural measurements in genomic research to identify
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bona fide genes from currently unverified ORFs based on the

annotation from SGD database. Ten-fold cross-validation per-

formed on the training dataset guarantees the accuracy of our

method, and it supports coding potentials of the newly added

ORFs in the SGD snapshots. Using the model trained with the

optimal measurements, we estimate the number of biologically

significant ORFs to be 6091, a larger number than many previous

computational predictions.

Databases and Methods

SGD Database
The SGD [15] provides comprehensive and integrated biolog-

ical information for the S. cerevisiae and maintains up-to-date

genome annotations of S. cerevisiae with continuous updates from

accumulated experimental results and comparative analysis. We

acquired the reference genome from SGD (http://yeastgenome.

org) released on 5 Jan 2010. This release includes 6603 ORFs:

4848 of them are verified genes (of which 4835 genes located on 16

chromosomes are extracted for training), 944 are uncharacterized

and 811 are dubious (of which 1744 on chromosomes are

extracted as test set). Additionally, the 6624 intergenic sequences

from the S. cerevisiae S288c genome were used as negative samples

in the training data sets. SGD initialized its classification system in

2003: all ORFs are assigned into one of the three categories

(verified, uncharacterized and dubious) based on their coding

capacity available from the published data.

Construction of datasets
To construct the training data sets for the SVMs, all 4835

verified ORFs located on yeast’s 16 chromosomes were chosen as

positive samples. Among 6624 intergenic sequences, those longer

than 300 bp were chosen as negative samples, and this resulted in

3515 intergenic sequences. The 300 bp length was chosen to

maintain the consistency with Sharp and Cowe’s threshold [18].

The uncharacterized and dubious ORFs from SGD were used

as the test dataset. Because more and more orphan ORFs are

found to have transcription, translation or other functions, we

would like to test our method on these questionable ORFs.

Features to assess ORF coding capacity
Many computational models with different types of features

have been successfully applied into de novo identification of

protein-coding genes in genome-wide research [19]. In this study,

six natural and widely used features were chosen to build the SVM

model. These features are listed as follows.

1) Base compositional features

Base composition asymmetry was observed by many researchers

[20,21]. The bias of specific nucleotides to different codon position

was used to construct two features: nucleotide frequencies, which

were calculated on all three frames of each ORF, yielding 12

parameters, and dinucleotide frequencies, which were counted on

two codon positions 1 & 2, 2 & 3 and 3 & 1 using a sliding window

of 3 bp, generating 48 parameters.

2) Mono-/di-codon usage features

Codon usage, i.e. frequency of natural encoding units, is a

common measurement in genomic research. Since different

optimal codon usage across species suggests the bias of codon

adoption in genuine coding regions, we draw the measurement of

codon composition using 64 features describing frequencies of all

64 codons. Similar to the 1-level Markov chain, we also described

the dicodon usage with a 4096-dimensional vector using a sliding

window of 6 bp.

3) Mono-/di-amino acid usage

Amino acid usage could be regarded as the degenerated codon

usage by assuming an equal adoption of synonymous codons.

Treating the three stop codons as a special `amino acid’, we

extracted 21 parameters for mono-amino acid usage and 441 di-

amino acid usage parameters using a sliding window of 3 bp.

Once we finished the calculation of nucleotide/codon/amino

acid usage frequencies, all the parameters were normalized onto

the interval of [0, 1]. And the scale for training set normalization

was stored and applied to the test set later.

Classification Method
Support Vector Machine (SVM) has gained much popularity

with wide applications in various fields [22]. In general, Support

Vector Classifiers (SVCs) learn a classification problem by

constructing an optimal hyper-plane with maximized margin,

and predict samples by measuring the distance from where the

point stands to the hyper-plane. In this work, an open-source

library, libsvm, of SVM implementation written by Lin et al. was

used to classify ORFs [23]. The SVM was trained with the

featured parameters of the training dataset and multiple combi-

nations of different features were exploited. When verify the

effectiveness of the method, we divided all samples into ten parts

with equal size, and performed 10-fold cross validation. When

applying the method in dubious ORFs, a new SVM model was

trained on the entire training set and was then used to the test

dataset to identify protein-coding genes. Given the large samples

and high-dimensional feature vectors for our classification

problem, we used a linear kernel for SVM.

Results and Discussion

Screening on multivariate parameters
A ten-fold cross-validation was applied to screen the combina-

tions of different parameters for the most effective set of features in

identifying the protein-encoding potential of an arbitrary ORF.

Using the training set consisting of 4835 verified ORFs and 3515

intergenic sequences, the cross-validation was performed on 63

combinations that may identify the accuracy of every group of

gene-identifying features. In the 10-fold cross-validation, the

dataset was divided into ten subsets of samples; 9 subsets were

sequentially used to train the SVM and the remaining one was

used for validation; each subset was guaranteed to be validated for

once and the average prediction of the 10 models was adopted for

the final accuracy of training. The accuracy is measured by the

following two parameters,

Sn~
TP

TPzFN
, ð1Þ

which evaluates the capacity of the method in categorizing positive

samples as coding genes correctly, and,

Sp~
TN

TNzFP
, ð2Þ

which denotes the percentage in identifying non-coding sequences

correctly.

In Eqs 1 and 2, TP and TN denote the number of coding/non-

coding sequences that were correctly identified, while FN and FP

denote the number of coding/non-coding sequences that were

falsely identified.

Table 1 lists the cross-validation results on all 63 combinations.

Codon and dicodon usages display notable conservation compared

with the other four features. While all features demonstrate fair
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accuracy in identifying protein-coding genes, the combination

consisting of all six features, namely nucleotide and di-nucleotide

compositions, mono-/di-codon usage and mono-/di-amino acid

usage, as highlighted in Table 1, gave the best sensitivity and

specificity. Additionally, we respectively calculate the standard

deviations of the sensitivity and specificity, and get a stable sense of

the classifiers as shown in Table 2. However, the best combination

misidentified 15 verified ORFs (with an average length of 296.6

nucleotides) out of 4835 genes as non-coding sequences in the

cross-validation. None of these 15 falsely categorized genes is

longer than 400 bp while the overall average size of the verified

genes is much longer, 1546.8 bp (see Table 2).

Retrospective examination of methodology
While the cross-validation on the sample sets demonstrated high

accuracy, we could not simply deduce a high fidelity of our

method since the prediction result on biologically significant ORFs

could not be experimentally verified, at least within a short period.

However, an investigation into the historical snapshots of SGD

database [14,15] could provide collateral support for the reliability

of our method as each database revision updated new genes that

previously lacked experimental support.

In this retrospective analysis, 7 historical snapshots from Aug.

2004 to Jan. 2010 were retrieved from the SGD database. Next, a

pairwise examination between two adjacent snapshots was

performed in the following steps: 1) Construct the training/testing

sample sets using the verified ORFs and intergenic sequences from

the older snapshot; 2) Train SVM with the constructed training

Table 1. Performance for all the 63 groups of measurements
in cross-validation.*

Measure
ments Sn Stdev Sp Stdev Accuracy

1 97.52% 0.39% 96.68% 0.74% 97.10%

2 99.23% 0.34% 99.21% 0.46% 99.22%

3 99.71% 0.28% 99.77% 0.16% 99.74%

4 99.67% 0.24% 99.69% 0.24% 99.68%

5 96.61% 0.69% 95.66% 1.24% 96.13%

6 98.04% 0.64% 96.48% 1.05% 97.26%

1, 2 99.21% 0.38% 99.29% 0.37% 99.25%

1, 3 99.67% 0.30% 99.80% 0.19% 99.74%

1, 4 99.67% 0.28% 99.74% 0.25% 99.71%

1, 5 99.36% 0.45% 99.55% 0.31% 99.45%

1, 6 99.30% 0.38% 99.01% 0.68% 99.15%

2, 3 99.69% 0.25% 99.74% 0.16% 99.72%

2, 4 99.71% 0.28% 99.74% 0.25% 99.73%

2, 5 99.65% 0.38% 99.66% 0.26% 99.65%

2, 6 99.44% 0.37% 99.35% 0.37% 99.39%

3, 4 99.71% 0.31% 99.74% 0.26% 99.73%

3, 5 99.71% 0.28% 99.72% 0.19% 99.71%

3, 6 99.52% 0.31% 99.40% 0.44% 99.46%

4, 5 99.69% 0.30% 99.72% 0.26% 99.70%

4, 6 99.67% 0.29% 99.55% 0.37% 99.61%

5, 6 98.68% 0.57% 98.07% 0.52% 98.37%

1, 2, 3 99.67% 0.25% 99.74% 0.16% 99.71%

1, 2, 4 99.69% 0.24% 99.72% 0.25% 99.70%

1, 2, 5 99.65% 0.38% 99.63% 0.27% 99.64%

1, 2, 6 99.50% 0.42% 99.38% 0.34% 99.44%

1, 3, 4 99.69% 0.27% 99.72% 0.26% 99.70%

1, 3, 5 99.67% 0.28% 99.80% 0.19% 99.74%

1, 3, 6 99.59% 0.33% 99.46% 0.37% 99.52%

1, 4, 5 99.67% 0.28% 99.77% 0.23% 99.72%

1, 4, 6 99.63% 0.27% 99.72% 0.27% 99.67%

1, 5, 6 99.32% 0.38% 99.12% 0.56% 99.22%

2, 3, 4 99.71% 0.28% 99.77% 0.26% 99.74%

2, 3, 5 99.69% 0.25% 99.74% 0.16% 99.72%

2, 3, 6 99.67% 0.29% 99.49% 0.23% 99.58%

2, 4, 5 99.69% 0.28% 99.72% 0.29% 99.70%

2, 4, 6 99.65% 0.16% 99.72% 0.26% 99.68%

2, 5, 6 99.50% 0.36% 99.26% 0.44% 99.38%

3, 4, 5 99.69% 0.30% 99.74% 0.26% 99.72%

3, 4, 6 99.67% 0.24% 99.72% 0.31% 99.69%

3, 5, 6 99.57% 0.32% 99.46% 0.47% 99.51%

4, 5, 6 99.67% 0.28% 99.57% 0.38% 99.62%

1, 2, 3, 4 99.71% 0.28% 99.77% 0.25% 99.74%

1, 2, 3, 5 99.67% 0.25% 99.77% 0.16% 99.72%

1, 2, 3, 6 99.67% 0.29% 99.49% 0.24% 99.58%

1, 2, 4, 5 99.69% 0.28% 99.72% 0.23% 99.70%

1, 2, 4, 6 99.65% 0.26% 99.77% 0.24% 99.71%

1, 2, 5, 6 99.52% 0.39% 99.38% 0.33% 99.45%

1, 3, 4, 5 99.71% 0.28% 99.74% 0.25% 99.73%

Table 1. Cont.

Measure
ments Sn Stdev Sp Stdev Accuracy

1, 3, 4, 6 99.69% 0.26% 99.74% 0.26% 99.72%

1, 3, 5, 6 99.57% 0.33% 99.49% 0.36% 99.53%

1, 4, 5, 6 99.63% 0.27% 99.72% 0.27% 99.67%

2, 3, 4, 5 99.71% 0.28% 99.74% 0.26% 99.73%

2, 3, 4, 6 99.67% 0.28% 99.80% 0.24% 99.74%

2, 3, 5, 6 99.67% 0.26% 99.52% 0.24% 99.59%

2, 4, 5, 6 99.67% 0.26% 99.74% 0.26% 99.71%

3, 4, 5, 6 99.69% 0.24% 99.74% 0.31% 99.72%

1, 2, 3,
4, 5

99.71% 0.24% 99.74% 0.26% 99.73%

1, 2, 3,
4, 6

99.69% 0.28% 99.77% 0.20% 99.73%

1, 2, 3,
5, 6

99.65% 0.29% 99.77% 0.24% 99.71%

1, 2, 4,
5, 6

99.65% 0.26% 99.77% 0.24% 99.71%

1, 3, 4,
5, 6

99.67% 0.24% 99.77% 0.26% 99.72%

2, 3, 4,
5, 6

99.69% 0.22% 99.80% 0.24% 99.75%

1, 2, 3,
4, 5, 6a

99.69% 0.28% 99.80% 0.20% 99.75%

*Six measurements are represented as following: 1/mono-nucleotide
frequencies, 2/di-nucleotide frequencies, 3/mono-codon composition, 4/di-
codon composition, 5/mono-amino acid usages, 6/di-amino acid usages.
aThe boldface letter indicates the group with highest accuracy among the 63
combinations.
doi:10.1371/journal.pone.0064477.t001
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set; 3) Predict protein-coding genes within the testing set using the

model generated in Step 2; 4) Pick all the verified ORFs annotated

in both adjacent snapshots and find the newly verified genes in the

newer snapshot; 5) Compare two sets generated in Steps 3 and 4

and calculate the coverage ratio of our predicted genes against the

newly confirmed genes.

By examining the prediction coverage against the priori data,

we could equivalently draw an assessment of our method. Table 3

lists the results in the pairwise comparison between historical

snapshots. The congruent results that all coverage ratios are over

98% suggest a high sensitivity with our method in identifying

‘‘new’’ genes. In the historical development in the SGD

annotation, 624 new genes were introduced in the past six years,

of which 616, or 98.72%, were ‘‘discovered’’ by our method.

Overall, 8 ORFs were missed in the pairwise comparison and all

are small ORFs which are usually difficult to identify.

Parameters optimization
By examining the raw score of samples’ margin to the classifying

hyper-plane, we can visualize the distribution of the predicted

scores in the training set rather than the binary classification result.

The distribution of the predicted scores, as given in Figure 1,

demonstrates how both positive and negative sequences were

classified with the trained SVM. A small overlapping region in the

middle indicates those incorrectly classified samples.

We sought to optimize the classification by raising the sensitivity

while not sacrificing much specificity through offsetting the

threshold for decision. However, the result was not quite satisfying:

specificity dropped dramatically while we shifted the threshold for

a slight increment in sensitivity. This observation clearly showed

that SVM, in this case, is an efficient and practical classifier that

solves the classification problem well.

In addition, we optimized the combination of the penalty

parameter C and the biased weight parameter wratio using a grid-

searching method based on the cross-validation on the gold-

standard training set. Define the wratio to be,

Table 2. List of misclassified genes in 10-fold cross-
validation.*

ORF ID Gene Name GC% Length(bp)

YAL064W – 37.30887 327

YDR504C SPG3 26.30208 384

YGL032C AGA2 40.5303 264

YJL028W – 47.61905 336

YJR120W – 46.72365 351

YNL269W BSC4 40.40404 396

YOR302W – 41.02564 78

YBR058C-A TSC3 34.97942 243

YFL010W-A AUA1 42.45614 285

YGL168W HUR1 32.43243 333

YJL077C ICS3 40.90909 396

YKL037W AIM26 49.85994 357

YOR031W CRS5 42.38095 210

YPL096C-A ERI1 44.44444 207

YPL183W-A RTC6 43.97163 282

*All the 15 misclassified ORFs (with an average length of 296.6 nucleotides) are
small ORFs, which are usually difficult to identify.
doi:10.1371/journal.pone.0064477.t002

Table 3. Results of retrospective examination into historical snapshots.*

Compared Snapshots nnew_veri npredicted Misclassified ORFs Gene Name Coverage%

2004–2005 127 1784 YDR504C SPG3 99.21%

2005–2006 94 1709 YJR120W 98.94%

2006–2007 216 1614 YAL064W YJL077C –ICS3 98.15%

YGL168W YJL028W HUR1 –

2007–2008 39 1436 – 100%

2008–2009 103 1388 YKL037W YPL183W-A AIM26 RTC6 98.06%

2009–2010 45 1317 – 100%

*nnew_veri denotes the number of verified genes newly added in updated snapshot of SGD database; npredicted denotes the overall predicted protein-coding ORFs based
on every historical version of SGD database. Take the first snapshot as example, we predict 1784 coding ORFs based on the data of 2004, which covered 99.21% of the
127 newly added verified genes in 2005.
doi:10.1371/journal.pone.0064477.t003

Figure 1. Histogram distribution of predicted scores of
samples on the training set. Genes with scores ,0 are predicted
as non-coding genes, and .0 coding ones. As denoted in the
overlapping areas, FN (coding genes with predicted score inferior to
zero) is 15 and FP (intergenic sequences with score over zero) is 7. The
list of 15 misclassified genes is as shown in Table 2.
doi:10.1371/journal.pone.0064477.g001
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wratio~
w{

wz

, ð3Þ

where w_ and w+ correspond to the weight scaled on C for negative

and positive datasets, respectively.

The optimal classification was achieved when C = 223.5, and

wratio = 20.6. By applying this combination of the parameters, we

got the highest predicted accuracy. These values were adopted in

the following prediction. Furthermore, we noticed that the

specificity, compared to the sensitivity, is prone to change when

parameters vary, possibly due to the dense distribution of the

negative samples around the margin, which could be supported by

more severe variation when the cost parameter C for negative

samples gets smaller. As a result, it might sacrifice much of Sp to

increase Sn.

Prediction of protein-coding genes
Finally, the best-trained SVM model with the combined

features of nucleotide/di-nucleotide compositions, mono-/di-

codon usage and mono-/di-amino acid usage was applied on all

1744 chromosomal ORFs labeled as dubious or uncharacterized.

Among 1744 ORFS, 1256 ORFs (826 uncharacterized and 430

dubious) were predicted to be protein-coding; equivalently, 488

spurious ORFs were ruled out from the yeast genome. We then

estimated the overall number of protein-coding genes in S. cerevisiae

genome to be 6091.

Why ,500 spurious genes were ruled out?
Using our methodology, we identified 488 spurious ORFs as

non-coding (with an average length of 300.8 bp and a median

length of 321 bp). Recent discovery found that many different

kinds of products are generated by a pervasive transcription, which

focuses mainly on small non-coding RNAs (ncRNAs) associated

with promoters in eukaryotes from animals to yeast, showing that

the yeast genome is almost entirely transcribed (sense and anti-

sense) [24]. Among these 488 ORFs, 243 overlap with verified

genes and a very high percentage (,85%) of them are located on

the antisense strands of verified genes. This observation is

consistent with previous research discovery [25], where the over-

annotated ORFs in the genome of the Crenarchaeon, Aeropyrum

Pernix K1 also tend to overlap real genes on the antisense strands.

Looking into the features of sequence structure, we compared

the distribution of nucleotide frequencies on different codon

positions for all our training and test samples. As depicted in

Figure 2, the G-T plane demonstrates the distribution of guanine

and thymine usage on the first codon position for our datasets.

Each point on the graph denotes one ORF. Figure 2(a) depicts the

distinct pattern of guanine and thymine usage for positive and

negative training samples, in which guanine shows predominant

occupancy for genes, while thymine tends to be more frequent for

non-coding ORFs, both on the first codon position. In addition,

G-T distribution of our predicted coding genes is consistent with

that of positive samples in training sets, and the same is true of our

non-coding ORFs, which can be shown in the comparison of

Figure 2(a) and Figure 2(b).

Similar results are drawn from the A-T, C-G planes where

coding ORFs show predominant usage of purine bases, which is

observed by other researchers as universal and conserved patterns

[26]. Therefore, the congruent pattern of both verified and our

predicted data supports our prediction by eliminating the 488 non-

coding ORFs. Though the separating tendency appears in both

figures, however, it may be noted that the separation between two

types of samples in Figure 2a is much significant than that in

Figure 2b. In fact, we used a total of 4682 variables to jointly

discriminate the positive and negative samples. Using only two

dimensions, test set are more difficult to differentiate than the

training set although the classifications may have the similar

precisions when using 4682 variables.

Controversy over the number of genes
In the past decade, debates over the accurate number of

protein-coding genes in S. cerevisiae genome are never settled. The

re-annotation number of 6091 in our prediction of the protein-

coding genes in S. cerevisiae genome is in accordance with the initial

extrapolation (6200 ORFs, and 6%,7% of which do not encode

Figure 2. G-T nucleotide distribution on 1st codon position of all four sets of ORFs. (a) G-T distribution of 4835 positive and 3515 negative
samples in training sets. (b) G-T distribution for 1256 predicted genes and 488 rejected spurious ORFs and all 1744 ORFs are those originally labeled
as dubious or uncharacterized by the SGD annotation.
doi:10.1371/journal.pone.0064477.g002
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proteins) [12]. Additionally, this number is much higher than

many previous estimations [4–6]. Compared with the previous

computational genome analyses, our method demonstrates a

higher accuracy in identifying ORFs with coding potential. The

multivariate parameters, along with SVM as an efficient machine

learning method, contribute to the high sensitivity and specificity

(.99.5%), and thus may provide more reliable and accurate

results for overview of the functional ORFs in S. cerevisiae genome.

While orphan ORFs were recommended for deletion form

proteome set by comparative analyses [27], some of them are

congruently abundantly transcribed compared with other genes

[12]. In addition, the results from a few recent high-throughput

experiments also indicated that a large portion of evolutionary

non-conserved ORFs are actively transcribed or translated [17].

Comparative analyses conducted by Brachat et al. [9], Cliften

et al. [10], and Kellis et al. [11] in all suggested 648 ORFs show

no homology to other species as spurious. Comparison between

our prediction and these comparative results shows that 295 and

248 spurious genes annotated by Cliften and Kellis, respectively,

are predicted as genes with our method. After comparative

analysis, these retained spurious ORFs are found to have similar

nucleotide compositions with verified genes than with discarded

spurious ORFs.

Web service
The method presented in the paper has been implemented as an

online web service, namely Saccharomyces SVM, which is

accessible at http://cobi.uestc.edu.cn/services/yeast/. The fol-

lowing functions are provided: (i) An user interface shown in the

first section ‘Run the Service’ to submit ORFs to predict their

coding potential. (ii) An introduction about the service Saccharo-

myces SVM in the second section ‘Reference Implementation’,

which mainly presents the methodology, the test result of our

method and the instruction to use our online service. Specially, we

compile a complete list of our predicted results, which contains

both 1256 protein-coding genes and 488 rejected spurious ORFs

with attributes like locations, lengths and annotated functions. The

list is attached to http://cobi.uestc.edu.cn/resource/yeast_svm/

orflist/. Using the available annotation data of Schizosaccharomyces

pombe genome released from NCBI, we obtain an accuracy of 98%

by running the service to predict its coding potential. Since S.

pombe and S. cerevisiae differs in genera, we rationally recognized

that the species of Saccharomyces will be predicted with much higher

accuracy.
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