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Immunological pathways of macrophage
response to Brucella ovis infection
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Abstract

As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome

approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs

related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcrip-

tome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group

versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in

DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple

immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory

response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling

pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2

(ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1

(ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2

(ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly

elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the

bacteria–host interaction and demonstrating the pathogenic mechanism of B. ovis.
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Introduction

Brucella is a Gram-negative non-motile and intracellu-

lar parasitic bacterium without capsule (smooth type

with microcapsule) which can survive in many kinds

of domestic animals. Brucellosis is caused by

Brucella, and is a chronic infectious disease that affects

animal husbandry and public health.1–4 The Brucellosis

Expert Committee of the World Health Organization

divides Brucella into six species and 19 types, namely,

Brucella melitensis (three types), Brucella abortus (eight

types), Brucella suis (five types), Brucella ovis (one

type), Brucella neotomae (one type), and Brucella

canis (one type). Recently, Brucella has been isolated

from seals, whales, and otters, and it is suggested that
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these isolates make up two new varieties, i.e. Brucella
cetaceae and Brucella pinnipedia.5–7 The clinical mani-
festations of brucellosis are very complex, and can be
divided into acute stage, chronic active stage, and
chronic relatively stable stage. The incubation period
is 7–60 d, with an average of 2 wk, and some instances
can reach several months to more than 1 yr.8–10

B. ovis needs 5% to 10% CO2 for primary isolation
and culture, and has high requirements for nutrition. It
grows well in the solid culture of defibrinated amniotic
blood and grows poorly in an ordinary medium.11–13

The genome of B. ovis is about 3.29 Mb, including two
chromosomes and 3200 open reading frames. The main
routes of transmission of B. ovis are digestive tract,
skin, mucous membrane, and reproductive tract. B.
ovis can not only cause infection through damaged
skin and mucous membrane, but also through normal
non-damaged skin and mucous membrane. Female
sheep are more likely to be infected by B. ovis than
male sheep. Young sheep have a certain resistance to
the disease. With increase of age of the sheep, the sus-
ceptibility also increases. Sexually mature sheep are
very susceptible to the disease. Female sheep in their
first pregnancy are easily infected; most have only one
abortion, and fewer have two abortions. In historical
epidemic areas there are fewer miscarriages, but there
are more cases of hysteritis, mastitis, arthritis, placenta
failure, and long pregnancy infertility. In new epidemic
areas, the outbreak is the main disease, miscarriages
may occur in every pregnancy, and male sheep are
more likely to be infected by B. ovis than female
sheep.14–16

After B. ovis has invaded the animal’s body, it
quickly reaches lymph nodes near the tissue of inva-
sion, and is found and phagocytized by macrophages.
The bacteria phagocytized by macrophages grow and
propagate in macrophages to form the primary focus
but do not show any clinical characteristics. Brucella
has a weak LPS that does not trigger sepsis.17–19 When
pregnant animals are infected, bacteria proliferate in
the epithelial cells of the chorion causing necrosis and
production of a cellulosic purulent secretion, resulting
in separation of the placenta, thus a lack of fetal
nutrients and finally abortion.20

In this study, RAW264.7 macrophage cells were
infected with B. ovis or physiological saline, and the
samples were named B_ovis infected and mock_in-
fected. RNA-seq was used to identify the differentially
expressed genes (DEGs) comparing B_ovis infected
with mock_infected. A total of 601 DEGs were identi-
fied. Top 20 pathways were enriched by Kyoto
Encyclopedia of Genes and Genomes (KEGG) analy-
sis. Gene Ontology (GO) functional enrichment analy-
sis showed DEGs of the top 20 GO terms involved in
the molecular function, cellular component, and

biological process, and revealed eight immunological

pathways of RAW264.7 macrophage cells in response

to B. ovis infection. We selected 10 DEGs with high

expression and up-regulation for qRT-PCR validation;

the results showed that nine DEGs were consistent with

the transcriptome sequencing data, which demonstrat-

ed that the results of transcriptome sequencing were

reliable. Our findings may lay a foundation for eluci-

dating the bacteria–host interaction and the molecular

mechanism of B. ovis infection.

Materials and methods

Cells, B. ovis culture, and infection

RAW264.7 macrophage cells were stored in our lab,

and cultured with DMEM medium (Life Technology,

USA) supplemented with 10% heat-inactivated FBS,

100 IU/ml penicillin and 100 mg/ml streptomycin. B.

ovis strain 25840 was purchased from ATCC, and

coated on the defibrillated blood plate (Hopebio,

China) to culture for 48 h in a 37�C, 5% CO2 incuba-

tor. The bacteria were washed down with PBS and

infected RAW264.7 macrophage using MOI¼ 100:1

for 24 h, while the saline group was set as the control

group (n¼ 3). After adding Trizol to lyse the cells, the

samples were collected to isolate total RNAs.

High-quality total RNA extraction, quality control,

and transcriptome sequencing

The qualities and concentrations of total RNAs were

analysis by using Bioanalyzer 2100 and RNA 1000

Nano LabChip Kit (Agilent, USA) with RIN

number> 7.0. Poly(A) RNA was purified doubly

using poly-T oligo-attached magnetic. Purified

mRNA was fragmented into small pieces using divalent

cations under elevated temperature. Then the cleaved

RNA fragments were reverse-transcribed to create the

cDNA library (Illumina, San Diego, USA); the average

insert size for the paired-endlibraries was 300 bp (� 50

bp). The quality of the transcriptome sequencing was

assessed by investigating the regional distribution of

reference genome alignment and density distribution

of reference sequence. Quality control (QC) was per-

formed as Q20, Q30, GC content distribution map,

RNA expression level, saturation curve, splicing junc-

tions, biological repeat correlation verification, and

visualization of reads comparison results, and then

analysis of the QC data by using bioinformatics. In

this study, principal component analysis (PCA) and

Pearson correlation were used to evaluate the repeat-

ability between samples. We then performed the

paired-end sequencing on an Illumina HiSeq 4000 at
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the (LC Sciences, USA) following the vendor’s recom-

mended protocol.

Sequencing data processing

In the process of high-throughput sequencing data

analysis, we mainly focused on the construction of

transcripts and the measurement of their expression

level, followed by the analysis of post-transcriptional

modification of variable splicing. HISAT 2.0 software21

was used to compare the sequencing data compared

with the reference genome, and the alignment results

were used to assemble the transcripts. Using network

flow algorithm and optional de novo assembly, complex

datasets were assembled into transcripts. Utilizing the

assemblers Cufflinks and StringTie achieves more accu-

rate gene reconstruction and better prediction of expres-

sion level based on real datasets. Then, edgeR22–24

was used to analyze the difference expression, and R

language was used to display the result graphically.
Raw data of the sequencer was preprocessed to

format as fastq files. The data file contained some

short sequences (about 150 bp) that could not be direct-

ly used for mRNA analysis. To ensure accurate

and reliable results, it was necessary to preprocess the

original data, including removing sequencing joints

(introduced in the process of database building) and

low-quality sequencing data (due to the error of the

sequencer itself). The valid data obtained was paired

with the reference genome of mice, and the gene loca-

tion information in the genome annotation documents

(gtf and gff) was counted, respectively. Cutadapt25–27

was used to filter out unqualified sequences and obtain

clean data. Then, the next analysis was carried out. The

specific processing steps are as follows: Removing the

reads with adaptor, the reads containing n (n means

that the base information cannot be determined), and

the low-quality reads (the base number of alkali with

mass value Q � 10 accounts for more than 20% of the

whole read). The original sequencing quantity, effective

sequencing quantity, Q20, Q30, and GC content were

counted and evaluated comprehensively. After compar-

ison of reference genome and statistical analysis of

known annotation information of species, the DEGs

later were analyzed.

Analysis of transcriptome data

EdgeR was used to analyze the difference of StringTie-

assembled and quantified genes (the threshold of sig-

nificant difference was | log2 fold change | � 1,

P< 0.05) and we defined the difference threshold

according to the initial operation results, such as:

Changing of the fold change threshold and Changing

of the threshold (P value). The DEGs satisfying the

threshold of significance difference are displayed in

the result report.

GO and KEGG enrichment analysis

GO enrichment analysis of differentially expressed

transcripts was implemented with the GO seq R pack-

age, based on corrected gene length bias. Regarding

analysis of GO functional significance enrichment, we

mapped all significant DEGs to each term, calculated

the gene number of each term, and then applied a

hypergeometric test to group the GO items compared

with the whole genome background. ggplot2 is used to

show the enrichment analysis by using scatter diagram.

KEGG is performed for the significance enrichment

analysis of the pathway. The hypergeometric test is

applied to find out the pathway which is significantly

enriched in the genes with significant differential

expression compared with the whole genome

background.

Validation of DEGs by qRT-PCR

The primers were designed by NCBI primer online soft-

ware, and GAPDH was used as an internal control.

Total RNAs extracted from B. ovis_infected and

mock_infected samples were used for reverse transcrip-

tion by PrimeScriptTM RT reagent kit (TaKaRa,

Japan), and qRT-PCR was performed by TB GreenVR

Premix Ex TaqTM II (Tli RNaseH Plus) (TaKaRa,

Japan). The relative expression level of each of the dif-

ferentially expressed transcripts was calculated using

the 2�DDCt method. The data analyzed were from

three different experiments. Student’s t-test was used

for statistical analysis; “*” represents P< 0.05, and

“**” represents P< 0.01.

Results

Overview of sequencing experiment workflow and

quality control

First the total RNAs passed the quality inspection.

Then, the mRNAs were enriched by magnetic beads

connected with oligo (DT) and randomly broken into

short fragments by fragmentation buffer. The first

strand of cDNA was synthesized by using six base

random primers (random hexamers), and then the

second strand was synthesized by adding buffer,

dNTPs, RNaseH, and DNA polymer I. AMPure XP

beads were used to purify the double-stranded product,

and the sticky end of DNA was ligated to a flat end by

T4 DNA polymerase and Klenow DNA polymerase.

The 3’ end was added with spliced A. AMPure XP

beads were selected for pooling fragment cDNAs,

Zhou et al. 637



and the final cDNA library for sequencing was ampli-

fied by PCR (Figure 1a). Through PCA we can

detect the distribution of the cDNAs, verify the ratio-

nality of the experimental design, and reflect the

homogeneity of biological duplicate samples. The

two-dimensional distribution showed that the biologi-

cal repetitions were good (Figure 1b). The Pearson

correlation demonstrated the rationality and the
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Figure 1. Workflow for RNA sequencing as well as quality control. (a) Flowchart of sequencing experiment. (b) Analysis of PCA
plot. (c) Pearson correlation of experimental samples within B. ovis_infected and mock infected (n¼ 3). (d) Regional distribution of
reference genome alignment, according to the region information of the reference genome, it can be defined as alignment to exon,
intron, and intergenic of six samples.

Table 1. Statistical summary of transcriptome sequencing data.

Raw data Valid data

Sample Read Base Read Base Valid ratio (reads) Q20% Q30% GC content%

B. ovis_infected1 54618430 8.19G 47049768 7.06G 86.14 99.98 98.13 49.50

B. ovis_infected2 51057122 7.66G 45396930 6.81G 88.91 99.98 98.15 50

B. ovis_infected3 51272390 7.69G 45834906 6.88G 89.39 99.98 98.36 49.50

Mock_infected1 54493810 8.17G 46558860 6.98G 85.44 99.97 98.05 50

Mock_infected2 51358416 7.70G 45826646 6.87G 89.23 99.98 98.28 49

Mock_infected3 52173686 7.83G 44405798 6.66G 85.11 99.98 98.32 49.50
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reproduction of the experimental design (Figure 1c). In

B. ovis-infected sample 1, there were 96.86% exon,

2.5% intergenic, and 0.65% intron, 96.96% exon,

2.44% intergenic, and 0.66% intron in B. ovis_infected

sample 2, and 96.93% exon, 2.42% intergenic, and

0.65% intron in B. ovis_infected sample 3. In control

samples, there were 96.72% exon, 2.67% intergenic,

and 0.61% intron in control 1, 95.88% exon, 3.45%

intergenic, and 0.67% intron in control 2, and 96.65%

exon, 2.74% intergenic, and 0.61% intron in control 3

(Figure 1d).

Reads and mapping results of transcriptome

sequencing

The statistical summary of transcriptome sequencing

data is shown in Table 1. We aligned the reads by

using UCSC (http://genome.ucsc.edu/). The Mus mus-

culus genome was employed as reference genome using

HISAT software. HISAT (http://ccb.jhu.edu/soft

ware/hisat/index.shtml) built a database of the reads

and mapping results (Table 2). The positions of reads

and maps located in the Mus musculus reference

genome are shown in Table 3.

Analysis of DEGs

FPKM (fragments per kilobase of exon model per mil-

lion mapped reads) and RPKM (reads per kilobase of

exon model per million mapped reads) were used to

measure the expression levels of DEGs. The distribu-

tion of expression of DEGs was represented by FPKM

box graph, and the expression level of genes was cal-

culated from the overall level. The repeatability of the

FPKM was determined by box diagram (Figure 2a).

The expression density map of log10 (FPKM) was

used to compare the expression trend of different sam-

ples. FPKM can be displayed by the Z value.28

Figure 2b shows that the expression density map of

each sample had similar distribution as the normal con-

trol and the repeatability of FPKM was consistent

(Figure 2b). The overall distribution of DEGs was dis-

played by mapping volcano with log2 (fold change) as

abscissa and –log10 (P value) as ordinate. In Figure 2c,

red represents the up-regulated DEGs, blue represents

the down-regulated DEGs, and gray represents the

non-significant DEGs. The up-regulated and down-

regulated DEGs in each group were statistically ana-

lyzed and displayed in a histogram. In detail, the red

column represents the up-regulated DEGs, and the

blue column represents the down-regulated DEGs

(Figure 2d).T
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Functional analysis of KEGG and GO revealed
multiple immunological pathways involved in
B. ovis infection

ggplot229,30 was used to analyze the enrichment of
KEGG. The results are shown by scatter plot: rich

factor represents the number of differential genes locat-

ed in the KEGG/the total genes located in the KEGG.

The top 20 pathways of the significance enrichment

analysis are shown in a KEGG enrichment scatter

plot (Figure 3a). The histogram of GO functional anal-

ysis reflects the number distribution of DEGs on GO

Table 3. The distribution of maps and reads in the reference genome.

Samples B. ovis infected1 B. ovis infected2 B. ovis infected3 Mock_infected1 Mock_infected2 Mock_infected3

Exon 96.86 96.96 96.93 96.72 95.88 96.65

Intron 2.50 2.44 2.42 2.67 3.45 2.74

Intergenic 0.65 0.60 0.65 0.61 0.67 0.61
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Figure 2. Analysis of DEGs. (a) Distribution of DEGs expression values of each sample. The X-axis was the sample name, and the Y-
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represents the non-significant DEGs. (d) Statistics of up- and down-regulation frequency of DEGs with significant difference
expression. Red represents up-regulated DEGs, blue represents down-regulated DEGs.
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according to biological process, cellular component,
and molecular function (Figure 3b). ggplot2 was also
used to show the results of GO analysis with a scatter
diagram; the rich factor represents the number of

DEGs in the GO. The larger the rich factor, the
higher the degree of GO enrichment. DEGs involved
in the top 20 GO terms are shown by GO scatter dia-
gram (Figure 3c).

Figure 3. KEGG and GO enrichment analysis of DEGs. (a) KEGG pathway enrichment analysis of the DEGs. y-axis: pathway name;
x-axis: rich factor. The color of each bubble represents the P value, and bubble size represents the gene number. (b) The GO
enrichment analysis histogram results reflected the number distribution of DEGs on GO terms enriched by biological process, cellular
component, and molecular function. (c) GO enrichment scatter plot of DEGs, y-axis: GO terms; x-axis: rich factor. The color of each
bubble represents the P value, and bubble size represents the gene number.
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The results of GO functional analysis demonstrated

that DEGs of RAW264.7 macrophage cells challenged

with B. ovis were involved in multiple immunological

pathways, which were inflammatory response

(GO:0006954) covering 36 DEGs (Figure 4a and

Table S1), immune system process (GO:0002376) cov-

ering 30 DEGs (Figure 4b and Table S2), immune

response (GO:0006955) covering 26 DEGs (Figure 4c

and Table S3), cytokine activity (GO:0005125) cover-

ing 22 DEGs (Figure 4d and Table S4), chemotaxis
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(GO:0006935) covering 13 DEGs (Figure 4e and Table

S5), chemokine-mediated signaling pathway

(GO:0070098) covering nine DEGs (Figure 4f and

Table S6), chemokine activity (GO:0008009) covering

seven DEGs (Figure 4g and Table S7), and CCR che-

mokine receptor binding (GO:0048020) covering six

DEGs (Figure 4h and Table S8).

Validation for DEGs using qRT-PCR

To confirm the results of the transcriptome sequencing

data, we selected the top 10 up-regulated DEGs

induced by B. ovis_infect to use with the qRT-PCR

technique. The primers were designed by NCBI

primer online software, and GAPDH was used as an

internal control (Table 4). The results showed that Ccl2

(ENSMUST00000000193), Ccl2 (ENSMUST00

000124479), Ccl3 (ENSMUST00000001008), Hmox1

(ENSMUST00000005548), Hmox1 (ENSMUST000

00159631), Cxcl2 (ENSMUST00000075433), Cxcl2

(ENSMUST00000200681), Cxcl2 (ENSMUST000

00200919), and Cxcl2 (ENSMUST00000202317) were

significantly increased in the B. ovis_infected group

similar to the sequencing results (Figure 5).

Altogether, transcriptome sequencing provided a pow-

erful tool for the study of DEGs, even though there

were some false positives, and qRT-PCR can be used

to validate the real positives and remove the false

positives.

Discussion

Brucella is a kind of Gram-negative immobile bacteria,

which can live in various domestic animals.31

Phagocytes secrete digestive enzymes to eliminate the

bacteria. However, Brucella is an intracellular bacteri-

um, which can adapt to the intracellular environment

in the chronic stage, leading to difficulties in curing it

clinically and globally, causing brucellosis.32–34 It was

found that the outer membrane proteins and type IV

secretory system family protein of Brucella were direct-

ly related to the infection, intracellular survival, and

reproduction of Brucella, and were recognized as viru-

lence factors. The molecular basis of action of Brucella

is closely related to the binding of virulence factors of

Brucella and macrophage target protein.35,36 There are

high amounts erythritol in animal placenta, which can

promote the growth of Brucella. Brucella has a signif-

icant affinity to placenta. The embryonic trophoblast is

the link between mother and fetus, and the target cell of

Brucella infection. Once damaged, it will lead to abor-

tion, but the molecular mechanism of abortion is not

clear.37,38

Compared with first-generation sequencing technol-

ogy, high-throughput sequencing technology is a mile-

stone in the field of genomics because of lower costs

and better opportunity to identify DEGs for further

studying the pathogenesis of diseases.39–41 Brucella

can be transmitted through contaminated placenta

and aerosol, and can enter the host through

Table 4. The primers of the selected 10 DEGs for qRT-PCR validation.

Gene name Transcript name Primer sequence (5’-3’)

Ccl2 ENSMUST00000000193 F:ACAAGAGGATCACCAGCAGC

R:GGACCCATTCCTTCTTGGGG

Ccl2 ENSMUST00000124479 F:CCACTCACCTGCTGCTACTC

R:GGCCGGGGTATGTAACTCAC

Ccl4 ENSMUST00000019074 F:CTAACCCCGAGCAACACCAT

R:TGAACGTGAGGAGCAAGGAC

Cxcl2 ENSMUST00000075433 F :GGCGGTCAAAAAGTTTGCCT

R:TTCTTCCGTTGAGGGACAGC

Cxcl2 ENSMUST00000200681 F:GACTGGCACCCGATTTCTGA

R:ACACACAGCGACCATCCATT

Cxcl2 ENSMUST00000200919 F:CTCCTACAGGGGCTGTTGTG

R:AGAAATCGGGTGCCAGTCAG

Cxcl2 ENSMUST00000202317 F:GAACTGCGCTGTCAATGCC

R:CGTCACACTCAAGCTCTGGAT

Ccl3 ENSMUST00000001008 F:TCTGCGCTGACTCCAAAGAG

R:GTGGCTACTTGGCAGCAAAC

Hmox1 ENSMUST00000005548 F:GTCAGGTGTCCAGAGAAGGC

R:TGTTTGAACTTGGTGGGGCT

Hmox1 ENSMUST00000159631 F:TGACACCTGAGGTCAAGCAC

R:TCTGACGAAGTGACGCCATC
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gastrointestinal and respiratory mucosae. The mucosal

immune response is the host’s main defense host

against invasive Brucella.42–44 B. abortus activates

NLR family thermoprotein domain protein 3

(NLRP3) and AIM2 inflammasome to secrete IL-1b
and IL-18 cytokines and mediate inflammatory

response. During Brucella infection, the type IV secre-

tion system and virB co-regulate caspase-1 activation

and the pro-inflammatory response.45 B. abortus

induced IL-6 secretion in mice, and then activated a

Th1 cell-mediated immune response. Cytokine signal

transduction inhibitor 3 (SOCS3) regulated IL-6

through the JAK/STAT pathway, which affected the

activity of the macrophage response to Brucella infec-

tion and initiated an immune response.46 It was

reported that the variation of BoLA-A host (exons 2–

3 and 4–5) was related to the host immune response to

B. abortus.47 After BALB/c mice were infected by B.

abortus, the induction of mucosal and systemic immu-

nity showed that the total Ag-specific IgG significantly

increased in infected groups. In addition, the spleen

cells in the infected group produced IFN-c and IL-4,

indicating induction of both Th1 and Th2 responses.48

The innate immune process mediated by inflammatory

corpuscles is the key to the treatment of brucellosis. It

can regulate the activation of caspase-1-related inflam-

masome leading to the secretion of IFN-c, IL-18, and
other cytokines, activation of the cellular immune

response, and targets to kill the invasive Brucella.49

Chemokines are small cytokines or signal proteins

secreted by host cells, and manage the migration of

leukocytes to respective positions in the process of

inflammation and homeostasis.50 B. canis infects pri-

mary canine trophoblast cells and induces the increase
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of TNF-a and CC chemokine ligand 5 (CCL5) secre-
tion, which may lead to placental inflammation and
abortion in pregnant female dogs.51 Human lung epi-
thelial cells secrete CCL20 and human b-defensin 2
(hBD2), binding with membrane receptors to mediate
the response of host immune cells to B. abortus by
secreting cytokines.52 The studies showed that B. ovis
preferred to infect macrophages during chronic infec-
tion. Transcription microarray analysis was carried out
on the macrophages infected by B. melitensis, B. neo-
tomae and B. ovi, and we uncovered a mechanism of
common natural immune response via significantly
increasing levels of chemokines.53 As is known,
IFN-c and chemokines play important roles in the pre-
vention of Brucella infection. Altogether, the studies
suggest that synergies between cytokines and chemo-
kines play a key protective role in the response to
Brucella infection.54

Although there are some studies on the mechanism
of the host immune response to Brucella infection, the
response of RAW264.7 macrophages to B. ovis is still
unclear. In this study, we first generated the mRNA
profile of B. ovis-infected RAW264.7 macrophages,
and identified 601 DEGs, belonging to eight immuno-
logical pathways. In detail, they were inflammatory
response (GO:0006954) including 36 DEGs, immune
system process (GO:0002376) including 30 DEGs,
immune response (GO:0006955) including 26 DEGs,
cytokine activity (GO:0005125) including 22
DEGs, chemotaxis (GO:0006935) including 13 DEGs,
chemokine-mediated signaling pathway (GO:0070098)
including nine DEGs, chemokine activity
(GO:0008009) including seven DEGs, and CCR che-
mokine receptor binding (GO:0048020) including six
DEGs. We selected the top 10 DEGs with high expres-
sion for qRT-PCR validation; nine of them were con-
sistent with the sequencing results: only CCl4
(ENSMUST00000019074, 660bp) showed a verifica-
tion error, indicating that there may be a false positive.
Our findings may provide insights for elucidating the
interactions of B. ovis with host and demonstrating the
molecular mechanism of B. ovis infection.
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