
ONCOLOGY LETTERS  16:  687-702,  2018

Abstract. When Folkman first suggested a theory about the 
association between angiogenesis and tumor growth in 1971, 
the hypothesis of targeting angiogenesis to treat cancer was 
formed. Since then, various studies conducted across the 
world have additionally confirmed the theory of Folkman, and 
numerous efforts have been made to explore the possibilities 
of curing cancer by targeting angiogenesis. Among them, 
anti‑angiogenic gene therapy has received attention due to 
its apparent advantages. Although specific problems remain 
prior to cancer being fully curable using anti‑angiogenic gene 
therapy, several methods have been explored, and progress has 
been made in pre‑clinical and clinical settings over previous 
decades. The present review aimed to provide up‑to‑date 
information concerning tumor angiogenesis and gene delivery 
systems in anti‑angiogenic gene therapy, with a focus on recent 
developments in the study and application of the most commonly 
studied and newly identified anti‑angiogenic candidates for 
anti‑angiogenesis gene therapy, including interleukin‑12, 
angiostatin, endostatin, tumstatin, anti‑angiogenic metargidin 
peptide and endoglin silencing.
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1. Introduction

Angiogenesis is a complex multi‑step process. Angiogenesis 
is a biological process in which novel capillary blood vessels 
grow from pre‑existing vasculature (1), providing tissues 
with oxygen and nutrients. As it is correlated with numerous 
complicated interactions between various biological compo-
nents, such as several cell types, soluble angiogenic factors and 
extracellular matrix components, the process of angiogenesis 
is complex, and primarily consists of four distinct sequential 
steps: i) Degradation of basement membrane glycoproteins 
and other components of the extracellular matrix surrounding 
the blood vessels by proteolytic enzymes; ii) endothelial cell 
activation and migration; iii) endothelial cell proliferation; 
and iv) endothelial cells transforming into tube‑like struc-
tures and forming capillary tubes, and developing into novel 
basement membranes (2). In normal conditions, angiogenesis 
only occurs during embryonic development, the female 
reproductive cycle and wound repair (3). However, aberrant 
angiogenesis is a key mediator and a major process in cancer 
development.

Tumor angiogenesis. In 1971, Folkman (4) suggested the 
hypotheses that angiogenesis is required for the development and 
growth of solid tumors beyond the size of 1‑2 mm3. Subsequently, 
they showed specific fragmentary evidence to indicate that solid 
tumors were dependent upon neovascularization for sustained 
growth (5). Following this, an anti‑angiogenic strategy, which 
may develop into a novel therapeutic approach for the treatment 
of solid tumors, has become a focus of study groups. Over 
the previous 40 years, a vast volume of data has accumulated, 
supporting Folkman's hypothesis (6). Concurrently, the intricate 
mechanism of tumor angiogenesis has been gradually exposed 
as efforts have been put into this field of study. The normal 
process of angiogenesis is under a relatively dynamic homeo-
stasis, tightly controlled by pro‑angiogenic and anti‑angiogenic 
regulators. Once this homeostasis is disrupted, the ‘angiogenic 
switch’, which refers to the phenotype, will become active and 
initiate angiogenesis (7).

Through numerous studies investigating tumor angiogen-
esis, different types of regulators have been defined (8-13). 
These regulators are separately released from endothelial 
cells, tumor cells, stromal cells, blood and the extracellular 
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matrix (14-17). These modes of tumor angiogenesis may coexist 
or shift from one to another during tumor growth and prolif-
eration (18-20). Certain well‑known pro‑angiogenic regulators 
include vascular endothelial growth factor (VEGF), basic 
fibroblast growth factor, transforming growth factor‑α and ‑β 
(TGF‑α and -β), epidermal growth factor, platelet‑derived 
growth factor, placental‑derived growth factor and angio-
poietin 1 and 2. Specific, commonly studied anti‑angiogenic 
regulators include angiostatin, endostatin, tumstatin, platelet 
factor‑4, interleukin (IL)‑12, thrombospondin‑1 (TSP‑1), tissue 
inhibitors of metalloproteinases (TIMPs) and interferon‑α, 
-β and ‑γ. Various biological activities trigger this angio-
genic switch. Genetic mutations (activation of oncogenes or 
loss of tumor‑suppressor genes that control production of 
angiogenesis regulators), metabolic stress (hypoxia, low pH 
or hypoglycemia), mechanical stress (pressure generated by 
proliferating cells) and the immune/inflammatory response 
(immune/inflammatory cells that have infiltrated the tissue) 
are important stimuli of angiogenic signaling and tend to 
cause tumor formation (21,22). Among them, hypoxia is one 
of the primary factors that drive tumor angiogenesis, causing 
increased expression of VEGF and other angiogenesis stimula-
tors from hypoxic cells (23). Concurrently, matrix‑remodeling 
enzymes, particularly matrix metalloproteinases, mediate a 
number of the changes in the microenvironment of the tumor 
tissue by degrading the extracellular matrix (24). Once hypoxia 
induces the upregulation of VEGF, angiogenesis is initiated 
with additional activation of hypoxia‑inducible factor (HIF) 
signaling, to provide oxygen supply (25), which stimulates 
the endothelial cells (ECs) of the preexisting vasculature to 
sprout and migrate into the hypoxic tissue, led by a gradient 
of VEGF (26). Subsequently, the endothelial cells differentiate 
into several cell types, consisting of the tip, stalk and tube 
cells (27). The tip cells, which express delta‑like 4 (DLL4), are 
non‑proliferative cells located at the top of the novel vessels 
and guide the direction of the novel vessel in response to VEGF 
signals (28,29). The stalk cells, which express Notch‑1, are 
highly proliferative, with the ability to elongate the sprouting 
vessel through proliferation when they receive DLL4/Notch 
signaling (30). The tube cells are non‑proliferating, which 
shape the final appearance of the vessels (6). During addi-
tional vascular formation, endothelial progenitor cells (EPCs) 
are involved in the construction of the inner layer of the novel 
blood vessels, with pericytes such as specialized muscle cells 
stabilizing the vessel tubes by providing structural support and 
forming an outer layer around the ECs (31,32). Subsequently, 
the ECs connect with each other to form a continuous endothe-
lium, which is characterized by complex, tight junctions (32) 
and create loops that allow the blood to circulate through 
adhesion molecules, followed by the construction of the base-
ment membrane. Finally, the vessel is mature and capable of 
transporting oxygen and nutrition to meet the requirements of 
the hypoxic tumor tissues (33).

2. Gene therapy

Gene therapy is a therapeutic technique used to correct or alle-
viate the symptoms of disease by transferring the exogenous 
genes into the cells of an individual, which may supplement 
or alter a defective gene, or induce cell death. In total, there 

are 4 major strategies exploited in gene therapy, consisting of: 
Gene replacement; gene modification; gene augmentation; and 
gene blockage (34). By July 2015, >2,200 clinical trials on gene 
therapy had been conducted or approved worldwide (35-37). 
Among these trials, >60% are associated with cancer gene 
therapy, indicating that gene therapy is not limited to heredi-
tary diseases, but may be used for acquired diseases such as 
cancer, and it has already become a promising approach in 
cancer therapy.

In previous years, various gene therapy strategies for 
cancer have been developed, such as anti‑angiogenic gene 
therapy, suicide gene therapy, immunomodulatory gene 
therapy, siRNA therapy, pro‑apoptotic gene therapy and 
oncolytic gene therapy (38,39). However, as tumorigenesis is 
an intricate process that involves various signaling pathways 
and different mechanisms, and often a single gene may evoke 
several biological processes and activate diverse signaling 
pathways, occasionally there is no explicit boundary between 
these aforementioned gene therapies. For example, gene tumor 
protein p53 may not only elicit apoptotic activities in tumor 
cells (40-42), but also has demonstrated anti‑angiogenic effi-
cacy in a number of studies (43,44). Therefore, gene therapy 
exploiting the p53 gene may be characterized as an anti‑angio-
genic and pro‑apoptotic therapy.

Generally, whether gene therapy may be implemented 
successfully or not will depend on two conditions: i) A suit-
able gene must be identified to relieve the disease symptoms; 
and ii) this gene must be delivered to the right location for the 
gene expression product to treat the disease without causing 
side effects. As gene therapy is such a precise and delicate 
therapeutic intervention at the molecular level, there remain 
a number of technical difficulties to overcome, one being 
the ability to develop a suitable delivery system for the gene 
therapy.

3. Delivery systems for gene therapy

Constructing an efficient, safe and specific delivery system is 
the fundamental basis for gene therapy. Ideal gene delivery 
systems should possess several attributes: i) A relatively broad 
range of insertion capacity, with high transfection rates and a 
non‑invasive administration method; ii) it allows for sustained 
gene expression; iii) a good target‑specific selectivity for 
the tumor type; iv) safety‑associated features, including 
biocompatibility, stability and non‑immunogenicity; v) easy 
availability. At present, numerous different vectors have been 
constructed and applied in clinical trials: Table I has listed the 
top 10 most used vectors in clinical studies (35-37). Generally, 
the delivery systems in gene therapy may be categorized into 
two groups, namely viral and non‑viral vectors systems (45).

Viral vectors. Viral vectors were the first studied and are the 
most commonly applied gene delivery systems, as they are 
derived from viruses with a natural ability to transfection (46). 
In order to make viral vectors more suitable for delivering 
heterologous genes into targeted cells, they are often geneti-
cally optimized for improved efficiency, increased safety 
and enhanced uptake (46,47). During previous decades, the 
understanding of viral vectors has increased, concomitant 
with improvement in their design and production. Based on 
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this progress, a number of viral vectors have been identified 
and explored for gene delivery, including commonly used 
viral vectors, such as adenovirus, adeno‑associated virus 
(AAV), retrovirus, herpes simplex virus (HSV), lentivirus, and 

poxvirus (45), and certain novel developed viral vectors, such 
as alphavirus vectors (48). Among these, lentiviral vectors 
and AAV vectors have been the subject of focus in previous 
years (20), and a recent patent has provided novel methods to 

Table I. Top 10 most used vectors in gene therapy clinical trials.

   Number Proportion
   of in the total
   clinical clinical 
Vectors Advantages Disadvantages trials trials %

Adenovirus High efficiency in transfection and Expression is transient 503 22.2
 transgene expression; ability to  and the vector itself will
 transfect a broad spectrum of cell types;  elicit inflammatory and
 independent of active cell division;  immune response
 high titers; does not integrate into 
 host DNA
Retrovirus Transduces a broad range of cells; Requires cell division for 417 18.9
 allows a sustainable and stable  successful transduction; 
 expression of genes up to 12 kb;  no targeting ability and
 high titers specificity
Plasmid DNA Low production cost;  Naked plasmid only transfects 397 17.9
 easy to manufacture;  muscle cells; susceptible to
 higher transfection rate  enzymatic degradation
 mediated by electroporation 
 or ultrasound
Adeno‑associated High efficiency in transfection Integrates into the host‑cell 137 6.2
virus and transgene expression;  genome; only allows a gene
 replication defective;  insert up to ~5 kb
 easily transduced
Vaccinia virus Self‑replicating; tumor‑selective;  High immunogenicity 121 5.5
 effective in apoptosis‑defective cells
Lipofection Selective targeting ability toward Toxicity; non‑uniformity 115 5.2
 angiogenic endothelial cells; easier  in targeting tumor
 to manufacture, purify, chemically  vasculature
 modify and scale‑up than viral vectors 
 and bacterial vectors; increased gene 
 transfection compared with naked 
 plasmid DNA
Lentivirus Transduces both proliferating and  Risk of viral infection and 114 5.2
 non‑proliferating cells; prolonged  insertional mutagenesis
 transgene expression with a maximum 
 8 kb gene insertion
Poxvirus Broad spectrum host range of infection;  High Immunogenicity 101 4.6
 no integration into host genome; 
 high efficiency of gene transfection 
 and expression
Herpes simplex Highly efficient in transduction No cell targeting specificity;  73 3.3
virus and gene expression; allows  transient transgene expression; 
 gene inserts ≥50 kb cytotoxic to host cells
RNA transfer Various ways to transfer,  Hard to condense; low 39 1.8
 including using cationic polymers,  transfection efficiency
 cationic lipids, carbon nanotubes and 
 cell penetrating peptides

Source: (16‑18).
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shield the lentiviral vectors with a thin polymer shell, confer-
ring the shielded virus novel binding ability with additional 
characteristics, including higher thermal stability, resistance to 
serum inactivation and the ability to infect cells with high effi-
ciency (49). Generally, compared with traditional transfection 
methods, viral vectors confer a higher transduction efficiency 
with long‑term gene expression. However, certain weaknesses 
exist in terms of the immunogenicity, mutagenicity, toxicity 
and high cost of these vectors and the limited size of the trans-
fected gene (50). Therefore, additional studies are required for 
optimal use of viral vectors in gene therapy.

Non‑viral vectors. In order to circumvent the limitations of viral 
vectors, there has been a focus on developing non‑virus‑medi-
ated gene delivery modalities, including physical mediated 
methods, and chemical and biological vectors. Physical 
methods primarily consist of microinjection, microparticle 
bombardment, ultrasound mediated microbubble and elec-
troporation. Compare with viral vectors, ultrasound‑targeted 
microbubbles (51,52) and gene electrotransfer plasmids (53) 
have received the majority of the attention in previous years 
as they are more safe and efficient in terms of gene delivery. 
Commonly used chemical vectors may be classified into 2 
major types based on the nature of the synthetic material, 
namely cationic polymers and cationic liposomes (45). Despite 
the promising prospect that cationic liposomes presented 
with several studies in clinical trials, the low transfection 
efficiency and side effects, including toxicity, are the primary 
obstacles preventing its widespread use (54-57). Therefore, the 
newly‑described cationic core, the shell nanoparticles, appears 
to be an alternative to liposomes, as it offers a greater number 
of advantages, including high gene transfection efficiency and 
the ability of the concurrent delivery of drugs and genes to the 
same cells (58). Biological vectors generally refer to bacteria 
and specific mammalian cells. The types of bacteria used as 
vectors include attenuated strains of Bifidobacteria, Clostridia, 
Listeria, Salmonella, Shigella, Yersinia and non‑pathogenic 
Escherichia coli (34). As for mammalian cells, hemato-
logical cells and mesenchymal stem cells (MSCs) are usually 
used as carriers of gene therapy vectors (59). Additionally, 
gene‑transfected EPCs may be useful as a tumor‑specific drug 
delivery system (60). Compared with viral vectors, non‑viral 
vectors provide advantages, including relative safety, ability 
to transfer large size genes and less toxicity. They may also 
be constructed and modified by simple methods for tissue‑ or 
cell‑specific targeting (54). However, non‑viral vectors exhibit 
limitations of a low transfection efficiency and poor transgene 
expression (61). In conclusion, all of these methods have been 
investigated and each of them presents distinct advantages and 
disadvantages.

4. Anti‑angiogenesis gene therapy and angiogenesis 
inhibitors

Anti‑angiogenic gene therapy targeting endothelial cells 
(ECs). For the majority of cancer therapy strategies, the 
tumor vasculature has provided issues for drug delivery, as 
it is a barrier that prevents drugs from reaching tumor cells. 
However, tumor angiogenesis is an easily accessible target 
for anti‑angiogenic cancer therapy, particularly when the 

anti‑angiogenic drugs are administered by delivery systems 
with specificity for tumor endothelial cells. Notably, compared 
with the anti‑angiogenic therapies directly targeting tumor 
cells, targeting ECs may be more practical when compared 
with tumor cells, as endothelial cells have been identified to be 
genetically more stable (62). The inhibition of EC proliferation, 
migration and EC apoptosis by anti‑angiogenic agents may 
damage the viability of numerous tumor cells, due to destruc-
tion of ECs not only limiting the supply of oxygen, nutrients 
and growth factors produced by ECs to the surrounding 
tumor cells, but also leading to the lack of structural support 
for tumor cells, eventually resulting in the disassembly of 
tumor tissues (Fig. 1). In addition, the same anti‑angiogenic 
molecule may be efficient in various types of cancer (63). 
Based on those therapeutic advantages, efforts have been 
made to explore tumor treatments that target angiogenesis. 
Furthermore, the comprehensive study of various angiogenesis 
growth factors and inhibitors with demonstrated therapeutic 
effects as administered anti‑angiogenic drugs have provided 
evidence for anti‑angiogenesis therapy. Table II summarizes 
the anti‑angiogenic drugs approved for clinical use. However, 
during the long‑term process of cancer treatment, the effi-
cacy of pharmaceutical proteins is limited due to their short 
half‑life, high cost and vulnerability to interference by endog-
enous substances (64). Compared with monoclonal antibodies 
and engineered antibodies, gene therapy has the advantages 
of sustained and localized expression of the therapeutic gene 
product, lower cost and fewer side effects (65,66). Therefore, 
anti‑angiogenesis cancer gene therapy and combination of 
gene and anti‑angiogenesis therapy have become required.

Principles of anti‑angiogenic gene therapy. At present, 
anti‑angiogenic cancer gene therapies primarily adopt the 
following two principles: Gene augmentation; and gene 
blockade. The former involves introducing exogenous 
anti‑angiogenic genes into targeted cells so that through their 
expression tumor angiogenesis is halted, while the latter results 
in the inhibition of the excessive expression of pro‑angiogenic 
genes in endothelial cells, and other tissue cells, of the tumor. 
Therefore, the genes of interest may be divided into equivalent 
categories: Anti‑angiogenic genes utilized for gene augmenta-
tion; and pro‑angiogenic genes for gene blockade (Fig. 2).

Angiogenesis inhibitors. With the development of biotech-
nology and an improved understanding of angiogenesis 
mechanisms, numerous pro‑ and anti‑angiogenesis genes have 
been identified and utilized in studies investigating cancer 
gene therapy (63,67). In total, >300 angiogenesis inhibitors 
have been identified at present (68); among them, >30 agents 
have been extensively studied in gene therapy (Table III). 
As various papers have already reviewed a number of these 
anti‑angiogenic molecules (63,64,68,69), only the most 
commonly discussed inhibitors will be examined in this paper, 
to avoid repetition.

IL‑12. IL‑12, first recognized as a pro‑inflammatory cytokine 
with immunoregulatory functions (70,71), has been suggested 
to exert an anti‑angiogenesis effect in several experi-
ments (72-74). Due to its ability to stimulate immunity and 
inhibit tumor angiogenesis, IL‑12 has been identified as one 
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of the most potent antitumor candidates not only for cancer 
immunotherapy (75), but also for anti‑angiogenic therapy (76). 
Although previous evidence has indicated its anti‑tumor activi-
ties in in vitro and in vivo experiments (77), the anti‑tumor 
effect of IL‑12 evidently varies between mouse strains (78), 
and the mechanism that leads to the various responses remains 
unclear. However, a previous study demonstrated that the 
higher expression of IL‑12 receptor (IL‑12RB1) by C3H/HeJ 
mouse splenocytes resulted in a significantly stronger response 
to IL‑12 compared with other mouse strains, providing a poten-
tial explanation for the variation of IL‑12 anti‑tumor efficacy 
between different individuals (78). Although unsatisfactory 
side effects, including toxicity, have been identified in several 
early clinical trials using systemically delivered recombinant 
human IL‑12 (rhIL‑12) (79-81), interests in gene therapy 
approaches have increased due to its potential in achieving 
high drug concentrations in the local tumor environment, 
with low systemic levels. Apart from several early clinical 
trials of gene therapy using IL‑12 in previous decades, a more 
recent study provided long‑term overall survival results from a 
phase I study of intratumoral electroporation (EP) of plasmid 
(p)IL‑12, which was completed in 24 patients with malignant 
melanoma. This study suggested that improved survival is 

correlated with systemic disease stabilization with pIL‑12 
EP (82). An additional biomarker analysis study investigating 
the efficacy of intratumoral electroporation of pIL‑12 from 
a phase 2 study in melanoma also demonstrated that pIL‑12 
EP monotherapy induces tumor responses in 31% of patients, 
and no severe local or systemic toxicity was observed in the 
treatment (83). Concurrently, certain gene therapies involving 
IL‑12 use different delivery systems to explore therapeutic 
methods with low systematic toxicities, high tumorous 
specificities and sustained local expression of IL‑12, such as 
plasmid (84,85), HSV‑1 (86), Semliki forest virus vector (87), 
T‑cells (88), a novel helper‑dependent adenoviral vector (89) 
and Lactococcus lactis (90). Other strategies in previous 
studies have focused on combining IL‑12 with other anti‑tumor 
genes, including suicide genes (91), or other therapies, such 
as chemotherapy (92), to explore its preclinical efficacy and 
safety prior entry of these methods into clinical trials.

Melanoma differentiation‑associated gene‑7 (MDA‑7). 
MDA‑7, also termed IL‑24, was identified through subtrac-
tion hybridization from a human melanoma cell line (93), 
and has demonstrated efficacy as a potent tumor suppressor 
gene in initial studies in the 1990s (93-95). As an anti‑cancer 

Figure 1. Gene therapy targeting angiogenesis in ECs. The figure depicts the advantages of gene therapy targeting angiogenesis in ECs, as a single vessel may 
support the growth of numerous tumor cells by providing them with oxygen, nutrients and growth factors produced by surrounding ECs. The inhibition of 
EC proliferation, migration, and an increase in EC apoptosis by anti‑angiogenic agents may lead to the destruction of blood vessels, which may additionally 
initiate tumor necrosis. ECs, endothelial cells.
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agent, MDA‑7 functions through diverse modalities, including 
anti‑angiogenesis (96), tumor‑specific apoptosis (97) and 
immunotherapeutic activity (98). Previously, a study exam-
ining the effect of MDA‑7 on Her2/Neu‑induced mammary 
tumors concluded that MDA‑7 inhibited tumor growth of 
HER2+ breast cancer cells partially through p53 apoptosis 
effector related to PMP‑22, which is a member of the PMP‑22 
family, with growth arrest and apoptosis‑inducing capaci-
ties (99). In an additional study, the human MDA‑7 gene was 
transfected into the human laryngeal cancer Hep‑2 cell line 
and human umbilical vein endothelial cells with adenovirus 
vector (100), and the results demonstrated that MDA‑7 exerted 
anti‑tumor functions in the laryngeal carcinoma cell lines, 
whereas no harmful effect was observed in the healthy cells. 
As for gene delivery, a study has introduced a method for 
increasing the expression level of MDA‑7 in osteosarcoma 
(OS) using a novel oncolytic adenovirus, where an increased 
sensitivity of OS to doxorubicin induced by MDA‑7 was 
also observed (101). Finally, 3 vectors expressing MDA‑7 in 
fusion with the arginine‑glycine‑aspartic acid (RGD) peptide, 
which is considered to exhibit the most significant effect on 
the binding specificity of integrin receptors, were constructed. 
With a stronger expression potency observed and integrity 

validated, MDA‑7 with RGD peptide appears to be a more 
appealing therapeutic option, when compared with the admin-
istration of MDA‑7 alone (102), indicating a future direction 
for cancer gene therapy.

Angiostatin. Angiostatin is the first of four Kringle domains 
of a 38‑kDa internal proteolytic fragment of plasminogen, 
which has been recognized as a potent endogenous angiogen-
esis inhibitor, and its anti‑tumor effect has also been widely 
demonstrated (103). However, the primary obstacle preventing 
its future application in clinical trials is that it exhibits a 
limited therapeutic efficacy with a short half‑life (104). To 
resolve this problem, studies have focused on elucidating 
efficient delivery systems, and experiments investigating 
various non‑viral and viral methods delivering angiostatin 
gene have been conducted. At present, angiostatin has been 
expressed in HSV (105,106), vaccinia virus (107), oncolytic 
measles virus (108), adenovirus (109), adeno‑associated 
viral vectors (110,111) and lentivirus (112), or mediated by 
plasmids (113) and cationic liposomes (114). Concurrently, 
angiostatin is often co‑transfected with other genes for an 
enhanced anti‑tumor efficacy, like antisense HIF‑1α (115), 
p53 (116), IL‑12 (117), Fas gene (113), soluble form of vascular 

Table II. List of antiangiogenic drugs approved for clinical use.

Drug Target/mechanism Type of cancer (Refs.)

Avastin (Bevacizumab) Monoclonal antibody targeting Ovarian, colorectal, renal, breast (172‑175)
 VEGF and prostate cancers, NSCLC 
  and glioblastoma
EYLEA (Aflibercept) Fused protein consists of VEGFR1 Colorectal cancer, prostate cancer,  (176‑179)
 and VEGFR2 NSCLC and SCLC
Erbitux (Cetuximab) EGFR monoclonal antibody Colorectal cancer, gastric cancer (180‑183)
  and NHSCC
Endostar (endostatin) Recombinant protein of the NSCLC, melanoma,  (184‑187)
 angiogenesis inhibitor endostatin nasopharyngeal carcinoma 
  and colorectal cancer
Nexavar (Sorafenib) Molecular inhibitor of VEGFR,  Hepatocellular carcinoma,  (188‑191)
 PDGFR and Raf kinases thyroid cancer, ovarian cancer 
  and renal cancer
Sunitinib Molecular receptor tyrosine Renal cancer, NSCLC,  (192‑195)
(Sutent/SUNITINIB kinase inhibitors hepatocellular carcinoma
MALATE)  and prostate cancer
Sprycel (Dasatinib) Multi‑BCR/ABL and Src family Chronic myeloid leukemia,  (196‑198)
 tyrosine kinase inhibitor melanoma and adenoid 
  cystic carcinoma
Iressa (gefitinib) EGFR tyrosine kinase inhibitor NSCLC, squamous cell carcinoma (199‑201)
  of the head and neck, and 
  esophageal cancer
Tarceva (Erlotinib) EGFR tyrosine kinase inhibitor Hepatocellular carcinoma,  (188,202‑203)
  pancreatic cancer and NSCLC
Votrient (pazopanib) RTK inhibitor targeting Renal cancer, soft‑tissue sarcoma,  (204‑206)
 VEGFR, PDGFR and c‑Kit ovarian cancer and thyroid carcinoma

VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal growth factor receptor; 
PDGFR, platelet‑derived growth factor receptor; RTK, receptor tyrosine kinase; NSCLC, non‑small cell lung cancer; SCLC, small cell lung 
cancer.



ONCOLOGY LETTERS  16:  687-702,  2018 693

endothelial growth factor receptor 2 sFlk1 (112) and most 
commonly used endostatin‑angiostatin fusion gene due to the 
fact that they were identified to act synergistically when used 
in combination (106-108). Previous studies (118-120) suggested 
that angiostatin mimic (kringle1‑5) appears more attractive 
compared with angiostatin in terms of tumor suppression and 
metastasis inhibition, potentially due to the synergistic effect 
of the Kringle 5 domain of plasminogen.

Endostatin. Endostatin, a 20 kDa C‑terminal cleavage frag-
ment from the α1 chain of type XVIII collagen, is one of the 
most extensively studied endogenous angiogenesis inhibitor 
that was originally identified by O'Reilly (121,122). Endostar 
(YH‑16), a protein drug of recombinant human endostatin, 
was approved by China's State Food and Drug Administration 
for the treatment of non‑small cell lung cancer in 2005 (123), 
indicating the potential of endostatin in cancer treatment. A 
gene‑based endostatin approach has also received attention, 
and has made its progression within a pre‑clinical context over 
previous decades, along with breakthroughs in clinical trials. 
Previous studies primarily focused on two categories: The 
joint method, combining endostatin with other genes or with 
other cancer therapeutics; and the exploration of a more suit-
able delivery system for endostatin to be expressed in a more 
efficacious, tumor‑targeted way. For example, Huiqi et al (124) 
examined the therapeutic effect of combining endostatin gene 
therapy with 32P colloid radiotherapy on hepatocellular carci-
noma (HCC) cells, and concluded that the combination of these 
two treatments demonstrated an improved therapeutic effect on 
HCC compared with either treatment alone. Kubo et al (112) 
also investigated a combinatorial anti‑angiogenic gene therapy 
with endostatin, angiostatin and sFlk1, and an improved 
therapeutic efficacy was demonstrated compared with that of a 
single‑agent regimen, due to the ability of three genes targeting 
different pathways of endothelial growth factor signaling. An 
additional study identified that the combination of human 

endostatin and soluble tumor necrosis factor (TNF)‑related 
apoptosis‑inducing ligand gene transfer indicated an enhanced 
tumor suppressing effect through anti‑angiogenic and 
pro‑apoptotic mechanisms (125). As for delivery systems, 
a previous study has demonstrated that ultrasound‑targeted 
microbubble destruction (UTMD)‑mediated gene therapy may 
enhance the transfection efficiency of endostatin, indicating 
that the UTMD‑mediated delivery system exhibits potential 
as a gene therapy targeting retinal neovascularization (126). 
Additionally, certain other previous experiments concerning 
the efficacy of gene delivery or the efficiency of combinatorial 
therapy utilizing endostatin have all demonstrated progress in 
cancer treatment to a certain level (108,127-130).

Tumstatin. As an alternative appealing endogenous angiogen-
esis inhibitor, tumstatin, a cleavage fragment of the α3 chain 
of type IV collagen (131), is an exciting candidate for cancer 
gene therapy, due to the fact that its anti‑angiogenic ability 
is 10‑fold higher compared with that of endostatin (132). By 
binding to αVβ3 and α3β1 integrins (133), tumstatin exerts its 
anti‑angiogenic effects through diverse modalities, including 
the induction of endothelial cells apoptosis, inhibition of 
cell proliferation and tube formation in endothelial cells, 
and a previous study has identified that tumstatin stimu-
lates endothelial cell apoptosis through the Fas signaling 
pathway (134). The anti‑angiogenic and anti‑tumorigenic 
effects of tumstatin have been widely demonstrated by gene 
transfer experiments conducted in various xenograft models, 
such as hepatocellular carcinoma (135), S180 tumor (136), 
lung carcinoma (137) and renal carcinoma cell (138). In 
previous years, efforts have been made to develop and 
test diverse delivery systems in tumstatin gene therapy. 
For example, lentivirus‑mediated signal peptide TNF‑α
‑Tumstatin (45-132)‑expressing mesenchymal stem cells 
(SPTT‑MSCs) have been used as a novel delivery approach 
in human prostate cancer cells in vitro and in vivo, and 

Figure 2. Principles of anti‑angiogenesis gene therapy. The flowchart depicts the two major principles of anti‑angiogenic gene therapy. It highlights the major 
differences between the principles, and indicates representative examples in each category. IL‑12, interleukin 12; sFlt‑1, soluble fms‑like tyrosine kinase‑1; 
sFlk‑1, soluble form of vascular endothelial growth factor receptor 2; VEGF, vascular endothelial growth factor, siRNA, small interfering RNA; VEGFR, 
VEGF receptor.
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Table III. Angiogenesis inhibitors for gene therapy.

Angiogenesis inhibitor Mode of action

16‑kDa a prolactin fragment Inhibits EC proliferation, induces apoptosis
2‑methoxyestradiol Inhibits angiogenesis by inhibiting hypoxic inducible factor‑1α
Angiostatin Inhibits EC proliferation and migration
Antiangiogenic metargidin peptide  Inhibits angiogenesis by binding to α5β1 and αⅤβ3 integrins
Arresten Inhibits angiogenesis by binding to α1β1 integrin
Canstatin Induces proapoptotic activities in EC
Cleaved antithrombin III Potently inhibits angiogenesis and tumor growth
Endostatin Inhibits angiogenesis by binding α5β1 integrin
Endothelial‑monocyte activating polypeptide II Inhibits angiogenesis through upregulating TNF receptor‑1, induces EC 
 apoptosis
HGFK1 Kringle 1 domain of human hepatocyte growth factor, a more effective 
 anti‑angiogenesis molecule than angiostatin
Human ribonuclease inhibitor Inhibits the activity of pancreatic RNase
IL‑12 Potent cytokines in stimulating antitumor immunity, which also showed 
 significant inhibitory activity on angiogenesis
IL‑18 Cytokine with antiangiogenic activity via induction of IFN‑γ
IL‑24 Cytokine with antitumor ability including tumor specific apoptosis, 
 anti‑angiogenesis, and immunotherapeutic activity
Interferon‑inducible protein‑10  Member of CXC chemokine family, potent immunomodulatory and 
 antiangiogenic activity
Interferons Multifunctional cytokines that regulate antiviral, antitumor, and cellular
 immune responses, potent antiangiogenic properties via inhibition of bFGF
Kallistatin Inhibits proliferation, migration, and adhesion of ECs
NK4 Inhibits angiogenesis by inhibiting HGF signaling
p53 Inhibits angiogenesis by increasing thrombospondin‑1 expression and 
 decreasing VEGF expression
Pigment epithelium‑derived factor Inhibits angiogenesis through interfering with VEGF signaling
Platelet factor‑4  Inhibits ECs proliferation and migration
Restin Inhibits ECs migration, induces apoptosis
sFlk‑1 Soluble VEGFR‑2, inhibiting VEGF signaling passage
sFLT‑1 Soluble VEGFR‑1, inhibiting VEGF signaling passage
Tetrahydrocortisol Most potent naturally occurring angiostatic steroid
Thrombospondin‑1 Inhibits ECs proliferation and migration by interactions with CD36
Tissue inhibitors of metalloproteinases Block the activity of MMPs, inhibits tumor angiogenesis and tumor growth
TNF-α Potent vessel virulent effects on tumors, inhibits angiogenesis through activity 
 mediated by TNF receptor
Tumstatin Inhibits angiogenesis by binding αvβ3 integrin
Vascular endothelial growth inhibitor Induces EC cell cycle arrest and apoptosis
Vastatin Induces cell cycle arrest and apoptosis of ECs
Vasostatin Inhibits ECs proliferation, induces tumor cell apoptosis
Endoglin siRNA Suppresses multiple angiogenic signaling pathways by inhibiting endoglin 
 expression
VEGF siRNA Inhibits VEGF expression
VEGFR‑2 siRNA Inhibits VEGFR‑2 expression
HGF siRNA Suppresses the HGF‑induced angiogenesis by inhibiting HGF expression
Survivin siRNA Induces apoptosis within the vascular wall by inhibiting survivin expression

EC, endothelial cell; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; TNF, tumor necrosis 
factor; IL, interleukin; si, small interfering; CD36, cluster of differentiation 36; HGF, hepatocyte growth factor; HGFK1, hepatocyte growth 
factor kringle domain 1, bFGF, basic fibroblast growth factor; sFlk1, soluble form of vascular endothelial growth factor receptor 2; sFLT, 
soluble fms‑like tyrosine kinase‑1; IFN‑γ, interferon γ; p53, tumor protein 53.
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results have demonstrated significant anti‑tumorigenic 
effects on prostate cancer cells, indicating that SPTT‑MSCs 
may represent a promising solution for prostate cancer (139). 
In an additional experiment, gene electrotransfer of naked 
plasmid DNA containing the tumstatin cDNA has been 
adopted to investigate the anti‑tumor effect of tumstatin in 
B16F1 melanoma‑bearing mice: A marked decrease in tumor 
growth and an increase in mouse survival was observed, 
indicating that this strategy appears appealing in terms 
of gene delivery and tumor suppression (140). In addition, 
the pET‑15b vector generated to express a synthetic fusion 
protein, VTF, which is composed of vasostatin and tumstatin 
with a (Gly‑Ser‑Gly)2 bridge, demonstrated the suppression 
of B16 melanoma growth and the potent inhibition of tumor 
blood vessels formation in vivo, when compared with a 
single inhibitor, the fusion proteins of different angiogenesis 
inhibitors targeting different pathways exhibited improved 
therapeutic effects (141). Additionally, as T42, which was 
derived from two active domains of tumstatin, has demon-
strated anti‑tumor efficacy, a previous study constructed 
two adenoviral vectors with T42 and 4xT42 peptide genes 
to evaluate their anti‑cancer effects on breast cancer in vitro 
and in vivo; the results suggested evidence that this modality 
may be a potential alternative for the treatment of breast 
cancer (142).

Anti‑angiogenic metargidin peptide (AMEP). AMEP, the 
disintegrin domain of human metargidin, is a novel anti-
cancer agent that exerts its effect by binding to α5β1 and 
αVβ3 integrins via its Arg‑Gly‑Asp (RGD) integrin binding 
sequence (143-145). The antitumor and anti‑angiogenic 
effects of AMEP were first suggested in vitro using a recom-
binant protein (143). Subsequently, it was also demonstrated 
in vivo using an AMEP‑coding plasmid (146), and a higher 
anti‑tumor efficiency of AMEP compared with TSP‑1 and 
soluble fms‑like tyrosine kinase‑1 was observed, with a 
significant decrease in tumor metastasis, suggesting that 
AMEP may not only inhibit the proliferation of tumor cells 
but may also suppress tumor metastasis. Following this, 
a phase I clinical trial study was conducted to investigate 
the safety and tolerability of the AMEP plasmid mediated 
by intratumoral electrotransfer into cutaneous metastatic 
melanoma. Results indicated a good safety profile and also, 
to a certain extent, the efficacy of AMEP plasmid gene 
electrotransfer in metastatic melanoma (147). Additionally, 
a previous study indicated that the anti‑tumor activities of 
gene electrotransfer of the AMEP plasmid in murine mela-
noma cells were correlated with the integrin quantity within 
the melanoma cells, rather than the expression level of 
AMEP; however, the anti‑angiogenic effect was only partly 
associated with the quantity of integrins, and appeared 
to be dependent on the dose of the AMEP plasmid (148). 
In addition, a previous study confirmed that the integrin 
quantity within melanoma cells may serve as a biomarker 
for the antitumor efficacy of therapies targeting integrins, 
whereas the anti‑angiogenic effectiveness of the AMEP 
plasmid may be predicted by the expression levels of AMEP 
in the treatment of melanoma (149). It also suggested that 
intratumoral delivery of the AMEP plasmid was more 
effective compared with an intramuscular method. Based 

on these aforementioned studies, it may be predicted that 
future studies investigating the electrotransfer of the AMEP 
plasmid will be more focused on particular types of cancer, 
in which the overexpression of integrin is observed.

NK4. First isolated as a proteolytic digestion product of hepa-
tocyte growth factor (HGF) (150), NK4 is a novel anti‑tumor 
agent through its bifunctional activities of HGF antagonism 
and anti‑angiogenesis. Studies have also demonstrated that 
NK4 exerts potent anti‑angiogenic action via indirectly 
inhibiting VEGF expression of tumor cells concomitant with 
direct effects on endothelial cells (151). Although the marked 
anti‑angiogenic effect and anti‑tumor ability of NK4 has 
been confirmed in a diverse number of cancer models, such 
as malignant pleural mesothelioma, melanoma, lung and 
pancreatic carcinomas, and colon, biliary gastric and gall 
bladder cancers (152-156), this individual anti‑angiogenic 
agent alone is not therapeutically sufficient, due to the fact 
that human cancers are more intricate, and require treatment 
with multiple targets. Therefore, subsequent studies have 
explored the potential of NK4 in combination with conven-
tional chemotherapeutic agents or with other inhibitors 
targeting different signaling pathways. Matsumoto et al (157) 
identified that the anti‑tumor efficacy of combining the NK4 
plasmid with cisplatin to treat squamous cell carcinomas 
was increased compared with NK4 gene therapy alone. An 
additional study demonstrated that 5‑fluorouracil enhanced 
the NK4‑induced apoptosis of colon cancer cells by down-
regulating the intracellular signaling of the HGF/c‑Met 
pathway (158). Previously, studies have explored a more 
efficient and suitable way to deliver NK4. Zhu et al (159) 
demonstrated that MSC‑based NK4 gene therapy may mark-
edly inhibit the growth of gastric cancer xenografts, and 
MSCs are a better vehicle for NK4 gene therapy compared 
with lentiviral vectors. Additionally, a preliminary clinical 
trial in humans has been designed to examine the safety 
and possible clinical benefits of adenoviruses expressing 
NK4 (160).

Endoglin. Endoglin, a TGF‑β co‑receptor, is involved in 
the activation of a complex signaling pathway regarding 
the proliferation, migration and adhesion of endothelial 
cells (161,162), particularly in tumor vasculature, due to the 
fact that the expression of endoglin is markedly increased in 
the endothelial cells of tumor vessels, making it a potential 
predictive factor for tumor prognosis (163). As such, endo-
glin has been hypothesized to serve as a promising target for 
cancer therapy, and several studies using different anti‑endo-
glin antibodies, including monoclonal antibodies (164,165), 
immunotoxin‑conjugated antibodies (166) or radiolabeled 
antibodies (167) have all demonstrated good anti‑angiogenic 
and antitumor responses. In the case of gene therapy, silencing 
endoglin by RNA interference is considered to be an alterna-
tive potential approach for endoglin targeting, and one study 
group have conducted a series of experiments to explore the 
potential of this approach. Dolinsek et al (168) first investi-
gated the therapeutic effectiveness of small interfering RNA 
(siRNA) molecules against endoglin in vitro and in vivo, and 
the results indicated that siRNA molecules targeting endo-
glin exhibited good anti‑angiogenic and antitumor efficacy 
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on endothelial cells in vitro, and on tumors in vivo. However, 
as the effect of siRNA against endoglin exhibited a short 
half‑life a plasmid DNA encoding shRNA against endoglin 
was constructed and delivered into murine endothelial cells 
in vitro and tumors in vivo using gene electrotransfer to 
determine its antitumor and vascular‑targeted effects (169). 
Furthermore, in order to specifically silence endoglin within 
the tumor vasculature, the same study group also prepared 
a plasmid that silenced endoglin with a tissue‑specific 
promoter (hTERT) (170), which was endothelin‑1‑dependent 
and was involved in migration of endothelial cells (171). The 
results of the study indicated that this plasmid may achieve 
higher levels of specificity and safety with the same efficacy 
as a plasmid with a constitutive promoter. An additional 
previous study demonstrated that endothelial and melanoma 
cells expressed high levels of endoglin, and that subsequent 
to endoglin silencing with gene electrotransfer, cell viability 
was specifically decreased; whereas in tumor cells with 
low expression of endoglin, only a non‑specific decrease in 
cell viability was observed following electrotransfer (172), 
providing novel possibilities for melanoma treatment with 
targeted gene therapy approach.

5. Conclusion and future direction

The previous 4 decades have witnessed the feasibility of 
Folkman's theory in cancer treatment. Anti‑angiogenesis 
therapy, which used to be described as a novel and potential 
method waiting to be verified of its efficacy in treatment of 
various diseases, particularly cancer, now represents one 
of the most significant and promising treatment modalities 
in clinical oncology. With numerous efforts exploring the 
various possibilities in utilizing anti‑angiogenesis therapy, 
gene therapy has become an attractive alternative to conven-
tional protein drugs due to its ability to achieve prolonged 
and localized gene expression, without the issues of high cost 
and complex processes of production associated with protein 
drugs.

With increased interest in angiogenesis during the previous 
two decades, studies examining gene‑based anti‑angiogenic 
approaches have made progress in the following three aspects. 
Firstly, there has been continuous identification of targets for 
anti‑angiogenic gene therapy due to the additional under-
standing of tumor angiogenesis. Secondly, further improving 
the efficacy of existing gene delivery systems, with detailed 
optimization, including the use of tissue‑specific promoters 
or peptides specifically targeted to tumor ECs, and exploring 
novel methods to better facilitate gene transfer, particularly in 
the field of non‑viral delivery method, such as ultrasound and 
gene electrotransfer. Thirdly, constantly improving anti‑tumor 
efficacy by combining anti‑angiogenic genes with other genes, 
including different angiogenesis or suicide genes, or genes 
that neutralize anti‑angiogenic resistance such as antisense 
HIF‑1α. As an increasing number of studies have identified 
that using the anti‑angiogenic gene approach as a monotherapy 
is not sufficient for tumor eradication, and that certain angio-
genesis inhibitors may make tumor cells more susceptible 
towards chemotherapy and radiotherapy, subsequent studies 
have investigated anti‑angiogenic gene therapy in combination 
with chemotherapy or radiotherapy.

Although a number of individual angiogenesis 
inhibitors have demonstrated the ability to suppress tumor 
progression and metastasis in a variety of cancer models, 
the efficacy of tumor regression varies between different 
types of cancer when using the same angiogenesis inhibitor, 
indicating that a future direction for anti‑angiogenic gene 
therapy is to identify prognostic biomarkers to assist in 
determining the most efficient angiogenesis inhibitor 
gene for each type of cancer, which will largely rely on an 
improved understanding of the biological mechanisms of 
tumor angiogenesis. In addition, as anti‑angiogenic gene 
therapy has demonstrated more potent effectiveness in 
small tumors compared with large ones, future application 
of anti‑angiogenic gene therapy may be more involved in 
preventing and treating early‑stage cancers. Notably, the 
methods of gene delivery and the limited therapeutic effect 
of monotherapy are major obstacles to anti‑angiogenic gene 
therapy; therefore, efforts to develop more efficient gene 
delivery methods, and to explore additional possibilities in 
combination therapy, are required. Furthermore, a better 
understanding of the mechanisms of action and a better 
selection of the clinical trial patient population should also 
be performed by future studies.
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