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Steroidogenesis is an essential biological process for embryonic development,
reproduction, and adult health. While specific glandular cells, such as Leydig cells in the
testis, are traditionally known to be the principal players in steroid hormone production,
there are other cell types that contribute to the process of steroidogenesis. In particular,
immune cells are often an important component of the cellular niche that is required for the
production of steroid hormones. For several decades, studies have reported that
testicular macrophages and Leydig cells are intimately associated and exhibit a
dependency on the other cell type for their proper development; however, the
mechanisms that underlie the functional relationship between macrophages and Leydig
cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as
certain types of lymphocytes, are capable of steroid hormone production, thus
highlighting the complexity and diversity that underlie steroidogenesis. In this review we
will describe how immune cells are critical regulators of steroidogenesis in the testis and in
extra-glandular locations, as well as discuss how this area of research offers opportunities
to uncover new insights into steroid hormone production.
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INTRODUCTION

Steroid hormones are mainly produced in the adrenal glands, gonads, and placenta, where they play
endocrine roles in regulating target tissue or cell function depending on circulating steroid
concentrations (1, 2). While specific hormone-producing cells in these tissues have received the
major share of focus in the field, previous studies have shown that many peripheral tissues and cell
types within the brain, kidney, lung, skeletal muscle, intestine, keratinocytes, adipocytes, astrocytes,
and placental trophoblasts have the capacity of de novo steroidogenesis or steroid conversion (3–
11). This diversity of tissues with steroidogenic capacity indicates that there are multiple cell types
that can undertake or mediate steroid hormone production. One cell lineage that has been linked to
steroidogenesis is the immune cell lineage, as local sex steroid production has been identified within
immune cell populations such as macrophages and T lymphocytes (12–14). Within the testis,
macrophages have been implicated in steroid production by Leydig cells (15, 16), although the
mechanisms by which macrophages developmentally or functionally regulate Leydig cells are poorly
understood. The unexpected and poorly understood steroidogenic capacity of immune cells and
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their roles in modulating glandular steroidogenesis is becoming
an emerging area of research that is critical for a deeper
understanding of the complex immunoregulatory roles of
steroid hormones in normal and disease contexts. In this
review we will discuss the various roles proposed for testicular
macrophages in Leydig cell biology and we will highlight future
areas of research that should be pursued to elucidate the
mechanisms underlying regulatory functions of immune cells
and their potential de novo steroidogenesis in the testis and,
potentially, beyond.
BIOSYNTHETIC PATHWAY AND SITE OF
PRODUCTION OF STEROID HORMONES

Steroidogenesis is a process in which cholesterol is converted
into steroid hormones by a series of steps mediated by
steroidogenic enzymes. In this process, there are two key rate-
limiting steps, which are 1) the transport of cholesterol from the
cytoplasm into mitochondria and 2) the conversion of
cholesterol into pregnenolone. Free cholesterol is derived from
intracellular cholesterol that is synthesized either from acetate,
from cholesterol ester stored in lipid droplets, or from uptake of
cholesterol-containing low-density lipoproteins (LDLs). Plasma
LDLs are the most important source of cholesterol when
steroidogenic cells are chronically stimulated. Then
steroidogenic acute regulatory protein (StAR) promotes the
rapid flux of cholesterol into the mitochondria, where
cholesterol is catalyzed to yield pregnenolone by side-chain
cleavage enzyme cytochrome P450scc (also known as
CYP11A1, encoded by the CYP11A1 gene) within the
mitochondrial inner membrane. Pregnenolone, as an
immediate precursor, requires further catalysis by two major
families of enzymes, which are cytochrome P450 (CYP) and
hydroxysteroid dehydrogenase (HSD) located in both
mitochondria and the endoplasmic reticulum, to facilitate the
biosynthesis of steroid hormones (2, 17, 18).

In many contexts, steroid hormones are classified based on
the organs that produce them and the receptors to which they
bind. The adrenal steroids, which consist of glucocorticoids and
mineralocorticoids, are secreted by the adrenal cortex.
Glucocorticoids such as cortisol in humans and corticosterone
in rodents control many cell metabolic processes, including
maintaining blood pressure and regulating immune cell
f u n c t i o n . A l d o s t e r on e i s t h e mo s t w e l l - k nown
mineralocorticoid, which maintains the body’s water and salt
balance by acting primarily on the kidneys. Sex steroid
hormones, which are composed of androgens (e.g. ,
testosterone), estrogens (e.g., estradiol), and progestogens (e.g.,
progesterone), are produced by the gonads and placenta. These
sex hormones are responsible for regulating sexual development
and promoting fertility. Additionally, the adrenal cortex secretes
sex hormones to a lesser extent than the gonads, and the gonads
may produce adrenal steroids (1, 19). Aside from dedicated
steroidogenic cells l ike Leydig cells , theca cells , or
adrenocortical cells, future research should address the extent
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to which alternative glandular or extra-glandular cell types in the
gonads and adrenal are involved in de novo steroidogenesis.
DEVELOPMENTAL LINKS BETWEEN
TESTICULAR MACROPHAGES AND
LEYDIG CELLS

Early analyses of the immune cells in the testis revealed that
macrophages are a large component of the testicular interstitial
compartment, comprising approximately 20% of interstitial cells
(20). Macrophages and Leydig cells, therefore, occupy the same
compartment of the testis and are in intimate contact throughout
development (21). Histological and ultrastructural studies of the
postnatal and adult rat testis demonstrated that macrophages
and Leydig cells form intercellular cytoplasmic digitations (21,
22), which only are observed between these 2 cell types and only
upon puberty (22), indicating an intimate relationship linked to
testicular maturation. Furthermore, macrophage-deficient
osteopetrotic mice mutant for colony stimulating factor 1
(Csf1op/op) are infertile as a result of low testosterone,
oligozoospermia, and decreased libido (15, 23, 24). Analyses of
normal and cryptorchid testes revealed that there is a robust
correlation between the volume density of Leydig cells and
macrophages, as well as total mass of Leydig cells and
macrophages per testis (25), leading to early ideas of functional
coupling between the two cell types. These findings strongly
suggest that testicular macrophages have trophic functions in
Leydig cell differentiation and promote steroidogenesis, but the
developmental and functional links between macrophages and
Leydig cells are still open areas of investigation.

Multiple studies by Gaytan et al. in the 1990s revealed that
there is an interdependent relationship between macrophages
and Leydig cells in both developmental and regenerative contexts
(26–28). Using dichloromethylene diphosphonate-containing
liposome (Cl2MDP-lp) injection to deplete testicular
macrophages in prepubertal rats, they found that macrophages
are required for the development of Leydig cells during postnatal
testicular maturation (26). The authors concluded that, in the
absence of macrophages, Leydig cell proliferation did not occur,
nor were mesenchymal progenitor cells able to undergo
differentiation into Leydig cells (26). They further speculated
that macrophages were required for Leydig cell responsiveness to
lutenizing hormone (LH) and human chorionic gonadotropin
(hCG) (29, 30), as hCG-treated Leydig cells in Cl2MDP-lp-
injected testes did not increase in number as in contralateral
intact testes. Regeneration of Leydig cells in testes that had
selective Leydig cell depletion induced by ethylene
dimethanesulfonate (EDS) treatment, which requires LH (31),
was also hindered in the absence of macrophages (27, 28) (see
next paragraph). These findings suggest that as-of-yet undefined
macrophage factors are essential for Leydig cell responsiveness to
LH/hCG.

Gaytan et al. demonstrated, again using a Cl2MDP-lp-
mediated ablation method (27, 28), that testicular macrophages
are required for adult Leydig cell regeneration after specific
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depletion of Leydig cells via EDS treatment. In contrast, when
macrophages were ablated in intact adult testes, there was no
effect on Leydig cell numbers (28), indicating that macrophages
are not as essential for steady-state maintenance of adult Leydig
cell numbers; a more recent finding showed a similar result, in
which a diphtheria-toxin-mediated ablation of adult
macrophages did not result in a change in Leydig cell number
(although there was a significant drop in testicular testosterone
levels) (32).
FUNCTIONAL RELATIONSHIP BETWEEN
TESTICULAR MACROPHAGES AND
LEYDIG CELLS

Given the tight physical association between testicular macrophages
and Leydig cells in the interstitial compartment, in the past 40 years
most investigations into testicular macrophage functions focused on
Leydig cell steroidogenesis (16, 33). Yee and Hutson in 1985 showed
that testicular macrophage-conditioned medium (TMCM) in a
dose-dependent manner increases testosterone production of
Leydig cells (34). Consistent with this finding, bank vole Leydig
cells from a long photoperiod in co-cultures with testicular
macrophages or treated with TMCM produced more testosterone
(35). However, some subsequent studies demonstrated that non-
stimulated testicular macrophages have an inhibitory effect on the
production of testosterone by Leydig cells (36–38), whereas TMCM
obtained from lipopolysaccharide (LPS)-stimulated macrophages or
macrophages isolated from autoimmune orchitis could promote
testosterone production (36, 39). Therefore, the role of testicular
macrophages in Leydig cell steroidogenesis under physiological
conditions has been controversial. Furthermore, testicular
macrophages isolated using different methods may have different
phenotypes and metabolic properties in vitro due to the loss of their
complex in vivo microenvironment. This could be one of the
reasons why testicular macrophages need to be additionally
activated in some circumstances in order to function properly.
Our recent study found that the depletion of adult testicular
macrophages in vivo decreases testicular testosterone levels (32),
suggesting the beneficial effect of testicular macrophages on Leydig
cell steroidogenesis.

Role of Testicular Macrophage-Derived
Cytokines in Leydig Cell Steroidogenesis
A number of studies have shown that testicular macrophages
from rats and goldfish can secrete pro-inflammatory cytokines,
such as interleukin 1 (IL1) and tumor necrosis factor (TNF),
which were dramatically increased after stimulation by LPS (40–
42). Therefore, these cytokines from testicular macrophages may
be key regulators of testosterone production, either enhancing or
inhibiting it under physiological and inflammatory conditions.
Previous research on the roles of IL1 on Leydig cell
steroidogenesis in vitro yielded contradictory results. Many
studies have shown that IL1B decreases testosterone synthesis
of Leydig cells (43–45), whereas some studies reported that IL1B
had no effects on testosterone synthesis of Leydig cells (37, 46), or
Frontiers in Endocrinology | www.frontiersin.org 3
even increased testosterone synthesis (47). Different testicular
IL1 isoforms, including 17K IL1A and IL1B, 32K proIL1A, and a
24K splice variant, stimulated testosterone production by Leydig
cells from 40- but not 80-day-old rats, and the potency of IL1A
was 50-fold more than IL-1B (48). Intratesticular administration
of IL1B resulted in a significant increase in basal testosterone
secretion in vitro and serum testosterone concentration one day
after treatment in 21-day-old rats, but it inhibited this process 6
days after treatment (49). A recent study showed that IL1B
deficiency induced by treatment with diacerein, an anti-
inflammatory agent, impairs Leydig cell function, suggesting a
positive effect of IL1B in steroidogenesis under normal
conditions (50). These findings suggest that the paracrine roles
of IL1 in regulating Leydig cell steroidogenesis may be related to
animal age, treatment time, and IL1 isoforms. Generally,
numerous studies documented that TNF reduces testosterone
production of Leydig cell function in vitro and in vivo. TNF
treatment inhibited steroidogenic enzyme activity or their
mRNA expression, such as StAR, CYP17A1, and HSD3B1, in a
dose-dependent manner (51–55). Additionally, under LPS
stimulation, testicular macrophages also could produce reactive
oxygen species (ROS) and nitric oxide (NO) (33). Leydig cell
steroidogenesis was inhibited by both hydrogen peroxide (a
potent oxidant) (56, 57) and NO (58, 59). These results suggest
that under inflammatory conditions, activated testicular
macrophages secrete several factors that limit Leydig cell
steroidogenesis and even impair testicular function.

Several groups’ studies have clearly demonstrated that there
are two distinct macrophage populations in adult testis: 1)
interstitial macrophages located in the testicular interstitium
and in close contact with Leydig cells; and 2) peritubular
macrophages located in the myoid layer around seminiferous
tubules (32, 60–65). Interstitial macrophages express higher
levels of the immunosuppressive M2-type gene Il10, while
peritubular macrophages highly express the M1-associated
inflammatory gene Il1b (62). However, whether IL10 and IL1B
can be secreted into the testicular interstitial compartment by the
two macrophage populations and whether the two populations
have unique or overlapping roles in regulating Leydig cell
steroidogenesis have been not investigated.
Role of Testicular Macrophage-Derived
Lipophilic Factors in Adult Leydig Cell
Steroidogenesis
Aside from cytokines, a testicular macrophage-derived factor
implicated in steroidogenesis was a lipophilic factor later
identified as 25-hydroxycholesterol (25-HC) after it was
purified using organic extraction and high-performance liquid
chromatography (66, 67). Furthermore, human macrophages
have been shown to produce 25-HC, indicating that this
phenomenon is not specific to rodents (68). 25-HC is an
oxysterol that is synthesized from cholesterol by the addition
of a hydroxyl group to the position 25 carbon, and this reaction is
catalyzed by cholesterol 25-hydroxylase (CH25H) (69). CH25H
is found in the endoplasmic reticulum and is widely expressed in
many cell types, particularly macrophages (70). The intracellular
April 2022 | Volume 13 | Article 894437
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level of 25-HC is primarily determined by the activity of CH25H,
which is upregulated via TLR4/IRF3/IFN-b/STAT1 signaling
pathways in LPS-stimulated macrophages (71).

Recent studies have found that macrophages have the potential to
provide an alternative pathway for steroidogenesis by providing 25-
HC as a direct substrate for side chain cleavage (16, 72). 25-HC has
been shown to increase StAR protein levels in Leydig cells and
adrenocortical cells in vitro (73). Kazeto et al. transfected non-
steroidogenic cells with a complex of eel P450scc cDNA (encoding
Cyp11a1) and discovered that the recombinant CYP11A1 produced
in these cells efficiently catalyzed the conversion of 25-HC into
pregnenolone (74). A recent study revealed that Leydig cells utilize
25-HC as a substrate for testosterone biosynthesis (72), in which it
was proposed that cholesterol is converted into 25-HC by CH25H in
macrophages, and the 25-HC is subsequently secreted into
neighboring Leydig cells. In Leydig cells, StAR transports 25-HC to
mitochondria where is converted into pregnenolone by the CYP11A1
enzyme. 25-HC produced in macrophages promotes testosterone
synthesis in Leydig cells, while testosterone produced in Leydig cells
inhibits 25-HC production in macrophages (75), which suggests a
paracrine negative feedback loop between the two cell types.
Therefore, 25-HC could be a paracrine factor that mediates
interactions between macrophages and neighboring Leydig cells.
STEROID PRODUCTION BY
IMMUNE CELLS

Tissue immune cells, particularly macrophages and T lymphocytes,
may be an important source of local steroid production by steroid
conversion or de novo steroidogenesis. Intracrine and paracrine
roles of immune-cell-derived steroids may be essential for cellular
functions within various tissues. Therefore, immune cell-derived
steroids and steroid metabolites potentially have biological effects
within the tissue microenvironment, although their quantities in
tissue fluids or blood are likely modest.

Steroid Conversion Capacity of
Immune Cells
Immune cells are not only passive targets of steroid hormones
due to their expression of hormone receptors, but also have the
capacity for steroid hormone conversion and metabolism (14).
Human alveolar macrophages can convert androstenedione to
testosterone and other steroids through the catalytic activity of
3b-HSD, 3a-HSD, 17b-HSD, and 5a-reductase enzymes (76).
These steroidogenic enzymes also are present in the alveolar
macrophages of pigs (77), indicating an evolutionary
conservation of these steroidogenic functions. In turn,
tes tosterone is converted to androstenedione and
dihydrotestosterone (DHT) in primary cultured human
synovial macrophages (78, 79). In addition, human monocyte-
derived macrophages, rather than monocytes, preferentially
convert dehydroepiandrosterone (DHEA) to a physiologically
relevant amount of downstream steroid hormones including
testosterone, androstenedione, estrone, and estradiol, in the
presence of LPS (80). When human peripheral monocyte-
Frontiers in Endocrinology | www.frontiersin.org 4
derived THP-1 cells and primary monocytes are differentiated
to macrophages, they exhibit upregulation of both CYP19A1
mRNA levels and aromatase activity, which catalyzes the
conversion of androgens to estrogens, in response to
dexamethasone (a synthetic glucocorticoid) (81). These studies
suggest that the conversion of steroid hormones in macrophages
may be related to their phenotypic heterogeneity and
microenvironmental contexts.

Steroidogenic enzymes are also expressed by T lymphocytes.
Splenic T lymphocytes in trauma-hemorrhagic male and proestrus
female mice exhibited enzyme activities of 3b-HSD, 17b-HSD, 5a-
reductase, and aromatase (CYP19A1). Although most of these
steroidogenic enzymes were also found in B lymphocytes, they
had lower activity and no 17b-HSD activity. Increased 5a-
reductase activity in male T cells is immunosuppressive due to
enhanced 5a-dihydrotestosterone synthesis, whereas increased
aromatase activity, which triggered 17b-estradiol synthesis, has an
immune-protective function in female T cells (82). Furthermore,
CYP19A1 expression and aromatase activity has been reported in
tumor-infiltrating lymphocytes (83, 84). However, whether other
lymphocytes and/or myeloid cell types in normal tissues have
steroidogenic activities that can induce the conversion of steroid
hormones to fulfill their immunoregulatory functions is likely a
fruitful area for future research.

De Novo Steroidogenesis of Immune Cells
Beyond immune cells’ capability of local steroid conversion,
recent reports indicate that immune cells have the ability to
undertake de novo steroidogenesis starting from the initial
processing of cholesterol. Type 2 immune cells, including mast
cells, basophils, and particularly T helper 2 cells, can de novo
synthesize pregnenolone during helminth infection and in tumor
environments to regulate immune homeostasis and tumor
immunosuppression, respectively. T-helper-2-cell-mediated
steroidogenesis is likely due to the high expression of
CYP11A1 in these immune cells (12, 13). CYP11A1 expression
is increased in CD4+ or CD8+ T cells in peanut-induced
intestinal anaphylaxis and allergic lung disease (85, 86).
Additionally, in peanut-allergic children, CYP11A1 is involved
in the regulation of CD4+ T cells in the proallergic immune
response (87). These findings may suggest the importance of
steroids derived from immune-cell-mediated de novo
steroidogenesis in healthy and pathological microenvironments
with adaptive immunomodulation. In addition, infiltrating
myeloid cells in dystrophic skeletal muscles can produce
aldosterone, as all genes encoding steroidogenic enzymes in the
aldosterone synthesis pathway are expressed by muscle-derived
myeloid cells (88). However, whether tissue-resident or
inflammation-induced macrophages are capable of de novo
steroidogenesis has yet to be determined. StAR has been
detected in macrophages (89, 90), indicating that macrophages
contain at least the ability to produce steroidogenic substrates.
Interestingly, primary testicular macrophages produce
significant amounts of corticosterone in vitro (91), but whether
this corticosterone is derived from the conversion of other
steroids or from de novo steroidogenesis was not investigated
in that study. A recent study reported that testicular
April 2022 | Volume 13 | Article 894437
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macrophages could also produce progesterone, and this steroid
production by macrophages may contribute to a local feedback
loop between Leydig cells and macrophages that regulates
testosterone production (92). Therefore, it is necessary to
explore in greater detail whether and how testicular
macrophages have the ability to undertake de novo
steroidogenesis and, if so, to what extent testicular function is
dependent on this source of steroidogenesis.
DISCUSSION

The presence of testicular macrophages and their potential roles in
Leydig cell steroidogenesis have been investigated for several decades,
but the mechanisms underlying their functional relationship is still
unclear. One particular area that needs to be rigorously addressed is
whether testicular macrophages merely promote steroidogenesis by
Leydig cells or if they undergo de novo steroidogenesis in a
meaningful way to promote spermatogenesis and fertility.
Macrophages could impact Leydig cells through a number of
mechanisms, such as regulating the cytokine environment,
providing steroidogenic substrates, or through modulating Leydig
cell ultrastructure via unique cell-cell junctions (Figure 1). Given
recent findings of de novo steroidogenesis by T cells in various
contexts, the contributions of immune-cell-derived steroids should
Frontiers in Endocrinology | www.frontiersin.org 5
be addressed in the context of testicular function. Furthermore, as
many studies have linked inflammation to infertility, it is also critical
to study how macrophage polarization and the subsequent changes
in their cellular activities cause or exacerbate testicular pathology.
Reports in several fields indicate that immune cell steroid production
is a broadly observed and evolutionarily conserved phenomenon;
therefore, understanding the roles of immune cells in testicular
steroidogenesis and Leydig cell function will likely provide new
insights into endocrinology that will extend beyond the boundaries
of the testis.
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FIGURE 1 | Potential mechanisms underlying macrophage-Leydig cell interactions and immune cell steroidogenesis. Cartoon depicts the adult rodent testicular
interstitium, containing a Leydig cell, macrophage, and T cell. Arrows denote the different molecular and cellular pathways that have been implicated in macrophage-
Leydig interactions and de novo steroidogenesis by immune cells. T-shaped lines indicate an inhibitory interaction. Dashed arrows and lines flanked by question
marks indicate that interactions have been proposed but have not been demonstrated experimentally, nor have mechanisms or factors involved been identified
definitively. 25HC, 25-hydroxycholesterol; CH25H, cholesterol 25-hydroxylase; IL1B, interleukin 1 beta; NO, nitric oxide; ROS, reactive oxygen species; StAR,
steroidogenic acute regulatory protein; TNF, tumor necrosis factor.
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