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Abstract.
Background: The major mechanisms of dementia and cognitive impairment are vascular and neurodegenerative processes.
Early diagnosis of cognitive impairment can facilitate timely interventions to mitigate progression.
Objective: This study aims to develop a reliable machine learning (ML) model using socio-demographics, vascular risk
factors, and structural neuroimaging markers for early diagnosis of cognitive impairment in a multi-ethnic Asian population.
Methods: The study consisted of 911 participants from the Epidemiology of Dementia in Singapore study (aged 60–88
years, 49.6% male). Three ML classifiers, logistic regression, support vector machine, and gradient boosting machine, were
developed. Prediction results of independent classifiers were combined in a final ensemble model. Model performances were
evaluated on test data using F1 score and area under the receiver operating curve (AUC) methods. Post modelling, SHapely
Additive exPlanation (SHAP) was applied on the prediction results to identify the predictors that contribute most to the
cognitive impairment prediction.
Findings: The final ensemble model achieved a F1 score and AUC of 0.87 and 0.80 respectively. Accuracy (0.83), sensitivity
(0.86), specificity (0.74) and predictive values (positive 0.88 negative 0.72) of the ensemble model were higher compared
to the independent classifiers. Age, ethnicity, highest education attainment and neuroimaging markers were identified as
important predictors of cognitive impairment.
Conclusion: This study demonstrates the feasibility of using ML tools to integrate multiple domains of data for reliable
diagnosis of early cognitive impairment. The ML model uses easy-to-obtain variables and is scalable for screening individuals
with a high risk of developing dementia in a population-based setting.
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INTRODUCTION

Dementia has become an increasingly important
public health issue due to the rapid aging of societies.
Alzheimer’s disease (AD) and vascular dementia
are the most common causes of dementia affecting
the elderly [1]. While there is no available disease
modifying treatment for dementia, an accurate and
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early diagnosis will help identify individuals at risk
and allow the adoption of preventive measures to
mitigate this disease [2, 3].

The prodromal stages of dementia is characterized
by mild cognitive impairment (MCI) [4], i.e., indi-
viduals with noticeable decline in mental abilities
not interfering with everyday activities [5]. Previ-
ous studies suggest that individuals with MCI are at
a higher risk of dementia than cognitively healthy
individuals [6, 7]. The conventional practice of diag-
nosing cognitive impairment focuses on cognitive
and neuropsychological assessments [8]. However,
these diagnostic tools have been criticized for detect-
ing the disease late. Studies have shown dementia
to be a slowly progressive disease and lesions in the
brain could be shown as early as 10–15 years before
onset of clinical symptoms [9–11]. More recently,
biomarker-based diagnostics such as amyloid-� and
tau proteins detected using positron emission tomog-
raphy (PET) scans and cerebrospinal fluid (CSF)
analysis have been recognized as promising mark-
ers for pathology [12]. While these biomarkers offer
high predictive ability, their high cost and invasive
procedures have hindered their widespread use [13].
By contrast, magnetic resonance imaging (MRI) is
a non-invasive procedure commonly used in gen-
eral clinical practice for the visualization of soft
tissue structure [14]. Previous studies have demon-
strated the potential of structural MRI scans as
sensitive biomarkers for the diagnosis of early cogni-
tive impairment [15–17]. As dementia is a complex
multi-factorial disease, it is desirable to combine
data from multiple domains to better characterize its
causes and progression [10, 18].

In the recent years, clinical prediction mod-
els developed using artificial intelligence (AI) and
machine learning (ML) have gained substantial inter-
est in the healthcare community. ML is a subtype
of AI that offers a class of models, often described
as more efficient and accurate than conventional
regression models [19]. ML can analyze large com-
plex medical data and unravel hidden dependencies
between factors and outcomes [20, 21]. ML-based
models have been successfully applied to various dis-
ease outcome prediction studies [21, 22] as well as
in dementia and AD detection [4, 13, 23, 24]. These
studies demonstrate the capability of ML models in
assisting patient diagnosis and reducing disease and
health system burden [19]. Identifying individuals
with cognitive impairment by applying ML tech-
niques on structural MRI biomarkers and routinely
available clinical variables provides a cost-effective

means to detect at-risk individuals in a population-
based setting [13]. Hence, this study aims to use
ML models to combine MRI biomarkers with con-
ventional clinical variables for early diagnosis of
cognitive impairment. We hypothesize that our ML
model consisting of socio-demographics, vascular
risk factors and neuroimaging biomarkers predicts
cognitive impairment in a multi-ethnic Asian popu-
lation.

MATERIALS AND METHODS

Study participants

Data used in this study were obtained from the
Epidemiology of Dementia in Singapore (EDIS)
study. EDIS is a subsample of population-based
study (i.e., Singapore Epidemiology of Eye Diseases)
that identifies the prevalence and risk factors for
cognitive impairment and dementia. Recruitment of
participants and data collection methodology were
described in previous study [25]. Briefly, the EDIS
participants consist of Singaporean citizens or perma-
nent residents from three ethnic groups (i.e., Chinese,
Malay, and Indian) aged ≥ 60 years. The study partic-
ipants were screened using the Abbreviated Mental
Test (AMT) and the Progressive Forgetfulness Ques-
tionnaire (PFQ). Screen positives were defined as: an
AMT score of ≤ 6 for those who received ≤ 6 years of
formal education, an AMT score of ≤ 8 for those who
received > 6 years of formal education, or if the care-
giver reported a history of progressive forgetfulness.
Screened positives (n = 957) agreed to be assessed
at the National University of Singapore where clin-
ical, neuropsychological assessment, neuroimaging
scans, and laboratory test data were collected. Of the
957 individuals, 46 were diagnosed with dementia
and hence were excluded from the study leaving a
final sample size of 911 for analysis. Ethics approval
for this study was obtained from the National Health-
care Group-specific Review Board and the Singapore
Eye Research Institute. Informed consent was also
obtained from the study participants in their preferred
language.

Predictors

Three sets of predictors (socio-demographics and
genetic risk factor, vascular risk factors, and neu-
roimaging biomarkers) were considered for model
development. Socio-demographics and vascular risk
factors were obtained from interviewer adminis-
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tered questionnaire. Data collected included age,
sex, ethnicity, highest education attainment, smok-
ing status, and body mass index. Blood pressure
readings of participants were measured twice with
5-min interval. Systolic (SBP) and diastolic (DBP)
blood pressure were derived using average of the
two readings. Hypertension was defined as having
a SBP ≥ 140 mmHg, a DBP ≥ 90 mmHg, and/or use
of anti-hypertensive medication. Hyperlipidemia was
defined as a total cholesterol level ≥ 4.14 mmol/l,
or the use of lipid-lowering medication. Diabetes
mellitus was defined as a glycated hemoglobin
(HbA1c) ≥ 6.5%, or the use of anti-diabetic med-
ication. Apolipoprotein ε4 (APOE ε4) status was
obtained from genome-wide genotyping using the
Illumina Human610-Quad BeadChip with the 1000
Genomes (phase 1, version 3) reference panel used
for imputation as described in previous study [25].

Neuroimaging markers used in this study were
acquired from 3T Siemens Magnetom Trio Tim
scanner. Volumetry MRI data were obtained using
FreeSurfer, v.5.1, automatic image processing soft-
ware on T1-weighted images. The neuroimaging
markers consisted of total grey matter volume
(GMV), white matter volume (WMV), intracra-
nial volume, average hippocampus volume, and
white matter hyperintensities (WMH). Presence of
lacunes, cortical microinfarcts, cerebral microb-
leeds, cortical infarcts, and intracranial stenosis were
expressed as binary representation (1 = present and
0 = absent). Brain atrophy gradings follow a binary
label (0 = none to mild, 1 = moderate to severe).
The grading of neuroimaging markers were per-
formed by experienced raters using T1-weighted,
T2-weighted, and fluid-attenuated inversion recov-
ery (FLAIR) sequences [26]. Cerebral microinfarct
were identified by lesions < 5 mm diameter in the cor-
tex, perpendicular to the cortical surface which were
hyperintense or isointense on FLAIR and T2. Cortical
infarcts were identified as focal lesions involving cor-
tical gray matter with a hyperintense rim on FLAIR
images and a center following CSF intensity. Lacunes
were deemed as lesions between 3 to 15 mm in diam-
eter in the subcortical regions, with low signal on
T1-weighted image and FLAIR, a high signal on T2-
weighted image, and a hyperintense rim with a center
following CSF intensity on FLAIR. Cerebral microb-
leeds were defined as lesions of hyperintensity graded
on susceptibility-weighted images using the Brain
Observer Microbleed Scale [2] Lastly, intracranial
stenosis was graded on magnetic resonance angiogra-
phy and was defined as stenosis ≥ 50% in the internal

carotids, vertebral, basilar, posterior cerebral, middle
cerebral, and/or anterior cerebral arteries. Supple-
mentary Table 1 details the list predictor variables
and their representation in each set.

Outcome

Cognitive status was assessed using a composite
global cognitive score established previously [25].
The scores were calculated and standardized across
seven cognitive domains (five non-memory and two
memory). Participants were assigned a label of either
no cognitive impairment (NCI), cognitive impair-
ment no dementia (CIND) mild, or CIND moderate.
As our study aim was to distinguish individuals with
cognitive impairment from those with NCI, no dis-
tinction between subgroup of cognitive impairment
(i.e., CIND mild or moderate) were made. A total of
623 (68.4%) participants had a clinical diagnosis of
cognitive impairment.

Statistical analysis

To ensure model parsimony, we performed tests
of association with cognitive outcome using chi-
square test for categorical variables, student’s t-test
for continuous variables, Wilcoxon signed rank test
for continuous variables with skewed distribution.
Variables were selected for ML models if their asso-
ciation with cognitive outcome were found to be
significant at p-value ≤ 0.05 or if the predictors were
known risk factors of dementia (APOE ε4). In addi-
tion, DBP and cholesterol low-density lipoprotein
(LDL) with p-values of 0.08 and 0.07 respectively
was also considered for modelling. A total of 22
predictor variables with five socio-demographics, six
vascular risk factors and 11 neuroimaging markers
were selected for ML model development.

Machine learning models

Figure 1 illustrates the ML pipeline. We developed
ML models using three classifiers, namely, logistic
regression (LR), support vector machine (SVM), and
gradient boosting machine (GBM). Prediction results
of the three classifiers was subsequently combined in
an ensemble model using a majority vote. The three
classifiers (LR, SVM, and GBM) were chosen as they
are widely used in various clinical research [27–29]
and had delivered promising performance in discrimi-
nating individuals with dementia, MCI, and NCI [27,
30]. The different types of ML classifiers and their



452 W.Y. Tan et al. / Machine Learning and Cognitive Impairment

Fig. 1. Machine learning pipeline. The machine learning model
consist of three classifiers, logistic regression (LR), support vector
machine (SVM), and gradient boosting machine (GBM). Predic-
tion results of LR, SVM, and GBM combined in an ensemble
model to derive the final prediction using majority vote. Model
was trained and validated using five-fold cross validation (CV) on
10 repeats. Synthetic minority over-sampling technique (SMOTE)
was applied on the train data.

complexities have been explained elsewhere in detail
[31]; hence, a brief summary is presented here:

LR is a classic ML algorithm that uses the max-
imum likelihood estimation to predict the risk of
cognitive impairment. The SVM algorithm uses
hyperplanes and a set of mathematical function (ker-
nel) to classify individuals as cognitive impairment or
NCI. The kernel function allows the data to be mod-
elled in a non-linear fashion [32]. GBM is an efficient
ensemble classifier that combines learning from a set
of weak classifiers into a strong classifier by sequen-
tially training the algorithms over multiple iterations
[33, 34]. Finally, the voting ensemble was derived
from the idea of “wisdom of crowds”. It suggests that

a single base classifier may not perform well due to
high bias or variance. However, combining the results
of several classifiers can work collectively to com-
pensate their shortcomings and achieve better model
performance than individual classifiers [34, 35]. For
ensemble classifier to outperform than base classi-
fiers, the base classifiers are preferred to be diverse
in nature [30, 36].

Using the selected predictors, we randomly par-
titioned the data into two sets: 80% training and
20% testing [37]. Training data was used for model
development and hyperparameter tuning while test-
ing data was reserved for model evaluation. The
classifiers were trained independently on five-fold
cross-validation with 10 repeats to maximize the
number of samples available for classifiers to learn
underlying relationship. Training performances were
averaged across the 10 repetitions. Hyperparameters
were tuned using the grid search approach with AUC
as the scoring metric. Grid range for hyperparame-
ter searches along with optimal parameters for each
classifier were detailed in supplementary materials
Table 2. The optimized parameter for each classi-
fier were saved and applied on testing data. As the
EDIS dataset have an imbalanced class distribution
with higher proportion of individuals with cognitive
impairment (68.4%) compared to NCI (31.6%), syn-
thetic minority over-sampling technique (SMOTE)
was applied on the training data to balance the class
distribution [22].

Explanatory analysis was performed on every pre-
dictor to examine their distribution and association
with cognitive outcome. Log transformation was
performed on triglycerides and WMH with right
skewed distribution. Variables with missing data were
mainly related to laboratory, neuroimaging markers
and APOE ε4 carrier status. Missing data for each
variable were described in Supplementary Table 3.
Missing data were imputed using a ML-based impu-
tation technique, k-Nearest Neighbors (kNN). kNN
is a ML-based imputation technique that uses a dis-
tance measure computation. The approach is simple
and efficient [38] and the imputation does not require
specification of relationship between outcome and
predictor variables; hence, they are less prone to
model misspecification [39]. Our study used the kNN
algorithm on Euclidean distance with k = 5 for esti-
mating the missing values. We have also explored
an advanced imputation technique, Multiple Impu-
tation by Chained Equation (MICE) method [40] as
an alternative to kNN imputation. The test of associ-
ations between predictors and cognitive impairment



W.Y. Tan et al. / Machine Learning and Cognitive Impairment 453

outcome using kNN and MICE imputation leads to
the same set of significant predictors with modest
change in p-values. Predictor variables were normal-
ized using a min-max scaler to transform the data into
uniform range between 0 to 1. The normalized data
were fitted into respective models and results from
each model were recorded and compared.

Evaluation

Performance of the ML models were evaluated
on testing data using sensitivity, specificity, positive
predictive values (PPV), negative predicative values
(NPV), and F1 scores. Details of each metric can
be found in Supplementary Material 1. Briefly, we
defined participants with cognitive impairment as true
positive (TP) otherwise as true-negative (TN) if par-
ticipants are correctly predicted by the ML model.
Participants were deemed as false positive (FP) or
false negative (FN) if being wrongly predicted by
the ML model. The F1 score is a harmonic metric
that combines sensitivity (recall) and PPV (precision)
based on a formula as follows:

F1 score = 2 × Precision × Recall

Precision + Recall

F1 score ranges between 0 and 1. F1 score is
suitable to assess ML model trained and tested on
imbalance datasets.

All analysis was performed using open-source
software Python version 3.8.8, tableone 0.7.12 and
scikit-learn 1.1.1 libraries.

Model interpretability

There has been an inherent trade-off between pre-
diction accuracy and interpretability in modelling.
ML models are often trained to optimize prediction
accuracy at reduced interpretability. Hence, ML mod-
els are deemed to be ‘black boxes’ as they were
developed on complex algorithmic functions that are
not easily interpretable or comprehensible by humans
[41]. To address the issue of black-box predictions in
ML, we applied an explainer model, Shapley Addi-
tive Explanations (SHAP) to data generated by the
ensemble ML model to understand how the algorithm
make its prediction. This method has been previously
described [5, 42, 43] and was applied to studies on
dementia and cognitive impairment. More details on
SHAP explainer model can be found in Supplemen-
tary Material 2. Briefly, the SHAP explainer model
computes the SHAP values to quantify how much

each input feature contribute to the predicted out-
put. These values were subsequently used to rank
features and visualize important relationships [43].
A high value suggests that the predictor is important
and has a strong influence in prediction of cognitive
impairment.

RESULTS

Participant characteristics

The risk factors of cognitive impairment and their
corresponding p-values in test of association for
911 study participants were presented in Table 1.
The prevalence of cognitive impairment was 68.4%.
There were 32.2% Chinese, 32.5% Malay, and 35.3%
Indian. The mean age of study participants was
69.8 ± 6.4 years and 49.5% of the participants were
male. A total of 18.9% of the participants reported
having no formal education and 11.4% received ter-
tiary education. A high prevalence of hyperlipidemia
and hypertension was observed among EDIS partic-
ipants at 76.0% and 80.0% respectively.

Preliminary analysis showed no statistical dif-
ference in most explanatory variables between
participants with complete data vs participants with
missing data except for APOE ε4 carrier and presence
of cerebral microbleeds. Compared to participants in
the complete data sample, a higher proportion of par-
ticipants in the missing data sample were non APOE
ε4 carrier (92.1% versus 81.8%, p = 0.02) and have no
cerebral microbleeds (73.9% versus 66.7%, p = 0.03).
See Supplementary Table 4.

Participants with cognitive impairment were
observed to be older (mean age of 71.1 ± 6.5),
more likely to be female, non-Chinese, with no
or low educational attainment and were diabetic
and hypertensive. Neuroimaging markers differed
significantly between participants with and with-
out cognitive impairment. Participants with cognitive
impairment have lower subcortical structure vol-
ume, higher prevalence of lacunes, infarcts, cortical
microinfarcts, cerebral microbleeds, and intracranial
stenosis compared to participants with NCI. Atrophy
in central, cortical, and medial temporal regions were
also more apparent among participants with cognitive
impairment.

Modelling results

A summary of the prediction result was presented
in Table 2. F1 scores for LR, SVM, and GBM
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Table 1
Characteristics of study participants based on cognitive impairment status

Risk factors Overall NCI Cognitive p
N = 911 N = 288 Impairment

N = 623

Socio-demographics and genetic risk factors
Age, years 69.8 ± 6.4 66.9 ± 5.0 71.1 ± 6.5 <0.001
Sex (male) 452 (49.6) 173 (60.1) 279 (44.8) <0.001
Race <0.001

Chinese 293 (32.2) 128 (44.4) 165 (26.5)
Indian 322 (35.3) 101 (35.1) 221 (35.5)
Malay 296 (32.5) 59 (20.5) 237 (38.0)

Highest education attainment <0.001
Nil 172 (18.9) 14 (4.9) 158 (25.4)
Primary 380 (41.7) 113 (39.2) 267 (42.9)
Secondary 255 (28.0) 102 (35.4) 153 (24.6)
Tertiary 104 (11.4) 59 (20.5) 45 (7.2)

Apolipoprotein ε4 (APOE ε4) 117 (16.9) 34 (15.0) 83 (17.8) 0.429
Vascular risk factors
Smoking 257 (28.2) 85 (29.5) 172 (27.6) 0.607
Body mass index 25.6 ± 4.6 25.6 ± 4.1 25.6 ± 4.8 0.986
SBP, mmHg, 146.1 ± 19.1 143.8 ± 18.6 147.1 ± 19.2 0.014
DBP, mmHg 77.1 ± 10.7 78.0 ± 10.5 76.7 ± 10.7 0.078
Total cholesterol, mmol/L 5.0 ± 1.1 5.0 ± 1.0 5.0 ± 1.1 0.347
Cholesterol HDL, mmol/L 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 0.300
Cholesterol LDL, mmol/L 3.1 ± 0.9 3.1 ± 0.9 3.0 ± 1.0 0.073
Triglycerides, mmol/L 1.5 [1.0,2.1] 1.4 [1.0,2.1] 1.5 [1.1,2.1] 0.639
Glycated hemoglobin (HbA1c) 6.0 ± 1.5 5.9 ± 1.6 6.0 ± 1.4 0.129
Diabetes 335 (36.8) 91 (31.6) 244 (39.2) 0.033
Hyperlipidemia 692 (76.0) 202 (70.1) 490 (78.7) 0.007
Hypertension 731 (80.2) 212 (73.6) 519 (83.3) 0.001
History of stroke 43 (4.7) 8 (2.8) 35 (5.6) 0.087
Neuroimaging markers
Presence of lacunes 132 (14.5) 17 (5.9) 115 (18.5) <0.001
Presence of cortical microinfarcts 45 (4.9) 7 (2.4) 38 (6.1) 0.027
Presence of cerebral microbleeds 281 (30.8) 75 (26.0) 206 (33.1) 0.040
Presence of infarct 23 (2.5) 3 (1.0) 20 (3.2) 0.087
Presence of intracranial stenosis 104 (11.4) 24 (8.3) 80 (12.8) 0.060
Total grey matter volume, ml 515.9 ± 63.9 525.6 ± 54.2 511.4 ± 67.4 0.001
Total white matter volume, ml 352.6 ± 52.9 366.2 ± 43.8 346.4 ± 55.6 <0.001
Hippocampus volume, ml 3.5 ± 0.4 3.7 ± 0.4 3.4 ± 0.4 <0.001
White matter hyperintensities 1.5 [0.4,4.4] 1.1 [0.3,3.0] 1.7 [0.5,5.2] <0.001
Total intracranial volume, ml 1060.5 ± 111.2 1085.2 ± 108.5 1049.3 ± 110.6 <0.001
Central atrophy 239 (26.2) 53 (18.4) 186 (29.9) <0.001
Cortical atrophy 383 (42.0) 89 (30.9) 294 (47.2) <0.001
Medial temporal atrophy 288 (31.6) 61 (21.2) 227 (36.4) <0.001

Continuous variables were expressed as a mean value (±SD), while categorical variables expressed as number
(percentage %). Test of association with cognitive impairment status for normally distributed continuous variables
and categorical variables were performed using student’s t-test and chi-square respectively. Non normally distributed
variables (triglyceride and white matter hyperintensities) were expressed as median [IQR] and compared using the
Wilcoxon signed rank test (also known as Mann-Whitney U test). A two-tailed p-value (≤0.05) was considered
statistically significant. NCI, no cognitive impairment; SBP, systolic blood pressure; DBP, diastolic blood pressure;
HDL, high-density lipoprotein; LDL, low-density lipoprotein.

ranged between 0.78–0.81. Among the three classi-
fiers, SVM achieved the highest sensitivity and NPV
at 0.81 and 0.59, while GBM recorded the highest
specificity and PPV at 0.71 and 0.85 respectively.
Combining the predictions results of three classifiers,
F1 score of the ensemble model was raised to 0.87
along with increased sensitivity, specificity, PPV, and

NPV at 0.86, 0.74, 0.88, and 0.72 respectively. Fig-
ure 2 showed the receiver operating characteristic
(ROC) curves along with AUC values for LR, SVM,
GBM, and ensemble model.

In Fig. 2, the diagonal line corresponds to the
receiver operating characteristic curve (ROC) curve
of a classifier that makes prediction at random. ROC
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Table 2
Summary of the prediction results for LR, SVM and GBM

Evaluation LR1 SVM2 GBM3 Ensemble

Accuracy 0.71 0.74 0.73 0.83
F1 0.78 0.81 0.79 0.87
AUC 0.69 0.71 0.73 0.80
FPR 0.38 0.40 0.29 0.26
Sensitivity / Recall / TPR 0.75 0.81 0.74 0.86
Specificity / TNR 0.62 0.60 0.71 0.74
PPV / Precision 0.81 0.81 0.85 0.88
NPV 0.54 0.59 0.56 0.72
1LR denotes logistic regression; 2SVM denotes support vector
classifier; 3GBM denotes gradient boosting. Ensemble model con-
tains the prediction results of LR, SVM and GBM. Final prediction
was based on majority vote. Evaluation was based on test data. The
bold values indicate the best performance. LR, logistic regression;
SVM, support vector machine; GBM, gradient boosting machine;
AUC, area under the curve, FPR, false positive rate; TPR, true pos-
itive rate; TNR, true negative rate; PPV, positive predictive values;
NPV, negative predicative values.

Fig. 2. Receiver operating characteristic (ROC) curves along with
AUC values for LR, SVM, GBM, and ensemble model. AUC of
the ensemble model was 0.80, approximately 12.7% better than
average AUC of the independent classifiers.

of all three classifiers had a larger area under curve
(AUC) compared to the random model suggesting
higher prediction ability. AUC was further enhanced
when the results of the three classifiers were com-
bined in an ensemble model. This was illustrated
by ROC of the ensemble model having substantially
larger AUC and being nearer to the upper left cor-
ner of the plot compared to ROC of the individual
classifiers.

Feature importance

Figure 3 showed the SHAP summary plot that com-
bines feature importance with feature effects for all
911 participants. Each point on the summary plot rep-
resents a Shapley value for a feature and an instance.

Feature importance were ordered top down along the
y-axis according to their importance. Value of the
feature was denoted by color, with higher feature val-
ues being redder. Data points clustered at the vertical
line where Shapley value axis was zero suggest the
predictors have little influence on the prediction.

Figure 3 showed age as the most important feature
to predict Shapley values. Increased age was associ-
ated with high Shapley values (colored in pink) and
increased likelihood of being predicted as cognitive
impairment. The second and third most important
feature was education attainment and race being Chi-
nese. Having a tertiary education attainment or being
a Chinese (colored in blue) was associated with low
Shapley values and were negative predictors of cog-
nitive impairment. The volume of the hippocampus
was the fourth most important feature to predict the
Shapley values. Increased hippocampus volume was
associated low Shapley values and reduced likelihood
of being predicted as having cognitive impairment.
In summary, the SHAP summary plot illustrated
that being older, having lacunes, higher WMH vol-
ume, and having diabetes were positive predictors
of cognitive impairment, while a tertiary educa-
tion attainment, being Chinese, male, having larger
hippocampus and GMV were negative predictors
of cognitive impairment. To provide greater clar-
ity on the effect magnitude, a complementary mean
SHAP plot can be found in Supplementary Figure 1.
The mean SHAP plot aggregates the mean of the
absolute SHAP values across all 911 participants.
Predictors with large mean SHAP values have sig-
nificant impact on the model’s cognitive impairment
predictions.

Unlike the SHAP summary plot in Fig. 3 that ana-
lyzed prediction results at the aggregated level, the
SHAP force plot in Fig. 4 showed prediction results
analyzed at the individual level. We present two ran-
dom cases of correct cognitive outcome prediction
and two random cases of incorrect cognitive out-
come prediction. Figure 4A illustrates the force plot
of a correctly predicted case of cognitive impairment.
The model correctly predicts with high probability
of 0.80 that the individual has cognitive impairment.
The model’s prediction was supported by Shapley
values from lower WMV, presence of lacunes, and
low education attainment.

Figure 4B illustrates the force plot of a correctly
predicted case of NCI. The model correctly predicts
with high probability of 0.67 (1-0.33) that the individ-
ual to be negative case of cognitive impairment. Being
younger, Chinese, and having healthy SBP were iden-
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Fig. 3. Feature importance from SHAP analysis. Vertical axis indicates the features, ordered top down, from the most to the least important
predictors. Horizontal axis indicates the SHAP values. Each point represents an observation in the data. The points were colored according to
the value of the feature; pink color indicates direct association with cognitive impairment outcome and blue color indicates inverse association
with cognitive impairment outcome.

A

B

C

D

Fig. 4. A) SHAP force plot of a correctly predicted case of cognitive impairment. Bolded value indicates the likelihood of cognitive
impairment based on ensemble model. Pink indicates predictors that contribute to cognitive impairment prediction, while blue indicates
contribution towards no cognitive impairment. B) SHAP force plot of a correctly predicted case of no cognitive impairment (NCI). C) SHAP
force plot of an incorrectly predicted case of cognitive impairment. D) SHAP force plot of an incorrectly predicted case of no cognitive
impairment (NCI).
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tified as negative prognostic predictors of cognitive
impairment.

Figure 4C illustrates the force plot of an incorrect
prediction of cognitive impairment. The model incor-
rectly predicts the individual to cognitively impaired
with probability of 0.58. Predictors that favored the
cognitive impairment prediction were being female,
having lacune, lower hippocampus volume, and hav-
ing higher cholesterol LDL.

Figure 4D illustrates the force plot of an incorrect
prediction of NCI. The model incorrectly predicts the
individual to be NCI with probability of 0.59 (1-0.41).
Predictors that favored the NCI prediction were being
Chinese, younger, and higher hippocampus volume.

DISCUSSION

In this study, we demonstrated that ML models
can integrate multiple domains of data from socio-
demographic, vascular risk factors, and neuroimag-
ing markers for accurate early diagnosis of cognitive
impairment. We showed that while independent ML
classifiers (LR, SVM, and GBM) performed well
in discriminating individuals with cognitive impair-
ment, combining their results in a voting ensemble
can further enhance the performance of the ML
models. Post modelling, the SHAP explainer model
identified factors such as age, ethnicity, education
attainment, and structural neuroimaging markers as
important predictors of cognitive impairment. ML
models can efficiently integrate multiple domains of
data and offer a scalable approach to predict cognitive
impairment in population-based setting.

Cognitive impairment prediction

Three ML classifiers namely, LR, SVM, and GBM
were explored. All classifiers achieved good accu-
racy and F1 scores with an average of 0.7 and above.
Among the three classifiers, LR had the worst per-
formance while performance of SVM and GB were
largely similar with modest differences in sensitivity,
specificity, PPV, and NPV. We found the performance
of the voting ensemble model outperformed those
of the individual classifiers. Compared to the aver-
age accuracy (0.73) and F1 score (0.79) of the three
classifiers, the ensemble model achieved an accu-
racy of 0.83 (13.2% higher) and F1 score of 0.87
(9.6% higher). The better performance of the ensem-
ble model was consistent with findings from studies
[30, 44, 45] that adopt ensemble model for clinical
diagnosis.

The SHAP explainer model enhances the ML
model’s transparency and interpretability. An inter-
pretable model provides essential reasoning behind
the predictions, hence, increases its trust and accept-
ability in clinical practice [46]. Among the three set
of predictors, neuroimaging markers such as volu-
metric findings and WMH were more sensitive to
prediction of cognitive impairment. In addition, being
older, non-Chinese, and having low education attain-
ment increased the probability of being predicted
as a positive case of cognitive impairment. Previ-
ous studies on clinical prediction models [10, 18,
47] for dementia diagnosis have already established
specific risk factors of cognitive impairment. Our
findings on socio-demographic predictors were con-
sistent with previous studies that investigate the use
easy-to-obtain and routine variables for detecting
MCI among community-dwelling elderly [13]. Find-
ings on structural neuroimaging biomarkers reinforce
the importance of GMV, WMV, and hippocampus as
sensitive biomarkers for early diagnosis of cognitive
impairment and AD dementia [48, 49].

Our study found ethnicity to be the third most
important predictor of cognitive impairment and
those of Chinese ethnicity had a lower likelihood
of cognitive impairment compared to non-Chinese.
This finding concurred with previous studies [25, 50,
51] where it was shown that racial/ethnic disparities
exist, and Chinese had lower prevalence of cogni-
tive impairment compared to Indians and Malays.
The lower prevalence of cognitive impairment among
Chinese remained significant after controlling for
demographic and vascular risk factors. The preva-
lence of cognitive impairment among non-Chinese
may be influenced by factors related to their level of
education, dietary habits, and genetic factors such as
APOE ε4 [51].

While vascular risk factors reported by other stud-
ies demonstrated close association with cognitive
function, they appeared less important compared to
neuroimaging biomarkers in this study. We attribute
this finding to the selection criteria of EDIS study
recruitment. EDIS data included participants aged 60
years and above. These participants were observed
to have high prevalence of chronic conditions such
as hyperlipidemia compared to other age groups in
Singapore [51]. Among participants with diabetes,
hyperlipidemia, and hypertension, 72.6%, 72.4%,
and 76.5% were on anti-diabetic, lipid-lowering, and
anti-hypertensive medications respectively. Aware-
ness of these conditions coupled with good adherence
of medications contributes to well-controlled blood
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pressure, cholesterol, and HbA1c measurements.
Hence, little differences were observed in vascular
risk factors between participants with and without
cognitive impairment.

The multi-factorial predictor approach of this study
differs from previous work in several ways. Firstly,
most of the previously developed ML models for
detection of dementia and cognitive impairment
focused on a single modality [14, 16, 52]. A review
by Solomon et al. [29] highlighted the importance
of integrating multiple domains of data to improve
the discriminatory performance of the ML mod-
els. Secondly, this study modelled the data using
a ML approach as opposed to a traditional sta-
tistical approach. The key difference between the
two approaches is that the earlier study adopts a
non-parametric approach and are free from a pri-
ori assumptions. The main advantage of ML models
is the ability to efficiently integrate a diverse array
of variables and automatic learning without being
specifically programmed [53]. In contrast, traditional
statistical models tend to not work well on datasets
with high dimensions [54]. These parametric models
also require the specification of some parameters (i.e.,
normality of data, homogeneity of variance) which
may not be met in real world data. Additionally, ML
model can also address interactions, which are diffi-
cult to investigate with traditional statistical methods
[55]. Our study also differs from studies [13, 24] that
use cognitive assessment scores such as Mini-Mental
State Exam (MMSE) and Montreal Cognitive Assess-
ment (MoCA) score as predictor variables. While
cognitive assessment scores are widely regarded as
an important predictors of dementia, they are time
consuming to administer and they detect disease late.
Additionally, performances of cognitive assessment
tend to correlate strongly with performances in NPI
assessment. To avoid ‘outcome leakage’ (i.e., predic-
tor variables contain information that can be used to
easily infer outcome), we precluded cognitive assess-
ment scores as part of the predictor variables for
development of ML models. We hypothesized that
structural MRI being a sensitive biomarker, when
combined with other clinical factors of cognitive
impairment can reliably distinguish individuals with
and without cognitive impairment.

Limitations

While this study demonstrates the feasibility of
identifying individuals with cognitive impairment
using ML models, we acknowledge that the proposed

models have several limitations. Firstly, lifestyle
factors were omitted from the ML model as this
information was not collected in the EDIS study.
Model performance may benefit from the inclusion
of lifestyle factors as well as their effect of interac-
tion with existing risk factors. Secondly, data used in
model development were obtained under restricted
study inclusion criteria (for example, participants
were eligible if they are age 60 and above and
screened positive under AMT and PFQ). Validation of
the model using data obtained from population-based
settings with minimal inclusion criteria may enhance
the model’s generalizability and strengthen feature
importance score that augment predictive outcome.
Thirdly, the participant recruitment and screening
procedures may have created selection bias and con-
tributed to an imbalanced data class distribution.
However, SMOTE was applied on the training data
to mitigate issue of class imbalance. Lastly, we rec-
ognized that as the data used for model development
was obtained from a cross-sectional study, the find-
ings should be interpreted as associations between
risk factors and cognitive impairment rather than
evidence of causality. Despite these limitations, this
study demonstrates how ML can combine multiple
domains of data for accurate early diagnosis of cogni-
tive impairment. Findings in this study also highlights
the role and importance of neuroimaging biomarkers
for identifying individuals with cognitive impairment
in a multi-ethnic Asian population.

CLINICAL TRANSLATION

The ML-based cognitive impairment prediction
model can add value in current clinical practice in
several ways. Firstly, variables deemed as impor-
tant predictors in ML model (such as age, ethnicity,
education attainment, and volumetric neuroimag-
ing markers) are easy-to-obtain in the clinical and
research setting. The use of easy-to-obtain variables
can be readily deployed in clinics as a web application
tool to screen individuals with high risk of developing
dementia. Clinicians can enter and/or upload details
on their patients’ socio-demographic, laboratory test
results, and MRI scans to generate an estimated risk
of cognitive impairment. Risk predictions are sup-
ported by the SHAP explainer model by identifying
variables that contribute to the prediction outcome.
Secondly, the ML model can complement exist-
ing dementia and cognitive impairment diagnosis
to improve clinician prognostication and potentially
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assist in patient–physician–family communication.
Lastly, an accurate prediction model for early iden-
tification of individuals with cognitive impairment
in population-based setting provide opportunities for
intensive intervention so as to reduce disease mortal-
ity and healthcare resource burden.

CONCLUSION

ML models consisting of multi-domain data, offer
a scalable approach to predict cognitive impairment
in a population-based setting which is beneficial to
the wider community of clinicians and researchers.
In future work, we plan to apply our ML models on
other large-scale population-based data enriched with
lifestyle factors. With further development and vali-
dation, we believed our ML models can be a valuable
tool for early diagnosis of cognitive impairment.
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Vicente SG (2019) Distinguishing mild cognitive impair-
ment from healthy aging and Alzheimer’s disease: The
contribution of the INECO Frontal Screening (IFS). PLoS
One 14, e0221873.

[7] Langhough Koscik R, Hermann BP, Allison S, Clark LR,
Jonaitis EM, Mueller KD, Betthauser TJ, Christian BT, Du
L, Okonkwo O (2021) Validity evidence for the research cat-
egory,“cognitively unimpaired–declining,” as a risk marker
for mild cognitive impairment and Alzheimer’s disease.
Front Aging Neurosci 13, 688478.

[8] Woodford H, George J (2007) Cognitive assessment in the
elderly: A review of clinical methods. QJM 100, 469-484.

[9] Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P,
Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow
K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyck-
aerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R,
Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista
S, Molinuevo JL, O’Bryant SE, Rabinovici GD, Rowe C,
Salloway S, Schneider LS, Sperling R, Teichmann M, Car-
rillo MC, Cummings J, Jack CR Jr; Proceedings of the
Meeting of the International Working Group (IWG) and
the American Alzheimer’s Association on “The Preclini-
cal State of AD”; July 23, 2015; Washington DC, USA
(2016) Preclinical Alzheimer’s disease: Definition, natu-
ral history, and diagnostic criteria. Alzheimers Dement 12,
292-323.

[10] Devanand DP, Liu X, Tabert MH, Pradhaban G, Cuasay K,
Bell K, de Leon MJ, Doty RL, Stern Y, Pelton GH (2008)
Combining early markers strongly predicts conversion from
mild cognitive impairment to Alzheimer’s disease. Biol Psy-
chiatry 64, 871-879.

[11] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft
S, Fagan AM, Iwatsubo T, Jack Jr CR, Kaye J, Mon-
tine TJ (2011) Toward defining the preclinical stages of
Alzheimer’s disease: Recommendations from the National
Institute on Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement 7, 280-292.
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