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Abstract

{Chung, 2009 #1}The transforming growth factor-b (TGF-b) superfamily of cytokines plays a fundamental role in a wide
variety of cellular processes, including growth, differentiation, apoptosis, and tissue homeostasis. Its relevance is
emphasized by the mutations of its core components that are associated with diverse human diseases, such as cancer and
cardiovascular pathologies. A prominent regulator of the pathway is Smad7, which attenuates the signal and controls its
duration in a cell-type-dependent manner through a negative feedback loop. Here, we characterize all the potential Smad7-
mediated negative feedback network motifs and investigate their effects on the signaling dynamics upon stimulation with
TGF-b and bone morphogenetic protein (BMP) ligands. The results show that the specific negative feedback
implementation is a key determinant of both the response of the system to single and multiple ligands of the TGF-b
superfamily and its robustness and sensitivity to parameter perturbations.
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Introduction

The transforming growth factor-b (TGF-b) superfamily, which

comprises 33 different ligands in mammalian cells, plays a

fundamental role in development and maintenance of tissue

homeostasis [1]. These ligands regulate key cellular processes, such

as proliferation, motility, differentiation, and apoptosis [2].

Dysregulation of the TGF-b signal transduction pathway resulting

from mutations of its core components has been associated with a

number of human diseases, including cancer and vascular

disorders [3,4]. As a result, a significant effort of clinical research

focuses on developing therapies targeting the TGF-b pathway [1].

The multiple cellular effects elicited by the TGF-b superfamily

ligands are triggered by binding of the ligand to two types of

receptor serine/threonine protein kinases (type II and type I

receptors) at the plasma membrane, which then form an active

ligand-receptor complex. The signal is thenceforth propagated

through the intracellular Smad proteins into the nucleus where

activated Smad complexes act as transcription factors, controlling

the expression of hundreds of genes in a cell-type and context

dependent way [2]. Specifically, the active ligand-receptor

complex is internalized into early endosomes, where it recruits

and phosphorylates one of the receptor-regulated Smad (R-Smad)

proteins. Phosphorylated R-Smads bind Smad4, the common-

mediator Smad, forming a heterooligomer that translocates into

the nucleus and binds to DNA to regulate the expression of its

target genes. Ligands of the TGF-b superfamily signal through the

activation of two parallel R-Smad channels. Specifically, bone

morphogenetic proteins (BMPs) activate the Smad1/5/8 channel;

nodal and activin ligands activate the Smad2/3 channel; and

TGF-b activates both channels [5].

Inhibitory Smads (I-Smads), Smad6 and Smad7, negatively

regulate signaling in this pathway, antagonizing the effects of R-

Smads [6]. They inhibit the signal through different mechanisms,

such as sequestering phosphorylated R-Smads, specifically Smad1,

in an inactive complex as observed for Smad6 [7] or, more

typically, by competing with R-Smads for receptor binding [8,9]

and promoting degradation of ligand-receptor complexes through

Smurf-dependent ubiquitination [10,11]. Importantly, this inhibi-

tion can occur through a negative feedback loop because TGF-b
superfamily ligands induce transcription of Smad6 and Smad7 genes

by the binding of nuclear phosphorylated R-Smad–Smad4

complexes to the promoters [1].

In the last few years, several mathematical models of the Smad-

dependent TGF-b signal transduction pathway have been

developed to get insights into its functioning [12–25]. In particular,

a few of these computational models have incorporated the

Smad7-mediated negative feedback loop as an explicit component

of the pathway in order to investigate its mechanistic role in the

observed behavior [12,15,16,24,25]. In these cases, the effects of

Smad6, which preferentially blocks BMP signaling, are typically

combined with those of Smad7, which blocks both TGF-b and

BMP signaling, in a single effective inhibitory component. We

have previously demonstrated that differences in the implemen-

tation of the negative feedback loop capture the distinct signaling

dynamics of diverse cell lines [25]. In addition to investigating the

dynamic response of TGF-b signaling, quantitative approaches

have revealed how the signaling behavior is affected by

perturbations of its parameters through the use of sensitivity

analyses [12–15,17,22,25], analytical calculations [18], and other

types of mathematical analysis [19].
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In mammalian cells, the Smad7-dependent negative feedback

loop has different implementations in different cell lines [25]. For

example, bovine aortic endothelial cells (BAECs) exhibit an auto-

regulatory negative feedback loop, where Smad7 is expressed

through activation of the Smad1 channel and inhibits further

activation of the same R-Smad channel [26]. The mouse myoblast

cell line C2C12 displays a cross-regulatory negative feedback,

where Smad7 is expressed through activation of the Smad2

channel, but inhibits the Smad1 channel when the pathway is

stimulated with TGF-b [25,27,28]. Human keratinocytes HaCaT

cells exhibit a high basal concentration of Smad7 that is minimally

affected upon treatment with TGF-b [29].

Robustness is a fundamental characteristic of biological systems,

defining their ability to maintain normal function despite

perturbations of their components [30]. In the TGF-b signal

transduction pathway, negative feedback control in specific cases

has been shown to confer robustness to the system, reducing

phenotypic variability in cell populations [16], and to decrease the

sensitivity of the signaling output to perturbations of its parameters

[15]. A typical avenue to analyze the systemic robustness of a

system is to perturb the model parameters, quantify this variation

from the nominal parameter set, and assess the properties of the

system output in the perturbed state. This type of approach has

been used to study models of bacterial chemotaxis [31], the

mitogen-activated protein kinase (MAPK) cascade [32], the

interferon-gamma (IFN-c) induced Janus kinase (JAK) signal

transducers and activators of transcription (STAT) pathway [33],

the B-cell lymphoma 2 (Bcl-2) apoptotic switch [34], and the

epidermal growth factor receptor (EGFR) signaling network [35].

Here we characterize all the potential Smad7-mediated negative

feedback network motifs of the TGF-b signaling pathway and

study their effects on the signaling dynamics, robustness, and

sensitivity of a detailed mathematical model of the pathway. This

type of study is notably important because network motifs, defined

by a particular pattern of biochemical interactions, may reflect

important functional properties of the system [36]. We investigate

the dynamic response by exposing the system to two different

extracellular ligand conditions, namely to stimulation with TGF-b
ligand alone and to co-stimulation with TGF-b and BMP ligands.

We do not consider Smad6 explicitly because its effects can be

taken into account effectively by changing the strength of Smad7

interactions and it does not give rise to any new negative feedback

network motif. The robustness analysis considers a single measure

for the whole system and provides insight into how the

architecture of the network shapes the model’s response to

systemic parameter perturbation. Subsequently, to elucidate the

effects of individual parameter perturbation on the model output,

we use a global sensitivity analysis, which evaluates these effects

within a large parameter space [37]. As the output of the model we

focus on different properties of the nuclear concentration of

phosphorylated R-Smad-Smad4 complexes, as they act as

transcription factors to control the expression of the target genes.

Our analysis provides a comprehensive examination into the

effects of distinct negative feedback network motifs in defining the

system behavior in the TGF-b signal transduction pathway.

Methods

TGF-b signal transduction pathway model
We consider the detailed model developed in Ref. [25] to assess

the Smad-dependent response to treatment with TGF-b and BMP

ligands. We have shown elsewhere [25] that this detailed

computational model accurately reproduces the diverse behavior

of experimental datasets for human keratinocytes (HaCaT), bovine

aortic endothelial cells (BAEC), and mouse mesenchymal cells

(C2C12). The model includes three modules of the signaling

pathway, namely receptor trafficking, nucleocytoplasmic shuttling

of two parallel R-Smad channels, and a Smad7-based negative

feedback loop. Signaling is initiated when a TGF-b or BMP ligand

binds to its type II receptor, denoted as RIIT or RIIB, respectively.

This ligand-receptor complex then recruits a type I receptor,

either RI1T, RI1B, or RI2. The former two type I receptors signal

through the Smad1 channel after binding to TGFb-RIIT or BMP-

RIIB ligand-receptor complexes, respectively, while the latter

signals through the Smad2 channel after binding to the TGFb-

RIIT complex. The resulting active heteromeric ligand-receptor

complexes are denoted by C1T, C1B, or C2, respectively, where the

subscript is identical to that of the type I receptor within the

complex. The active ligand-receptor complexes are then internal-

ized into the early endosome, which provides a platform to

efficiently phosphorylate cytosolic Smad1 (S1c) or Smad2 (S2c). We

use the subscripts c and n to indicate cytosolic and nuclear species,

respectively, and the prefix p to denote phosphorylated species. In

the cytosol, pS1c and pS2c bind to Smad4 (S4c) to form the pS1S4c

and pS2S4c complexes, respectively, which translocate into the

nucleus. The complexes pS1S4n and pS2S4n then bind to DNA and

activate the expression of Smad7 (S7), which irreversibly binds to

surface ligand-receptor complexes (C1T, C1B, or C2), preventing

their association with and phosphorylation of R-Smad proteins,

and targeting the active ligand-receptor complexes for degrada-

tion. Therefore, the negative feedback loop is initiated with

expression of Smad7 through the Smad1 and Smad2 channels by

way of pS1S4n and pS2S4n, respectively. Smad7 proteins then

inhibit the activation of the Smad1 channel by binding to C1T and

C1B, while binding to C2 inhibits Smad2 channel activation. A

schematic representation of the model is shown in Figure 1, where

arrows indicate each modeled reaction in the pathway. Reactions

are mathematically represented with mass-action kinetics, which

are then used to form the system of ordinary differential equations

(ODEs) to track the change in concentration of each modeled

species over time (Table 1).

To define the reference parameter set for the model, we use as

starting point the parameter values defined for HaCaT cells in

Ref. [25]. We assume that Smad1 and Smad2 have the same

abundance and reaction dynamics. For the association rate of

Smad7 with C2 (k20a,2), we use 1.5061024 molecules21 min21,

which corresponds to the initial estimated value before optimiza-

tion for HaCaT cells [25]. This higher affinity value provides

stronger inhibition through the negative feedback loop, but does

not qualitatively affect the robustness and sensitivity results (see

Text S1). We then set the parameters governing Smad7 expression

by, and inhibition of, the Smad1 channel, namely k20a,1T, k20a,1B,

klip,1, and KA,1 to the corresponding values for the Smad2-channel-

associated counterparts: k20a,2, klip,2, and KA,2.

Prior to ligand stimulation, we determine the steady state

solution for the system of ODEs (Table 1) by setting each time-

derivative to zero and solving the linear system of equations that

arises with TGFb and BMP equal to zero, the pre-stimulus

conditions, using the ‘linalg.solve’ method in Numpy 1.6.2 (http://

numpy.scipy.org) with Python 2.7.3 (http://www.python.org).

Upon adding the ligand, we numerically solve the system of

ODEs using the CVODE method in the SUNDIALS 2.5.0

package [38]. Thus, we focus on the typical experimental

conditions that measure the response of the system to a sudden

change of the ligand (TGF-b or TGF-b and BMP) concentration

from zero to a saturating value (at time t = 0 hours) that is kept

constant afterwards.

TGF-b Pathway Negative Feedback Network Motifs

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e83531



Negative feedback network motifs
We have considered nine distinct network motifs for the Smad7-

based negative feedback loop in the TGF-b signaling pathway,

which are schematically represented in Figure 2. These include

three unbiased network motifs where inhibition equally affects

both R-Smad channels, denoted here by ‘‘no degradation’’ (ND),

‘‘no feedback’’ (NF), and ‘‘total feedback’’ (TF). The ND network

motif captures a system lacking Smad7, eliminating Smad7-

dependent ligand-induced degradation of active ligand-receptor

complexes from the model. In the NF network motif, Smad7 is

kept at a constant concentration, analogous to a system with

saturated levels of Smad7. Therefore, the NF network motif

provides inhibition without the Smad7 negative feedback loop. For

the TF network motif, Smad7 expression is activated by, and

inhibits, both R-Smad channels, which corresponds to the

complete network represented in Figure 1.

The remaining six network motifs include biased inhibition of a

single R-Smad channel. Two of them, denoted by A1 and A2,

correspond to an auto-regulation negative feedback network motif,

where Smad7 expression is activated by, and inhibits, the same R-

Smad channel (Smad1 for A1 and Smad2 for A2). The C1 and C2

network motifs implement a cross-regulation negative feedback

loop in which Smad7 expression is activated by the channel it does

not inhibit. Finally, the network motifs denoted by S1 and S2

Figure 1. Schematic illustration of Smad-dependent TGF-b signal transduction pathway model. Arrows indicate reaction steps along the
pathway and are labeled with the rate constant for the reaction. Dashed arrows denote Smad7 synthesis through gene expression. We use overbars
to represent internalized receptor species in the endosome and the symbol ‘‘/’’ to indicate ‘‘or’’ in grouping the C1T and C1B ligand-receptor
complexes as C1T/B. Different colors group the three modules, where blue indicates receptor trafficking, green indicates Smad nucleocytoplasmic
shuttling, and red indicates negative feedback.
doi:10.1371/journal.pone.0083531.g001

TGF-b Pathway Negative Feedback Network Motifs
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correspond to a negative feedback loop with a single target, where

Smad7 expression is activated by both R-Smad channels, but

inhibits only one of the channels. In all the cases, RI1B and RI1T

are not separated in the examined variations of feedback motifs

because Smad7 is supposed to bind to both of them in the same

way. Specifically, both of them have the same type of L45 loop on

the kinase domain, which determines the interaction with Smad7

through the L3 loop on the MH2 domain [39]. Since the kinetic

parameters of Smad7 inhibition have not been fully characterized,

based on this structural evidence, the most neutral assumption is to

consider the same inhibitory kinetics for both of these type I

receptors.

In order to implement each specific network motif, we eliminate

particular Smad7-based processes by setting their rate constant

values to zero (Table 2). In addition, the initial concentration of

Smad7 is set to about 2,633 molecules for the NF network motif.

This leads to a degradation rate of 0.395 min21 for the active

ligand-receptor complexes, as in Ref. [13], for the reference values

for k20a,1T, k20a,1B, and k20a,2 of Table 2. The initial Smad7

concentration for the other eight network motifs is zero. We

include a representation of the model built with CellDesigner 4.2

[40] and the corresponding parameter values in File S1. This

SBML file [41] corresponds to the TF network motif with its

parameter set and initial conditions. The other cases are obtained

by just setting the parameter values to those of Table 2.

Robustness analysis
The complexes pS1S4n and pS2S4n act as transcription factors to

control the expression of hundreds of genes [5]. Thus, we focus on

the different properties of the concentrations of these two species

as the output of the model in our robustness analysis. Specifically,

we investigate the following three properties: the peak species

concentration (mp), the time at which the peak concentration is

reached (mt), and the signal duration (md) as defined in Ref. [42].

The peak species concentration, mp, is defined as

mp~ max X (t)ð Þ, ð1Þ

which corresponds to the maximum of X(t), which is the

concentration of pS1S4n or pS2S4n as a function of the simulation

time t, with 0ƒtƒT . In the simulations, time t = 0 corresponds to

the time at which the ligand is added and t = T corresponds to the

total simulation time. We compute mt as

mt~t max X (t)ð Þð Þ, ð2Þ

which corresponds to the time at which X(t) reaches its maximum

value mp within the simulation time. The final metric, md, is given

by

md~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ T

0
t2X (t)dtÐ T

0
X (t)dt

{

Ð T

0
tX (t)dtÐ T

0
X (t)dt

 !2
vuut : ð3Þ

The signal duration metric captures the spread of X(t) about its

peak [42]. In all three cases, we used a total simulation time T of

24 hours.

In order to assess the robustness of each network motif to

parameter perturbation, we use the approach developed in Ref.

[33] for the analysis of the IFN-c induced JAK-STAT pathway.

This method directly compares the parameter variation measure,

defined by the logarithmic change in parameter values upon

Table 1. System of ODEs for each modeled species.

d½RIIT �
dt

~ksyn,RII {kdeg,RII ½RIIT �{k1a ½TGFb�½RIIT �zk1d ½TGFbRIIT �zk17rec ½C1T �z½C2 �
� �

{k19int ½RIIT �zk19rec ½RIIT �

d½RIIB �
dt

~ksyn,RII {kdeg,RII ½RIIB �{k1a ½BMP�½RIIB �zk1d ½BMPRIIB �zk17rec ½C1B �{k19int ½RIIB �zk19rec ½RIIB �

d½TGFbRIIT �
dt

~k1a ½TGFb�½RIIT �{k1d ½TGFbRIIT �{k2a ½TGFbRIIT � ½RI1T �z½RI2 �ð Þzk2d ½C1T �z½C2 �ð Þ

d½BMPRIIB �
dt

~k1a ½BMP�½RIIB �{k1d ½BMPRIIB �{k2a ½BMPRIIB �½RI1B �zk2d ½C1B �

d½RI1T �
dt

~ksyn,RI {kdeg,RI ½RI1T �{k2a ½TGFbRIIT �½RI1T �zk2d ½C1T �zk17rec ½C1T �{k18int ½RI1T �zk18rec ½RI1T �

d½RI1B �
dt

~ksyn,RI {kdeg,RI ½RI1B �{k2a ½BMPRIIB �½RI1B �zk2d ½C1B �zk17rec ½C1B �{k18int ½RI1B �zk18rec ½RI1B �

d½RI2 �
dt

~ksyn,RI {kdeg,RI ½RI2 �{k2a ½TGFbRIIT �½RI2 �zk2d ½C2 �zk17rec ½C2 �{k18int ½RI2 �zk18rec ½RI2 �

d½C1T �
dt

~k2a ½TGFbRIIT �½RI1T �{k2d ½C1T �{k3int ½C1T �{k16deg ½C1T �{k20a,1T ½C1T �½S7�

d½C1B �
dt

~k2a ½BMPRIIB �½RI1B �{k2d ½C1B �{k3int ½C1B �{k16deg ½C1B �{k20a,1B ½C1B �½S7�

d½C2 �
dt

~k2a ½TGFbRIIT �½RI2 �{k2d ½C2 �{k3int ½C2 �{k16deg ½C2 �{k20a,2 ½C2 �½S7�

d½C1T �
dt

~k3int ½C1T �{k4a ½C1T �½S1c �zk4d ½C1T S1c �zk5phos ½C1T S1c �{k17rec ½C1T �

d½C1B �
dt

~k3int ½C1B �{k4a ½C1B �½S1c �zk4d ½C1BS1c �zk5phos ½C1B S1c �{k17rec ½C1B �

d½C2 �
dt

~k3int ½C2 �{k4a ½C2 �½S2c �zk4d ½C2 S2c �zk5phos ½C2S2c �{k17rec ½C2 �

d½C1T S1c �
dt

~k4a ½C1T �½S1c �{k4d ½C1T S1c �{k5phos ½C1T S1c �

d½C1B S1c �
dt

~k4a ½C1B �½S1c �{k4d ½C1B S1c �{k5phos ½C1B S1c �

d½C2 S2c �
dt

~k4a ½C2 �½S2c �{k4d ½C2S2c �{k5phos ½C2S2c �

d½S1c �
dt

~ksyn,RS {kdeg,RS ½S1c �{k4a ½S1c � ½C1T �z½C1B �
� �

zk4d ½C1T S1c �z½C1B S1c �
� �

{k12imp ½S1c �zk12exp ½S1n �

d½S2c �
dt

~ksyn,RS {kdeg,RS ½S2c �{k4a ½S2c �½C2 �zk4d ½C2S2c �{k12imp ½S2c �zk12exp ½S2n �

d½S4c �
dt

~ksyn,S4{kdeg,S4 ½S4c �{k6a ½S4c � ½pS1c �z½pS2c �ð Þzk6d ½pS1S4c �z½pS2S4c �ð Þ{k14imp ½S4c �zk14exp ½S4n �

d½pS1c �
dt

~k5phos ½C1T S1c �z½C1BS1c �
� �

{k6a ½pS1c �½S4c �zk6d ½pS1S4c �{k13imp ½pS1c �

d½pS2c �
dt

~k5phos ½C2S2c �{k6a ½pS2c �½S4c �zk6d ½pS2S4c �{k13imp ½pS2c �

d½pS1S4c �
dt

~k6a ½pS1c �½S4c �{k6d ½pS1S4c �{k7imp ½pS1S4c �

d½pS2S4c �
dt

~k6a ½pS2c �½S4c �{k6d ½pS2S4c �{k7imp ½pS2S4c �

d½pS1S4n �
dt

~k7imp ½pS1S4c �{k8dp ½pS1S4n �zk10a ½pS1n �½S4n �{k10d ½pS1S4n �

d½pS2S4n �
dt

~k7imp ½pS2S4c �{k8dp ½pS2S4n �zk10a ½pS2n �½S4n �{k10d ½pS2S4n �

d½S1S4n �
dt

~k8dp ½pS1S4n �{k9d ½S1S4n �

d½S2S4n �
dt

~k8dp ½pS2S4n �{k9d ½S2S4n �

d½S1n �
dt

~k9d ½S1S4n �zk11dp ½pS1n �zk12imp ½S1c �{k12exp ½S1n �

d½S2n �
dt

~k9d ½S2S4n �zk11dp ½pS2n �zk12imp ½S2c �{k12exp ½S2n �

d½S4n �
dt

~k9d ½S1S4n �z½S2S4n �ð Þ{k10a ½S4n � ½pS1n �z½pS2n �ð Þzk10d ½pS1S4n �z½pS2S4n �ð Þzk14imp ½S4c �{k14exp ½S4n �

d½pS1n �
dt

~{k10a ½pS1n �½S4n �zk10d ½pS1S4n �{k11dp ½pS1n �zk13imp ½pS1c �{k15deg ½pS1n �

d½pS2n �
dt

~{k10a ½pS2n �½S4n �zk10d ½pS2S4n �{k11dp ½pS2n �zk13imp ½pS2c �{k15deg ½pS2n �

d½RI1T �
dt

~k18int ½RI1T �{k18rec ½RI1T �

d½RI1B �
dt

~k18int ½RI1B �{k18rec ½RI1B �

d½RI2 �
dt

~k18int ½RI2 �{k18rec ½RI2 �

d½RIIT �
dt

~k19int ½RIIT �{k19rec ½RIIT �

d½RIIB �
dt

~k19int ½RIIB �{k19rec ½RIIB �

d½S7�
dt

~
klip,1 KA,1 ½pS1S4n �zklip,2 KA,2 ½pS2S4n �

1zKA,1 ½pS1S4n �zKA,2 ½pS2S4n �
{kdeg,S7 ½S7�{k20a,1T ½C1T �½S7�{k20a,1B ½C1B �½S7�{k20a,2 ½C2 �½S7�

Equations track the change in concentration of each modeled species over time t. Overbars indicate receptor species internalized in the endosome. We prefix a species
variable name with p to denote that it is phosphorylated and use the subscripts c and n represent cytoplasmic and nuclear species, respectively.
doi:10.1371/journal.pone.0083531.t001

TGF-b Pathway Negative Feedback Network Motifs
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random perturbation, with the resulting metric output of the

system. The parameter variation measure Mi is defined as

Mi~
1

n

Xn

j~1

log10

ptest
j,i

p
ref
j

�����
�����, ð4Þ

where n is the number of nonzero parameters, ptest
j,i is the jth

parameter of the ith test parameter set, and p
ref
j is the jth parameter

in the reference parameter set [33]. For each parameter, we

compute its test value by generating a random variable x with a

uniform distribution within the range [21, 1] and multiplying the

reference parameter value by 10x. This is an adaptation of the

sampling method used in Ref. [33], where the authors generate x

from a standard normal distribution. Our approach adapts the

parameter space approach used in the parameter optimization

routine from Ref. [25]. Specifically, we generate the test parameter

set within a parameter space defined as 61 order of magnitude for

each parameter, including the Smad7-associated parameters

(k20a,1T, k20a,1B, k20a,2, klip,1, klip,2, KA,1, and KA,2). We generate

4,000 test parameter sets, as it is a sufficiently large number of

samples for the results in this analysis to converge (see Text S1).

For each test parameter set i, we simulate the model and define

its output as Ci. The different cases studied correspond to diverse

ligand stimulation conditions, properties of the output, and output

species for each of the nine negative feedback network motifs. This

leads to a total of 108 cases resulting from all the possible

combinations of taking one item from each of the following four

groups for each of the 4,000 test parameter sets:

(i) nine negative feedback network motifs: ND, NF, TF, A1,

A2, C1, C2, S1, and S2;

(ii) two ligand stimulation conditions: TGF-b alone and co-

stimulation with TGF-b and BMP together;

(iii) two species: pS1S4n and pS2S4n;

(iv) three metrics: mp, mt, and md.

Therefore, the output Ci represents one of three metrics for one

of the two species for one of the two ligand stimulation conditions

for one of the nine negative feedback network motifs, where the

Figure 2. Schematic representation of the nine negative feedback loop network motifs. Horizontal arrows represent mass flow into and
out of a species. Vertical arrows and flat-head lines terminating on a horizontal arrow denote activation or repression, respectively, of the targeted
process. Processes common to all network motifs are drawn in black, while the unique negative feedback loop processes are colored red.
doi:10.1371/journal.pone.0083531.g002
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subscript i indicates one of the 4000 test parameter sets. One

particular case consists of, for instance, the study of the ND

network motif with just TGF-b stimulation and assessing as output

the pS1S4n species focusing on the mp metric for each test

parameter set, yielding 4,000 values of Ci for this case.

For each case, we define a single robustness measure R as the

ratio of the variance of all 4,000 values of Mi in Equation (4) with

respect to that of Ci. This is mathematically expressed as

R~

PN
i~1

Mi{M
� �2

PN
i~1

Ci{C
� �2

, ð5Þ

where N is the number of parameter sets, equal to 4,000 here, and
�MM and �CC are the mean values of Mi and Ci, respectively. Larger

values of R would indicate that the system is more robust to

parameter perturbation, as the variance of the model output (C) is

minimal compared to that of the parameter variation measure (M).

We have calculated this robustness measure for all of the 108

cases.

Sensitivity analysis
We have used a global sensitivity analysis to investigate how

perturbations of individual parameters in the parameter space

affect the model output [37]. Specifically, we performed a

derivative-based global sensitivity analysis, which samples the

effects of local parameter perturbation within the parameter space

[43]. To estimate the effects of local parameter perturbation, we

compute the scaled sensitivity coefficients [44] given by

Ekj,i
~

kj,i

Ci

LCi

Lkj,i
, ð6Þ

where kj,i corresponds to the value of the jth parameter, kj, of sample

i with its corresponding model output Ci, defined as in the

robustness analysis. To approximate the partial derivative, we

evaluate the model with 0.5 percent perturbations of each

parameter kj about its original value in sample i and calculate

the finite central difference of the sensitivity metric [45].

For each parameter kj, we compute the local scaled sensitivity

coefficients Ekj,i
for the 4,000 parameter values by randomly

sampling its value in the parameter space, as described in the

previous section for the robustness analysis, and use them to obtain

three sensitivity measures [43]. The first measure, denoted by Lkj
,

averages the absolute value of the local sensitivity coefficients and

is given by

Lkj
~

1

N

XN

i~1

Ekj,i

��� ���, ð7Þ

where N is the number of parameter samples. The second

measure, denoted by Skj
, corresponds to the standard deviation of

the local sensitivity coefficients and is given by

Skj
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

Ekj,i

��� ���{Lkj

� �2

vuut : ð8Þ

The third measure, Gkj
, corresponds to the sum of the squares

of the first two measures and is given by

Gkj
~L2

kj
zS2

kj
: ð9Þ

As the final measure combines the first two, we use Gkj
as the

global sensitivity coefficient [43].

We implemented these robustness and sensitivity analyses using

Python 2.7.3 (http://www.python.org), Numpy 1.6.2 (http://

numpy.scipy.org), and Scipy 0.10.0 [46].

Results

Negative feedback network motifs’ stimulation dynamics
The specific implementation of the negative feedback loop

differentially affects the dynamics of the model upon TGF-b
stimulation (Figure 3). Network motifs with unbiased inhibition of

the R-Smad channels, namely ND, NF, and TF, provide both

Table 2. Parameter values of Smad7-related processes for the negative feedback network motifs.

Parameter ND NF TF A1 C1 S1 A2 C2 S2

k20a,1T

(molec21 min21)
0 1.5061024 1.5061024 1.5061024 1.5061024 1.5061024 0 0 0

k20a,1B

(molec21 min21)
0 1.5061024 1.5061024 1.5061024 1.5061024 1.5061024 0 0 0

k20a,2

(molec21 min21)
0 1.5061024 1.5061024 0 0 0 1.5061024 1.5061024 1.5061024

klip,1

(molec min21)
0 0 8.536103 8.536103 0 8.536103 0 8.536103 8.536103

klip,2

(molec min21)
0 0 8.536103 0 8.536103 8.536103 8.536103 0 8.536103

KA,1

(molec21)
0 0 1.0361026 1.0361026 0 1.0361026 0 1.0361026 1.0361026

KA,2

(molec21)
0 0 1.0361026 0 1.0361026 1.0361026 1.0361026 0 1.0361026

Nonzero parameter values are from Ref. [25].
doi:10.1371/journal.pone.0083531.t002
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Smad1 and Smad2 channels with the same type of wiring upon

single-ligand TGF-b stimulation. Therefore, when the parameters

for both channels are the same as in our case, the results for the

dynamics of nuclear pSmad1-Smad4 and pSmad2-Smad4 species

are identical (Figures 3A, 3B and 3C). In contrast, in the case of

network motifs with biased inhibition, i.e., those where Smad7

inhibits only one channel, such as A1, A2, C1, C2, S1, and S2, the

system response varies between the two channels (Figures 3D, 3E,

3F, 3G, 3H, and 3I). In these network motifs, as Smad7 alternates

its target between the Smad1 and Smad2 channels, the dynamic

response of one R-Smad channel mirrors that of the other. For

example, in the case of the auto-regulatory negative feedback

network motifs, the pS1S4n response in the network motif A1 is

identical to that of pS2S4n for the network motif A2 (Figures 3D

and 3G).

Upon co-stimulation of the system with both TGF-b and BMP

ligands, the pS1S4n and pS2S4n signals are no longer identical for

the ND, NF, and TF network motifs due to the additional

activation of the Smad1 channel by BMP (Figures 4A, 4B, and

4C). In the case of the network motifs with biased architectures,

namely A1, A2, C1, C2, S1, and S2, the system loses the mirrored

behavior observed for R-Smad dynamics for stimulation with just

the TGF-b ligand (Figures 4D, 4E, 4F, 4G, 4H, and 4I). Under

both stimulation conditions, just with TGF-b or with TGF-b and

BMP, the signaling species targeted by the negative feedback loop

exhibits a pronounced transient response, while the other species

exhibits a more sustained response.

Robustness analysis
Our analysis reveals distinct variability in robustness among the

negative feedback network motifs (Figure 5). When considering the

peak species concentration (mp metric; Equation(1)) as the system

output, the ND network motif consistently displays low values of

the robustness measure R, indicating low robustness to parameter

perturbation under the two stimulation conditions studied, namely

stimulation with TGF-b only and co-stimulation with TGF-b and

BMP ligands, for both pS1S4n and pS2S4n species (Figure 5A). The

NF and TF network motifs lead to higher values of R, consistent

with an increase of the system robustness compared to that of the

ND one. Note that the R values are slightly different between the

pS1S4n and the pS2S4n cases with the stimulation of just TGF-b in

the case of NF and TF network motifs because they have been

computed with different realizations of the random values of each

of the parameters in the 4000 test parameter sets. As the number

of test parameter sets goes to infinity, the difference between these

values should vanish.

The biased A1, A2, C1, C2, S1, and S2 network motifs exhibit a

distinct pattern where the negative feedback loop increases the

robustness of the species it targets in each case. For example,

analyzing the pS1S4n maximum concentration as the model output

upon stimulation with TGF-b (Figure 5A, top row), our results

indicate that A1, C1, and S1 network motifs are more robust than

those where the negative feedback loop inhibits the Smad2

channel (A2, C2, and S2) and vice versa. Stimulating the system with

both TGF-b and BMP ligands results in lower values of the

robustness measure for the Smad1 channel (pS1S4n species) for all

network motifs when compared to stimulation with TGF-b alone,

A B C 

D E F 

G H I 

Figure 3. Model dynamics for stimulation with TGF-b. Simulation results upon single-ligand stimulation with TGF-b for the (A) ND, (B) NF, (C)
TF, (D) A1, (E) C1, (F) S1, (G) A2, (H) C2, and (I) S2 network motifs. The simulation results of pS1S4n, pS2S4n, and S7 are displayed as black solid lines,
black dashed lines, and red solid lines, respectively.
doi:10.1371/journal.pone.0083531.g003
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while the robustness of the Smad2 channel (pS2S4n species)

increases, but is less affected by co-stimulation.

Considering other metrics, specifically the time at which the

maximum concentration for the different species is reached (mt

metric; Equation(2)), results in a qualitatively similar system

robustness when compared to the mp metric for all network motifs

and stimulation conditions (Figure 5B). In the case of the signal

duration (md metric; Equation(3)), the robustness analysis reveals a

decreased robustness for the negative feedback loop, in contrast to

the behavior observed for the mp and mt metrics (Figure 5C). In this

case, the NF and ND network motifs display the highest robustness

values, while robustness decreases for the network motifs in which

the negative feedback loop inhibits the evaluated channel.

Sensitivity analysis
The results of the sensitivity analysis are shown in Figure 6,

Figure S1, and Figure S2 for the mp, mt, and md metrics,

respectively. For the peak species concentration metric mp, our

analysis reveals a high network-motif-independent sensitivity, as

given by a high value of the global sensitivity coefficients (Gkj

measure; Equation (9)), for multiple parameters, including the

synthesis and degradation rate constants of the R-Smads (ksyn,RS

and kdeg,RS) and Smad4 (ksyn,S4 and kdeg,S4) (Figure 6). Additionally,

the model is sensitive to the parameters governing the reversible

association of nuclear phosphorylated R-Smad with Smad4 (k10a

and k10d), nucleocytoplasmic shuttling of Smad4 (k14imp and k14exp),

and degradation of nuclear phosphorylated R-Smads (k15deg) for all

network motifs. The model’s sensitivity for the Smad7-related

parameter values, namely k20a,1T, k20a,1B, k20a,2, klip,1, klip,2, KA,1,

and KA,2, is motif-dependent. Specifically, the model is more

sensitive to these processes if the negative feedback loop inhibits

the evaluated channel. For example, when stimulating the system

with TGF-b alone and assessing the pS1S4n species as the output,

this set of parameters has a higher sensitivity coefficient in the

network motifs A1, C1, and S1 than in the network motifs A2, C2,

and S2.

For the metric mt that characterizes the time at which the peak

concentration is reached, the sensitivity analysis shows minimal

differences in the sensitivity coefficients among all parameters

(Figure S1). Nevertheless, it reveals a higher sensitivity for several

groups of parameters in the network motifs where Smad7 does not

inhibit activation of the evaluated species (e.g. A2, C2, and S2

network motifs are more sensitive than A1, C1, and S1 network

motifs to perturbations of k10a, k10d, and k15deg parameters when

evaluating the pS1S4n species). This effect is consistent with the

results of the robustness analysis, in the sense that increases in the

robustness measure R correspond with a decreased sensitivity

coefficient.

The sensitivity analysis for the signal duration metric md

indicates that the model exhibits a higher sensitivity to parameter

perturbation when the negative feedback loop inhibits the

evaluated species (Figure S2), which is consistent with the

robustness analysis results for this metric. This effect is most

significant for the Smad7-related parameters k20a,1T, k20a,1B, k20a,2,

klip,1, klip,2, KA,1, and KA,2.

A B C 

D E F 

G H I 

Figure 4. Model dynamics for stimulation with TGF-b and BMP. Simulation results upon co-stimulation with TGF-b and BMP for the (A) ND,
(B) NF, (C) TF, (D) A1, (E) C1, (F) S1, (G) A2, (H) C2, and (I) S2 network motifs. The simulation results of pS1S4n, pS2S4n, and S7 are displayed as black
solid lines, black dashed lines, and red solid lines, respectively.
doi:10.1371/journal.pone.0083531.g004
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Discussion

The TGF-b signal transduction pathway is extensively regulated

to effectively control multiple cellular responses [2,6]. Here, we

have characterized the effects of a key regulatory mechanism that

controls the potential attenuation of the signal through a Smad7-

dependent negative feedback loop. Our results show that

variations in the network design of this negative feedback loop

result in distinct dynamic behavior and response to parameter

perturbation. Specifically, repression by the negative feedback

loop results in a transient signal response, while the absence of this

feedback results in a more sustained behavior. As regulation of

gene expression by pS1S4n and pS2S4n is linked to this signaling

property, requiring a prolonged signal to maximally activate

transcription [47], negative feedback may be a central control

mechanism for determining the long-term cellular response to

ligand stimulation.

The robustness analysis for the mp and mt metrics revealed that

the presence of the negative feedback loop correlated with

increased robustness for the signaling channel it represses.

However, our results also show that the three signaling metrics

we examined do not respond identically to parameter perturba-

tion. In particular, the robustness of the signal duration metric

decreases for the species repressed by the negative feedback loop.

With negative feedback, the repressed signal exhibits a transient

response with shorter signal duration than the sustained response

of the non-repressed signal. This type of transient response is

characteristic of cancer cells [48]. Our results suggest that the

shorter signal duration is more significantly affected by parameter

perturbation than the greater signal duration exhibited by the

species without negative feedback repression. Together, the three

metrics show that the robustness of the system to parameter

perturbation is dependent upon the specific negative feedback

network motif, although in a different manner for the mp and mt

metrics than the md metric.

Similar to the robustness analysis, the sensitivity analysis shows

varied results for the three signal metrics. Assessing the peak

species concentration (mp metric) shows an increased sensitivity

coefficient for the Smad7-based processes when the negative

feedback loop represses the evaluated species. However, the

robustness analysis for this metric shows an increased robustness

with the addition of a negative feedback loop, revealing that, while

the negative feedback loop itself may be sensitive to perturbation,

its impact on the complete system results in additional robustness.

With the mt metric, the specific negative feedback network motif

has a minimal effect on the sensitivity coefficients for the majority

of parameters. However, with several parameters (ksyn,RS, kdeg,RS,

k10a, k10d, and k15deg), the sensitivity analysis shows as well that the

negative feedback loop establishes resistance to perturbations by

lowering the sensitivity coefficient compared with the network

motifs lacking repression of the evaluated species.

These results, as a whole, show that the robustness and

sensitivity properties depend both on the specific network motif

and on the signal property of interest. This type of behavior is

typically observed in other systems. For instance, in the classical

example of bacterial chemotaxis [49], it was observed that steady-

state behavior and adaptation time are not robust, while the

precision of adaptation is robust to changes in protein concentra-

tions. In our case, as in the case of bacterial chemotaxis, the

adaptation time, or signal duration, is not a robust property. The

general rule is that an increase in robustness against some

perturbations will be counterbalanced by a decrease of robustness

against other perturbations [50]. This rule is epitomized by the

Bode integral formula, which represents conservation of sensitivity

of a negative feedback system along the frequency axis [51,52].

The available experimental data indicates that the negative

feedback loop exists in several forms in different cell lines. In

particular, bovine aortic endothelial cells exhibit an auto-

regulatory negative feedback loop in which Smad7 is expressed

through activation of the Smad1 channel and inhibits further

activation of the same R-Smad channel [26]. In the mouse

myoblast cell line C2C12, TGF-b does not activate BMP-

responsive reporter genes [28], suggesting that the ligand induces

transcriptional activity through the Smad2 channel. Results from

experiments tracking the dynamics of R-Smad phosphorylation

[27] and from computational modeling of the signaling behavior

in these cells [25] suggest that Smad7 primarily inhibits activation

of the Smad1 channel. Together, these findings provide evidence

that C2C12 cells possess a cross-regulatory negative feedback loop
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Figure 5. Robustness analysis. Each negative feedback network
motif is assessed for its robustness by computing the value of the
robustness measure R (Equation(5)) upon stimulation with TGF-b alone
or together with BMP. To represent the model output, we use the (A)
peak species concentration (mp metric; Equation(1)), (B) time of the
peak species concentration (mt metric; Equation(2)), and (C) signal
duration (md metric; Equation(3)) as metrics of the pS1S4n and pS2S4n

signal response.
doi:10.1371/journal.pone.0083531.g005
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in which Smad7 is expressed through the Smad2 channel, but

inhibits the Smad1 channel when the pathway is activated with

TGF-b. In contrast, human keratinocyte HaCaT cells exhibit a

high basal concentration of Smad7 that is minimally affected upon

treatment with TGF-b [29].

Our results are important because many components of the

TGF-b signaling pathway are mutated, downregulated, or

overexpressed in multiple diseases, such as the TGF-b receptors,

R-Smads, Smad4, and Smad7 proteins in a variety of cancer types

[3]. The sensitivity analysis captures the effects of these

perturbations, quantifying how the model responds to variations

in the pathway reactions. Indeed, our results from the sensitivity

analysis identify several processes with high sensitivity coefficients,

which are often dysregulated in cancer cells. For instance, missense

mutations in the Smad4 gene found in pancreatic cancer cells are

associated with reduced nuclear translocation [53]. The model

describes nuclear translocation of Smad4 with the rate constants

k14imp and k14exp, both of which display among the highest

sensitivity coefficients with the mp and md metrics. Furthermore,

missense mutations in the Smad2 and Smad4 genes occurring in

colon and pancreatic cancer cells, respectively, have been reported

to inhibit association of Smad2 with Smad4 [54]. The sensitivity

analysis results show high sensitivity coefficients for the rate

constants governing this process as well, where k10a and k10d

regulate the nuclear association of phosphorylated Smad2 and

Smad4. Notably, the sensitivity coefficients for k10a and k10d are

dependent on the specific negative feedback network motif, which

is most significantly observed with the mt metric, where network

motifs lacking inhibition of the evaluated species display a higher

sensitivity coefficient than those where the negative feedback loop

log
10 (G

) 

TGF-  TGF-  + BMP 

pS1S4n pS2S4n pS1S4n pS2S4n 

Figure 6. Sensitivity analysis for the peak species response metric mp. We compute the sensitivity coefficient Gkj
(Equation (9)) for each

model parameter for the nine negative feedback network motifs upon stimulation with TGF-b alone or together with BMP. We use the metric mp

(Equation(1)) to assess the signal response of pS1S4n and pS2S4n. Empty spaces (white rectangles) indicate a sensitivity coefficient equal to zero or a
parameter value set to zero from Table 2.
doi:10.1371/journal.pone.0083531.g006
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inhibits the evaluated species. This correlation between model

sensitivity and pathway mutation indicates that our analysis may

be used to elucidate which processes are involved in the transition

from normal to pathological states in a variety of cell types that

exhibit the different negative feedback network motifs.

The results of the sensitivity analysis additionally provide a tool

for determining novel targets in the pathway for therapeutic

intervention. Potential therapeutic targets are defined as those

where perturbations significantly affect the signaling response,

such that administering treatment will maximally impact the

dynamic behavior. By applying this analysis to the different

negative feedback network motifs our results can be used to

identify the therapeutic potential for targeting processes in a

variety of cell types.

Supporting Information

Figure S1

Sensitivity analysis for the time of the peak species
response metric mt. We perform the same analysis described

in the caption of Figure 6 using the mt metric (Equation (2)) to

assess the signal response of pS1S4n and pS2S4n.

Figure S2

Sensitivity analysis for the signal duration metric md.
We perform the same analysis described in the caption of Figure 6

using the md metric (Equation (3)) to assess the signal response of

pS1S4n and pS2S4n.

Text S1

Supporting Text S1 file.

File S1

SBML model representation of the TGF-b pathway. The

SBML file, built using CellDesigner 4.2, corresponds to the TF

network motif with its parameter set and initial conditions.
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