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The postgenomic era, as manifest, inter alia, by proteomics, offers unparalleled opportunities for the efficient discovery of safe,
efficacious, and novel subunit vaccines targeting a tranche of modern major diseases. A negative corollary of this opportunity is
the risk of becoming overwhelmed by this embarrassment of riches. Informatics techniques, working to address issues of both data
management and through prediction to shortcut the experimental process, can be of enormous benefit in leveraging the proteomic
revolution. In this disquisition, we evaluate proteomic approaches to the discovery of subunit vaccines, focussing on viral, bacterial,
fungal, and parasite systems. We also adumbrate the impact that proteomic analysis of host-pathogen interactions can have. Finally,
we review relevant methods to the prediction of immunome, with special emphasis on quantitative methods, and the subcellular
localization of proteins within bacteria.

INTRODUCTION

Genomics has changed the world. Or at least, it has
changed the intellectual landscape of the biosciences: its
implications suggest that we should be able to gain access
to information about biological function at a rate, and
on a scale, previously beyond our wildest expectations. As
ever, our hopes and dreams are yet to be fulfilled. What we
can conceive of still far exceeds what can actually be done
at the laboratory bench. Experimental science is playing
catch up, developing so-called postgenomic strategies that
seek to exploit the opportunities created by the informa-
tion explosion implicit within genomics. Biology is at risk
of being overcome by a bewildering deluge of new data
on a hitherto unknown scale and of a hitherto unknown
complexity. This is clearly both a blessing and a curse; the
trick is to tease out useful information from the data with
the hope that this will, in its turn, yield first knowledge,
and then, ultimately, true understanding and the ability
to efficiently manipulate biological systems.

Postgenomic approaches are legion. They include ge-
nomic sequencing, transcriptomics, proteomics, and the
analysis of protein-protein interactions, as well as ap-
plied techniques, such as the high-throughput screen-
ing (HTS) for drug candidates, and integrated informatic
strategies, including structure-function prediction. The
key underlying factor here is parallelization: the ability
to address specific questions not on an individual ba-
sis, through complex, intricate experiments, but en masse
through elegantly conceived procedures that examine not
a single biological object but hundreds, thousands, even
hundreds of thousands. This is the area of functional
genomics. Functional genomics relies implicitly on high-

throughput techniques for measuring the mRNA (the
transcriptome), protein (the proteome), and metabolite
(the metabolome) components of cells, tissues, organs,
and whole organisms.

We pause, momentarily, to examine some defini-
tions. The word orismology, which, in English, dates to
1816, is the science of making and defining terms, es-
pecially scientific and technical ones. The need for con-
stant and reliable definitions of terms in science is clear
but is seldom realized. Orismology, the science of defin-
ing technical terms, seeks to address issues such as these.
However, as in many areas of life, that which is appar-
ently rigorous is often anything but risible. The mean-
ings of words drift and vary with time and take on new
(sub)discipline-dependent meanings. While this is natu-
ral and unavoidable, it can, at times, become obfuscat-
ingly discombobulating. We have seen that with the rise of
-ologies (psychology, sociology, even lipocalinology [1])
and, more recently, with the explosions of -omes and
-omics. The now famous, or perhaps infamous, web-
site http://www.genomicglossaries.com/content/omes.asp
lists literally hundreds of different -omes and -omics.
From the genome, countless other -omes have arisen, and
within this -omic revolution there are many many con-
flicting definitions, some are useful, some are not. For the
sake of completeness, we list a few of the most useful and
the most germane to our present discussions.

The genome is the DNA sequence of an organism. The
number of sequenced genomes is now large and ever in-
creasing. In the space of a few years the sequencing of a
genome has gone from a transcendent achievement ca-
pable of stopping the scientific world in its tracks to the
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almost mundane, worthy of only a minor mention in a
second line journal. In future times, genomic sequenc-
ing may simply become a workaday laboratory technique.
Within a decade it may become the stuff of postgraduate
students’ theses; undergraduates might need to sequence
a dozen to complete their final year projects.

Transcriptome is the complement of messenger RNAs
(mRNAs) transcribed from a genome. This is a dynamic
set of proteins, unlike the genome, which is constantly
changing with time in response to the conditions ex-
perienced by the cell, hence the development of tran-
scriptomics: the analysis, typically using MicroArrays, of
mRNA expression profiles.

Proteome is the protein complement of a cell corre-
sponding to the genome and transcriptome described
above. Proteomics is the science that has developed to
study the proteome. The proteome is, like the transcrip-
tome, highly dynamic. Conceptually, the proteome is bi-
ology in a way that neither the genome nor transcriptome
could ever be. Proteins make nature function. Genes, as
nucleic acid memes (if one is to believe Richard Dawkins
and his ilk), are the essence of inheritance, but it is only
through the medium of the protein world, that they are
able to propagate themselves.

Metabolome is the complement of all low molecular
weight molecules present in a cell. As before, the state
of the metabolome is highly dependent on the particular
physiological or developmental state or the environmental
challenge of the cell. We can usefully distinguish between
primary and secondary metabolites. Primary metabolites
are the intermediates (ATP, amino acids, membrane phos-
pholipids, etc) in the key metabolic pathways of the cell.
Secondary metabolites, at least in the context of mi-
crobial natural products, are compounds with no ex-
plicit role in the internal metabolic economy of the mi-
crobe that biosynthesized them. One argument predi-
cates their existence within an evolutionary rationale: sec-
ondary metabolites enhance the survival of their producer
organisms by binding specifically to macromolecular re-
ceptors in competing organisms with a concomitant phys-
iological action. As a consequence of this intrinsic capac-
ity for interaction with biological receptors, made man-
ifest in their size and complexity, natural products will
be generally predisposed to form macromolecular com-
plexes. On this basis, and within a drug discovery context,
one might expect that natural products would possess a
high hit rate when screened and a good chance of high
initial activity and selectivity.

Focussing on the size and complexity of the proteome,
we continue by briefly looking at the vexed question of
gene number. Pre-genome estimates of the size of the
human genome have been revised down from an initial
“best-guess” figure in excess of 100,000. As this review
is being written, estimates of gene number are converg-
ing from a preliminary postgenomic estimate of 30,000–
40,000 to a more realistic 65,000–70,000. This may also
prove to be an underestimate. The proteome is, how-
ever, much larger, principally through the existence of

splice variants [2], but also due to the existence of pro-
tein splicing elements (inteins) which catalyze their own
excision from flanking amino acid sequences (exteins)
thus creating new proteins in which the exteins are linked
directly by a peptide bond [3]. Other mechanisms in-
clude posttranslational modifications, cleavage of precur-
sors, and other types of proteolytic activation. Some es-
timates place the estimated number of proteins encoded
by the human genomes to be two to three orders of
magnitude higher than the number of genes. In certain
senses at least, the proteome is, as we have said, also
much more dynamic than the genome; it varies accord-
ing to the cell type and the functional state of the cell.
In addition, the proteome shows characteristic pertur-
bations in response to disease and external stimuli. Pro-
teomics, as a scientific discipline is relatively new, but is
based upon rather older techniques, combining sophisti-
cated analytical methods, such as 2D electrophoresis and
mass spectrometry (MS), with bioinformatics. Thus pro-
teomics is the study of gene expression at a functional
level.

Returning once more to definitions, a comprehensive
description of the proteome provides not only a catalogue
of all proteins encoded by the genome but also data on
protein expression under defined conditions, the occur-
rence of posttranslational modifications and, importantly,
the distribution of specific proteins within the cell [4].
A forerunner to the current proteome paradigm was the
concept adumbrated by Anderson and Anderson [5]: the
“human protein index.” They wished to characterize all
the proteins expressed by a cell using high-resolution two-
dimensional electrophoresis (2DE). They thought that the
human protein index would prove useful in clinical chem-
istry, pathology, and toxicology. In its proteomic form,
this conceit has proved all too true.

The biome, and hence biomics, is an overall term en-
compassing all of these definitions and including infor-
matic approaches as well. An oft-neglected part of the
biome is the immunome: the set of antigenic peptides, or
possibly immunogenic proteins, within a microorganism,
be that virus, bacteria, fungus, or parasite [6, 7]. There
are alternative definitions of the immunome that also in-
clude immunological receptors and accessory molecules,
but in what follows we will restrict discussion to this
initial definition. It is also possible to talk of the self-
immunome, the set of potentially antigenic self-peptides.
This is clearly important within the context of, for ex-
ample, cancer (the cancer-immunone) and autoimmunity
(the autoimmunome), which affect about 30% and 3% of
the global population, respectively.

Many -omes are virtual, rather than literal, biological
entities. For example, the recently christened chemome,
or chemizome, may be defined as the set of all artifi-
cially created or natural products that interact with bi-
ological targets in the organism. In practice, this set is
not bounded. It is not possible to ever derive or find
all the molecules that are encompassed by this defini-
tion. In contrast, the immunone, at least for a particular
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pathogen, can be realized only in the context of a particu-
lar, defined host.

The nature of the immunome is clearly dependent
upon the host as much as it is on what we will, for conve-
nience, call the pathogen. This is implicit in the term anti-
genic or immunogenic. A peptide is not antigenic if the
immune system does not respond to it. A good example
of this is the major histocompatibility complex (MHC)
restriction of T-cell responses. A particular MHC allele
will have a peptide specificity that may, or may not, over-
lap, with other expressed alleles, but the total specificity of
all individual alleles will not cover the whole possible se-
quence space of peptides. Thus peptides that do not bind
to any of an individual’s allelic MHC variants cannot be
antigenic within a cellular context. The ability to define
the specificity of different MHCs computationally, which
we may call in silico immunomics or in silico immuno-
logical proteomics for want of a more succinct term, is an
important, but eminently realizable goal of immuninfor-
matics, the application of informatics techniques to im-
munological macromolecules, a newly emergent subdis-
cipline within bioinformatics. We will return to this key
topic later.

From the perspective of human disease, a proper un-
derstanding of the immune system is vital. Indeed, the
immune system has evolved to combat the threat of in-
fectious disease. Disease is, arguably, the most significant
cause of death worldwide, but it is also the greatest source
of preventable human mortality, in that, and in contrast
to other causes of death, it can be attacked systemati-
cally through the use of biological and chemical entities,
such as vaccines and drugs, and through the efforts of
surgeons and physicians, and through improvements in
public health, drinking water, and sanitation. Although
it may be argued quite cogently that the greatest benefit
to man has come through improved public health, it is
clear that drugs and vaccines have made a large contribu-
tion. In contrast, other than by dispensing of drugs and
other therapies, the contribution made to public wellbe-
ing by trained medics, though more direct, is also rela-
tively small.

Immunology is also pivotal in other areas of human
disease. Cancer is often a prey to immunological mech-
anisms, and the augmentation of the immune response
to carcinomas and cancer antigens is a vital area for fu-
ture development. Likewise, the inappropriate response of
the immune system to self-proteins, as manifest in allergy
and, more importantly, in autoimmune diseases, is an
area where immunotherapy and immunomodulators can
be effective. The discovery and development of vaccines
is an important component of publically funded health-
care programs throughout the developed and under-
developed worlds. Most Western countries have a well de-
veloped or long standing centres devoted to its study. The
Edward Jenner Institute for Vaccine Research is the United
Kingdom’s contribution to this worldwide movement.

From a wealth creation viewpoint, rather than from a
purely humanitarian one, the world human vaccine mar-

ket is currently only in the region of $5 billion. One must
put this figure against the total worldwide annual sales for
all human therapeutic drugs of about $350 billion and an
annual global investment in R&D of around $30 billion.
To put these large numbers into context, this $350-billion
figure is comparable to the yearly gross national product
of Taiwan, the Netherlands, or Los Angeles County. How-
ever, sales in the vaccine market are increasing at around
12% per annum compared to a yearly rate of about 5%
for drugs. Likewise, increased concern by consumers re-
garding both chemical-free food and environmental and
animal welfare has led to an increased interest in vaccines
within the farm livestock and companion animal health
markets, which worth $18 billion and $3 billion respec-
tively [8]. In the aftermath of AIDS, antibiotic resistance,
and the threat from bioterrorism, interest in vaccines has
increased dramatically from, say, 10–15 years ago when
the vaccine industry was floundering. In 1990, there were
about 10 companies in the area worldwide, compared to-
day to over 100, although the majority of current vac-
cine production is still in the hands of only four big play-
ers. The design of therapeutic vaccines (pharmaccines) is,
then, an active area of research. Novel ways to rationalize
and accelerate vaccine discovery are desperately needed
however. Advances in molecular biology and computer
science are now accelerating candidate vaccine antigens
discovery rates.

To bring this introduction full circle, proteomics is
poised to make a significant contribution to the elab-
oration of the immunome, and thus vaccinology. Pro-
teomics is a pivotal discipline, or more accurately dis-
ciplines, within functional genomics. It is an umbrella
term for the large-scale analysis of proteins. In fact, pro-
teomics encompasses many different methods seeking to
identify the protein complement of a cell or tissue at a
given time. These include comparing apparent differences
between treated and untreated or between normal and
diseased samples, the determination of posttranslational
modification (the most common of which are glycosyla-
tion and phosphorylation), and the large-scale identifica-
tion of protein-protein interactions. We will begin with a
review of experimental approaches to proteomic vaccinol-
ogy and then we will present an analysis of computational
approaches to vaccinology.

PROTEOMICS IN VACCINOLOGY

The discovery of vaccination is generally attributed
to Edward Jenner (1749–1823). However, at the begin-
ning of the 18th century, inoculation against smallpox
had been brought to England by Lady Mary Wortley
Montagu (1689–1762). Lady Mary, who is, perhaps, bet-
ter known to history as a poet and witty correspon-
dent, was born in London, the eldest child of Evelyn
Pierrepont, Earl of Kingston. In 1716, after the acces-
sion of the first Hanoverian monarch George I (1660–
1727) on the death of the last Stuart monarch Queen
Anne (1665–1714), Lady Mary’s husband was appointed
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Ambassador to Turkey. The Wortley Montagu’s long and
dangerous transcontinental journey, which was under-
taken in the dead of winter was considered something
of an achievement at the time. Constantinople was full
of wonders which Lady Mary, unlike so many European
wives, set out to explore and understand, immersing her-
self in all Turkish things, even learning the language. She
visited the zenanas, meeting the upper class women se-
cluded there, whom she came to admire, and absorbed
Turkish customs. Her record of her experiences, Turkish
Embassy Letters, is a primary source for historians of this
period.

The Wortley Montagu’s visit occurred during the reign
of the sophisticated, cultured, and tulip-obsessed ottoman
sultan Ahmed III (1667–1736). His reign marked some-
thing of a renaissance for the Ottoman Empire after its
relative decline during the 17th century. Influenced by
his son-in-law, or damut, vizier Ibrahim Pasha Kulliyesi,
Ahmed III increasingly looked to the West, creating the
first fire brigade and printing presses in Constantinople
and also establishing the Empire’s first foreign embassies.
Ahmed III reigned from 1703 to 1730, the so-called Tulip
Era, or lale devri, a period of rare hedonistic extravagance
centering on the sultan’s love for the tulip.

Wortley was recalled due to a change in English rela-
tions with Turkey, and the family appeared in London in
the fall of 1718. Lady Mary discovered that the Turks in-
oculated healthy children with a weakened strain of small-
pox in order to confer immunity from the more virulent
strains of the disease, and determined to bring the prac-
tice to England. Lady Mary had her own son and daughter
inoculated against smallpox, which had killed her brother
and left her scarred by her 1715 bout, and thus introduced
the custom to the nobility. However, Lady Mary struggled
to interest the English medical establishment in inocula-
tion. Their main objection seems to have been to being
told by a woman what it was their business to know. While
it has become fashionable among feminist revisionists to
credit Lady Mary, rather than Jenner, with the discovery
of vaccination, this is hardly accurate. While it is impor-
tant to recognize her contribution, it is important as well
to recall that protective immunity has been recognized for
several millenia at least; in 430 BC Thucydides, princi-
pal historian of the Peloponnesian War, noted that during
an Athenian plague only those who had recovered from
the plague were able to nurse the sick without themselves
falling ill. During the 15th century, both the Chinese and
Turks deliberately induced immunity by inhaling dried
crusts from smallpox pustules or by inserting the crusts
into cuts in the skin.

After a period of first training in London and then
working for a time as an army surgeon, Jenner, a na-
tive of Gloucestershire, spent his entire career working
in the county as a country doctor. Jenner had noted that
milkmaids who had contracted cowpox, a related virus,
seemed to be immune to smallpox. On 14th May 1796,
he introduced the fluid from a cowpox pustule he used
to build protective immunity against smallpox in his gar-

dener’s 8-year old son. Jenner then infected him with
smallpox. The boy did not become ill. Later, Louis Pas-
teur (1822–1895) adopted “Vaccination,” the word Jen-
ner had invented for his treatment (from the Latin vacca,
a cow), for immunization against any disease. Pasteur
also made important empirical advances in vaccination,
discovering that chickens injected with attenuated fowl
cholera bacteria survived an infection with the virulent
form. Later, Pasteur immunized sheep with attenuated
anthrax bacillus and challenged them with virulent an-
thrax and showed that the attenuated anthrax protected
the sheep from disease, and in 1885 Louis Pasteur saved
the life of a boy bitten by a rabid dog by administering a
rabies vaccine he had created. It is now generally accepted
that mass vaccination, taking account, as it does, of the
principal of herd immunity, is one of the most effective
prophylactic approaches to the treatment, or rather, pre-
treatment, of infectious disease.

However, vaccination has, until relatively recently,
been a highly empirical science, relying of poorly under-
stood, nonmechanistic approaches to the development of
new vaccines. As a consequence of this, relatively few ef-
fective vaccines have been developed and deployed during
most of the two centuries that have elapsed since Jenner’s
work. This has been prompted by, amongst other things,
worries over the emergence of antibiotic resistance and,
latterly, bioterrorism.

Vaccinology is slowly evolving into immunovaccinol-
ogy, a discipline that uses the rapid advances in immuno-
logical understanding extant within the last few decades to
effect a paradigm shift in thinking within the discipline.
Reverse immunogenetic approaches offer the tantalizing
prospect of short cutting the process of vaccine discov-
ery and also producing safer and more effective vaccines.
Postgenomic approaches, of which proteomics is amongst
the most prominent, are another broad tranche of tech-
niques which offers much in this context.

Antigenicity or immunogenicity manifests itself
within both humoral immunology (mediated primarily
through the binding of whole antigens by antibodies) and
cellular immunology (mediated by binding of proteolyti-
cally cleaved peptides). In the main, we will concentrate
our attention on that part of the adaptive immune re-
sponse that is mediated by T cells. Within the context
of cellular immunology, the immunogenicity of peptides
strongly depends on their ability to bind to MHC and
to be recognized subsequently by T-cell receptors (TCR).
Traditionally, T-cell epitopes, the small peptide fragments
of whole proteins that cellular immunity recognizes, have
been identified by examining the responses of T cells to
sets of overlapping peptides generated from target anti-
gens. This is adequate, if labour intensive, for the study
of a single, small protein, but the experimental over-
head becomes prohibitive for the study of proteomes from
large viruses, bacteria, or parasites, which may contain
thousands, if not tens of thousands, of gene products.

The application of proteomics, perhaps in combi-
nation with transcriptomic approaches, together with
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bioinformatics, should allow us to reduce the virtual set of
open reading frames (ORFs) apparent within a genome.
This set might number a few hundred for viruses, a few
thousands for bacteria, or a few tens of thousands for
parasitic microorganisms. Leverage of these technologies
could reduce this to a manageably short list of candi-
date vaccines, perhaps numbering no more than a few
dozens. Such candidates would then require channeling
through a set of subsequent processes including recom-
binant expression, purification, and testing for immuno-
genicity and protective efficacy [9].

Hitherto, proteomics has been seen as a primarily an-
alytical science, which combines multidimensional poly-
acrylamide gel electrophoretic techniques with sensitive
biological MS, supported by rapidly growing protein and
DNA databases, to effect the high-throughput identifica-
tion of protein populations from different cell types or
cells experiencing different environmental conditions. As
we have said, the unambiguously identification of a pro-
tein is a prerequisite to their full functional investigation.
This identification is usually effected through matrix-
assisted laser desorption/ionization mass spectrometry
(MALDI-MS), which is one of the current analytical
methods for linking sequence databases to gel-separated
proteins. There are at least two main MALDI-MS iden-
tification methods: peptide mass fingerprinting (PMF)
and post-source decay analysis. PMF identifies proteins
by comparison of experimentally and theoretically de-
rived profiles of proteolytically digested peptides. Because
both experimental data and sequence databases are lim-
ited, there usually remains some ambiguity with regard to
posttranslational modification(s) and intrinsic sequence
variation. Moreover, the role of electroblotting and Ed-
man N-terminal sequencing as tools in protein identifica-
tion should not be overlooked. As proteins derived from
the same gene may be largely identical, and might dif-
fer only in limited yet functionally important details, the
identification of proteins must not only pinpoint numer-
ous proteins en masse but also differentiate between close
relatives.

But obviously proteomics is more than a few tech-
niques, however sophisticated. Indeed, it is a cohesive and
overarching intellectual environment, replete with ideas,
many now beginning to yield advanced, if less established,
techniques. The cutting edge of proteomics has much to
offer.

Other techniques, such as the yeast two-hybrid sys-
tem [10], also cower under the proteomic umbrella, but
are less relevant to vaccine discovery, and so are excluded
from our discussion. Perhaps, the most exciting array
of emergent proteomic techniques are the so-called pro-
tein arrays [11], where recombinant proteins can be ar-
rayed to study protein-ligand and protein-protein inter-
actions. Based on the rationale that altered abundance
or a change in structure of proteins can lead to disease,
and although protein arrays are currently more expensive
and more technically difficult to produce than nucleotide
arrays, protein and antibody arrays are now generating

considerable excitement. Alternatively, arrays of protein-
specific antibodies can quantitate protein levels, analo-
gous to the detection of mRNA by microarrays [12]. It is
to be hoped that as protein arrays become more sophis-
ticated, they will impact on infectious disease research by
profiling sera and body fluids to discover prognostic and
diagnostic markers of particular infections.

The identification of antigenic or immunogenic pro-
teins as putative whole protein subunit vaccines is a key
goal of immunovaccinology. It offers the hope of elicit-
ing significant responses from both humoral and cellu-
lar immune systems, far exceeding the efficacy of pep-
tide vaccines, while avoiding potential toxicity problems
associated with whole microbe vaccines [13]. Before we
continue, however, we must raise a minor caveat: pro-
teomics is, after all, only one part of a much larger postge-
nomic initiative. While our current focus will be on the
role of proteomics in immunovaccinology, it is as well
to note that it is a complement, rather than a replace-
ment, for other like-minded technologies, such as ge-
nomics and transcriptomics. In order to maximize the po-
tential didactic benefit of reading this review, it should
be read in conjunction with other papers which cover
other postgenomic techniques as applied to close related
areas [12, 13, 14, 15, 16, 17, 18]. In what follows, we will
concentrate, on viral, bacterial, fungal, and parasite pro-
teomics, as well as host-pathogen interactions, largely, but
not exclusively, within the context of vaccinology. How-
ever, we specifically omit discussion of autoimmune dis-
ease, cancer, and cancer antigen proteomics. These are
primarily host-only proteomics that is clearly beyond our
current scope.

Viral proteomics

As we will see in later sections, proteomics of bacte-
rial systems is now well advanced, as cancer proteomics
is, a subject we will adumbrate but not describe in great
detail. By contrast, direct analysis of viruses has been
rather limited. Mass spectrometry has long been used
to increase our understanding of structure and function
in viral proteins: being used to identify posttranslational
modifications and mutants, and characterize individual
capsid proteins. For example, VP6, the major structural
protein of rotavirus, which makes up its inner capsid,
has been studied recently using MALDI-TOF and elec-
trospray ionization mass spectrometry [19]. Emslie et al
were able to differentiate serovars of the virus and identify
a number of posttranslational modifications, including
the N-terminal acetylated methionine and deamidated
ASP107. Other mass-based approaches, combined with
time-resolved proteolysis (mass mapping), have revealed
the dynamic nature of viral particles in solution [20].
More recently, Yao et al have used a novel isotope labelling
approach, based on the differential incorporation of 18O,
to investigate differences between the proteomes of two
serotypes (Ad5 and Ad2) of adenovirus [21].

Most other proteomic studies have examined host-
virus interactions. Currently, our understanding of the
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effects of virus infection on the proteomes of infected cells
is poor. Toda et al profiled proliferative B-lymphoblastoid
cell lines infected with Epstein-Barr virus using proteomic
techniques and identified a spot, corresponding to the 16-
kd protein phosphoprotein stathmin, that decreased sig-
nificantly in immortalized cells [22]. Diaz and cowork-
ers [23, 24] examined ribosomal modifications induced
by herpes simplex virus type 1. Comparison of the highly
basic ribosomal protein maps from infected and nonin-
fected cells indicated that virus infection induces unusual
phosphorylation of proteins of the small ribosomal sub-
unit, including S2 and S3a, and the large subunits, includ-
ing protein L30. Their most significant observation was
the permanent phosphorylation of ribosomal protein S6,
which plays an important role in controlling the transla-
tion of mRNAs that code for components of the transla-
tion apparatus.

In a proteomic analogue of transcriptomic analysis,
Rodriguez et al [25] used electrophoresis to examine pro-
tein expression patterns in Vero infected with African
swine fever virus (ASFV) attenuated strain BA71V and
porcine alveolar macrophages cells treated with the ASFV
virulent strain E70. The resultant data sets, for nonin-
fected cells, included 177 basic and 818 acidic polypep-
tides from the macrophage and 1,127 acidic and 271 ba-
sic polypeptides from the Vero cell. Comparison of in-
fected and noninfected proteomes indicated that ASFV
infection shuts off protein synthesis for 65% of cellu-
lar proteins, while a small number of proteins—28 pro-
teins (macrophages) and 48 proteins (Vero cells)—show a
greater than 2-fold increase in expression.

Bacterial proteomics

In the last decade, rapid advancements in sequencing
technology have lead to the completion of a whole tranche
of bacterial genomes. Two main routes to bacterial ge-
nomics have been followed. The first was contingent upon
the generation of a physical map using cloned genomic
fragments in a phage or plasmid library, with the individ-
ual cloned fragments then being sequenced and aligned to
the physical map. The genome sequence of Escherichia coli
was determined in this way [26]. In the second, essentially
random fragments of the genome were cloned in plasmid
and phage libraries, with the inserts’ terminal sequences
then determined and the sequenced fragments assem-
bled into the complete genome sequence. This method-
ology has been used to determine the genome sequences
of many other bacteria including Haemophilus influen-
zae [27], Mycoplasma genitalium [28], Methanococcus jan-
naschii [29], and Helicobacter pylori [30]. The rest, of
course, is history. Presently, the number of completed or
partially completed sequencing projects is in the region of
hundreds, rather than tens, of genomes [31].

Once determined, analysis of genome sequences us-
ing gene prediction programs has identified large num-
bers of ORFs, many were previously unknown. While, it
proved possible to assign functions to proteins encoded
by the majority of ORFs on the basis of their homology

to extant sequences, a significant number of ORFs show
no obvious similarity to genes of known function. As we
have said, this has led to the development of many postge-
nomic strategies, such as proteomics, which seek to de-
termine function. Bacteria have special features, gener-
ally lacking in other organisms, for proteomic analysis,
that result from the abundance of information on their
genomes, their low levels of functional redundancy, their
relative simplicity of gene regulation, and their experi-
mental tractability.

Within the context of vaccinology, one of the key goals
of postgenomic research is to determine differences be-
tween two related microbes, or, more generally, cells, or
between the same microbe or cell under different growth
conditions. Proteomics approaches to this problem have
been applied, with particular success, to bacteria. This
work includes the determination of the proteomes for sev-
eral bacterial species: Salmonella typhimurium [32], Bacil-
lus subtilis [33], and Mycoplasma pneumoniae [34].

In another study, Chlamydia pneumoniae, an obli-
gate intracellular human pathogen that causes acute and
chronic respiratory tract diseases, was cultured in Hep-
2 cells and proteins from its infectious elementary bod-
ies were separated by two-dimensional gel electrophore-
sis [35]. Two hundred sixty-three protein spots were ex-
tracted in the pH range 3–11, these corresponded to 167
genes (about 15% of the genome) were identified. The
proteins identified included 31 hypothetical proteins in-
cluding several involved in the type III secretion appara-
tus, an important mediator of virulence amongst intracel-
lular bacteria, and others involved in energy metabolism.
In a related study, global gene expression in Chlamydia
trachomatis serovars A, D, and L2, each is responsible for
a different chlamydial disease, was investigated using pro-
teomics [36]. Seven hundred protein spots were detected,
from which 250 proteins, deriving from 144 genes, were
identified, again from the elementary body. As well as
again identifying proteins associated with the type III se-
cretion system, 25 hypothetical ORFs and 5 polymorphic
membrane proteins were also identified. Correlating pro-
tein expression with type of serovar suggests ways of tai-
loring the identification of specific antigens to particular
disease states.

In another study on different, but closely related,
bacteria, Piechaczek et al examined uropathogenic E
coli strain 536 and some of its mutants [37]. Differ-
ences in proteins expressed by wild-type E coli as well
as mutants 536delta102, 536-21, and 536R3, which dif-
fer in the presence or absence of different pathogenic-
ity islands with their genome, were examined using
two-dimensional polyacrylamide gel electrophoresis and
MALDI-TOF mass spectrometry. The presence of 39 in-
tracellular proteins with markedly different expression in
the different strains was determined, of which 34 could
be identified using MALDI-TOF-MS. Comparison of the
different derivatives indicated that proteomics was an ef-
ficient approach to studying global gene expression and
that the expression of various proteins including those
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encoded by many housekeeping genes is affected by the
presence of different pathogenicity islands. Malhotra et al
analyzed two strains, PAO1 and PD0300, of Pseudomonas
aeruginosa to determine proteins that are differentially ex-
pressed as a consequence of mucoid conversion, a process
implicated in chronic pulmonary infections in cystic fi-
brosis [38]. Using proteomic methods, they identified 6
proteins more abundant in mucoid strain PD0300, in-
cluding 2 implicated in alginate biosynthesis (AlgA and
AlgD), porin F, and DsbA (a disulfide bond isomerase).

We will now shift our emphasis and restrict our focus
to two particular pathogens: Mycobacterium tuberculosis
and H pylori. This pair of pathogens is chosen not only as
a demonstration of what has been done but also as an ex-
ample of what might easily be achieved for other bacterial
pathogens.

Every day, over 5700 people will die from tuberculosis
(TB), a chronic bacterial infection. It causes greater mor-
bidity than any other infectious disease and is the only
such disease to be declared a “global emergency” by the
World Health Organization, yet it is over 40 years since
a novel anti-TB drug was introduced. The intracellular
pathogen M tuberculosis, the causative agent of TB, in-
fects about one-third of the world’s population, around
1.7 billion people. Although most infected people do not
develop active TB, over 8 million people do develop the
disease annually. The rapid spread of AIDS, especially in
developing countries, has contributed to the recent sud-
den escalation in TB cases. This problem is exacerbated by
the increased spread of antibiotic- or multidrug-resistant
strains of M tuberculosis.

One approach to targeting TB is the development
of novel antibiotics. For example, in the genomic era,
a tranche of new drug targets, including mycobacterial
cell wall components, which are vital for bacterial viabil-
ity, and the metabolic pathways that biosynthesize them,
have become available. Vaccines are another important re-
search avenue. Only a few years ago, it was generally ac-
cepted that clinical trials of TB vaccines would not occur
for at least a decade, yet the first trials are now beginning.

A number of studies, building on early work [39, 40],
have begun to build a picture of the TB proteome, and
how pathogenic and nonpathogenic strains of TB differ.
For example, proteomic approaches can identify novel
genes not apparent from automated gene hunting within
genome sequences, as has been found for TB [41], where
the existence of six ORFs was shown by electrophoresis
and MS.

In a ground breaking study, proteomics was used
to compare the proteome of two nonvirulent vac-
cine strains of attenuated Mycobacterium bovis Bacillus
Calmette-Guerin (BCG) with two virulent strains of M
tuberculosis. M tuberculosis usually resides within the host
macrophage, but its mechanisms of survival are poorly
understood. Whatever evidence exists suggests that M bo-
vis BCG is both a deletion and regulatory mutant, yet re-
tains the ability to live within the macrophage and is im-

munoprotective, albeit at a relative low efficacy. This leads
to the identification of around 25 different proteins, which
are either differentially expressed or modified, from a set
of 2600 resolved protein spots out of the 3924 ORFs iden-
tified in the TB genome [42]. In a more recent study, the
same group has identified a number of putative virulence
factors and diagnostic markers of TB as well as interest-
ing candidates for vaccination against tuberculosis [43].
About 1800 distinct protein spots were identified by elec-
trophoresis, of which 56 spots were unique to virulent
strains and 40 spots to the attenuated strains. Twelve spots
specific for M tuberculosis were identified as proteins pre-
viously shown to be missing from M bovis BCG, while 20
M tuberculosis-specific spots were identified as genes not
previously thought to be deleted in M bovis BCG.

Some of these differences seen in this last experiment
may reflect differences in environment-dependent expres-
sion rather than differences between the complete pro-
teome. In order to investigate this, a number of workers
have examined the proteome of M tuberculosis and BCG
under different conditions. In an early study, Wong et al
[44] used proteomics to examine the effect of high and
low extracellular iron concentration on the expression of
genes in M tuberculosis. The expression of 15 proteins was
induced, and the expression of 12 proteins was decreased
under low-iron conditions. Mass spectrometry identified
10 proteins including fur and aconitase proteins, both of
which are regulated by iron in certain bacterial systems.
More recently, Monahan et al [45] have tried to define
differences in gene expression during the interaction of
BCG with macrophage cell line THP-1. They found that
BCG resident within macrophages express different pro-
teins than those expressed during growth in culture or un-
der conditions of heat shock. In particular, they identified
six abundant proteins with increased macrophage expres-
sion: Rv2623, InhA, GroEL-1, GroEL-2, alpha-crystalline,
and elongation factor Tu. In a related study, Betts et al
[46] have examined a laboratory model of the latent or
“persistent” form of TB that may mimic its nongrowing,
drug-resistant persistence in vivo. By using microarray
and proteome analysis, they investigated the response of
a nutrient-starved M tuberculosis and identified a number
of interesting target proteins. In an earlier study, Betts and
coworkers analyzed the recent clinical isolate CDC1551 M
tuberculosis with laboratory strain H37Rv, which has been
subject to in vitro passage, using standard proteomic tech-
niques [47]. Although the two strains demonstrate differ-
ent in vivo and in vitro phenotypes, visualization of 1750
protein spots indicated that their protein profiles were
very similar. Of the 17 protein spot differences, 7 were
unique to CDC 1551, 3 to H37Rv, and 2 showed increased
expression in H37Rv.

Identification of proteins by a strategy that targets the
differences between M tuberculosis and BCG, as well as
strains grown under different conditions, will help elu-
cidate the molecular basis of attenuation and the vac-
cine potential of BCG, as well as identifying TB-specific
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antigens, virulence factors, and diagnostic biomarkers
that can distinguish vaccination by BCG from infection
with M tuberculosis. Identification of potential subunit
vaccines is greatly facilitated using this spot-the-difference
technique or alternative proteomic approaches which fo-
cus on the identification of secreted proteins. In either
case, it is often necessary to undertake old-style serial ex-
periments where a set of potential antigens is expressed
by hand and evaluated as a source of B-cell or T-cell epi-
topes. The work of Covert et al indicates a rapid, parallel,
and facile postgenomic approach to this problem using
proteomics to elucidate immunodominant T-cell antigens
of pathogenic bacteria [48]. Subcellular protein fractions
from M tuberculosis were resolved into 355 and 299 frac-
tions of filtrate and cytosolic proteins. The reactions of
splenocytes from C57Bl/6 mice infected with M tubercu-
losis were used to analyze dominant T-cell responses from
these fractions, leading to the identification of 38 im-
munodominant fractions and 30 corresponding individ-
ual proteins. Many of these were previously known anti-
gens, but 17 were novel T-cell antigens.

We now turn to a discussion of H pylori. The human
stomach, on the basis of its low pH, has long been consid-
ered as an extremely hostile environment for the growth
of bacteria. However, this view has changed dramatically
with the discovery of the spiral microaerophilic bacterium
H pylori from the human gastric mucosa. A report by
Langenberg et al [49] began to unravel the mechanism
of pathogenicity demonstrated by H pylori, by observing
that it could produce large amounts of the virulence factor
urease, thus explaining urease activity observed earlier in
the mammalian stomach. This understanding, combined
with evidence that H pylori causes chronic and acute
gastritis, initiated interest into the prevalence and inci-
dence of this bacterial infection. Epidemiological studies
are consistent with the view that H pylori causes gastric
infection in half the human population worldwide and
over 80% of populations from developing countries. The
prevalence of H pylori in gastric ulcer disease is greater
than 90% and curing infection results in a cure for the
gastric ulcer.

The definition of H pylori surface proteins is of par-
ticular importance in vaccine discovery. Two-dimensional
electrophoresis combined with antibody detection and N-
terminal sequencing was used to detect H pylori antigens
[50, 51, 52]. Jungblut et al [53] studied H pylori whole cell
proteins extensively by 2DE and 152 proteins were identi-
fied by MS. A single patient’s serum was used to determine
antibody reactivity. A small number of antigenic proteins
were identified, leading the authors to suggest that several
antigens may be minor components in whole cell lysates
and therefore beyond detection in the absence of enrich-
ment. Sample fractionation and enrichment of proteins
using a chromatographic step prior to electrophoresis im-
proves the identification of proteins at a low expression
level. It may also improve the ratio of immunogenic versus
nonimmunogenic proteins in a complex antigen prepara-
tion. In some studies of H pylori proteins, large pH gra-

dients were used [51, 52, 53, 54] and basic proteins, com-
mon in H pylori, may have been poorly resolved. Isoelec-
tric focusing using a more appropriate pH gradient allows
greater resolution of proteins, and by 2DE immunoblot-
ting it is possible to identify specific antigenic proteins as
well as evaluate complex antigens. More precise identifi-
cation of such immunogens will be necessary, in order
to produce recombinant proteins, using either advanced
MS-MS sequencing or more classical N-terminal microse-
quencing.

In a study designed to directly address the direct iden-
tification of vaccine targets, Chakravarti et al analyzed
the H pylori genome [55] using both proteomic and ge-
nomic approaches. Two different approaches were taken
for the identification of a set of potential candidate vac-
cines. In the first, proteins were identified from outer
membrane preparations using proteomic technologies.
An outer membrane fraction, purified from disrupted
cells, was treated with Triton X-100, centrifuged, treated
with detergent, centrifuged again, and then separated by
1D SDS-PAGE. Those proteins are reacting against mon-
oclonal antibodies and are identified by mass fingerprint-
ing. In the second approach, outer membrane proteins
were separated by 2DE and transferred to PVDF mem-
brane. Spots were trypsin-digested, and extracted pep-
tides were analyzed by MALDI-TOF-MS. In a comple-
mentary study, Haas et al [56] compared the reactivity of
sera from H pylori-infected patients, a control group with
non- H pylori gastric illness, and patients with gastric can-
cer to electrophoretically separated proteins from H pylori
strain HP 26695. Three hundred ten proteins were rec-
ognized by H pylori-positive sera. Notable amongst these
were serine protease HtrA (HP1019), Cag3 (HP0522),
and the predicted coding region HP0231. In an interest-
ing variant study, McAtee et al examined protein differ-
ences between bacterial lysates from H pylori strain 26695,
which is resistant to metronidazole (MTZ) due to a muta-
tion in nitroreductases gene, rdxA, grown in the presence
and absence of small quantity of MTZ [57]. The expres-
sion of a number of proteins decreased by twofold or more
during growth with MTZ, yet the levels of various iso-
forms of alkylhydroperoxide reductase (AHP) (encoded
by gene ahpC HP1563 and linked to oxygen toxicity resis-
tance) increased.

Fungal, parasite, and cancer proteomics

In the following section, we briefly adumbrate several
areas in eukaryotic proteome research. Two are emerging
areas, fungal and parasite proteomics, while the third is
relatively well developed, cancer proteomics. In examin-
ing the last of this triumvirate, it is difficult to disentangle
it from host proteomics, which is clearly beyond the scope
of this review. As a consequence, we will touch on the sub-
ject only briefly.

Currently, and in contrast to the application of ge-
nomic technologies, fungal proteomics is a ripe area
for exploitation. Our present understanding of fungal
virulence factors is somewhat limited and largely confined
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to fungi-plant interactions [58]. They may be classified as

(1) toxins and enzymes that degrade host defenses.
These can be readily assessed via biochemical assays
and were amongst the first virulence factors identi-
fied;

(2) elicitors that induce host defenses;

(3) transporters and signal transduction components
that protect the fungus from host responses;

(4) signal transduction proteins that aid sensing of the
host environment;

(5) penetration effectors, such as melanin or hydro-
phobins.

The group of fungal virulence factors is still small and
is obviously incomplete given the complex lifestyle of
pathogenic fungi [59, 60, 61]. Thus the aggressive use
of proteomic methods, in conjunction with genome-
wide comparisons coupled with transcriptomic expres-
sion profiling, will have much to contribute to studies of
fungal pathogenesis.

A recent study by Lim et al [62] will illuminate what
is possible. Two hundred twenty proteins associated with
the cell envelope were extracted from active and quies-
cent mycelia of Trichoderma reesei. Of these, 56 spots were
examined by MS and 20 spots were identified as known
proteins on the basis of sequence, indicating that most
fungal cell wall proteins are novel. Identified proteins in-
cluded translation elongation factor beta, diphosphate ki-
nase, disulfide isomerase, outer membrane porin, transal-
dolase, vacuolar protease A, enolase, and glyceraldehyde-
3-phosphate dehydrogenase. However, the most abun-
dant protein in active and quiescent mycelia was HEX1.
This is the major protein in Woronin bodies which are
only found in filamentous fungi. Future studies will iden-
tify genes that specifically determine fungal lifestyle and
genes that distinguish between filamentous and single-cell
growth. It will also allow genes and pathways involved in
pathogenicity to be identified, leading to the identifica-
tion of further virulence factors, and thus further candi-
date fungal vaccines.

Parasitic infections are a very common cause of se-
rious disease, particularly in third world countries and
amongst domesticated animal populations, engendering
a greatly enhanced interest in developing prophylactic
vaccines against them [63, 64]. Human vaccines against
malaria and other parasites have not been overly success-
ful. However, vaccines able to control the major parasites
of livestock have proved more useful [8, 65], particularly
those directed against major nematode and trematode
infections. Apart from attenuated-live vaccines for the
control of avian coccidiosis, toxplasmosis in sheep and
anaplasmosis in cattle, vaccines have been developed
against Haemonchus contortus, the pathogenic nematode
of sheep and goats, and Fasciola hepatica, the liver fluke
of sheep and cattle; Bm86 vaccine against Boophilus mi-
croplus; 45w and EG95 recombinant proteins against Tae-
nia ovis and Echinococcus granulosis; and broad-spectrum

gastrointestinal worm vaccines against Ostertagia and Tri-
chostrongylus species. Vaccines in development include
the cathepsin L vaccines against the liver fluke F hepatica,
and the H11 vaccine against H contortus.

Jefferies et al [66] analyzed the excretory-secretory
proteins from F hepatica using proteomics, identifying a
number of proteins including cathepsin L proteases and
other enzymes involved in protection from the host im-
mune responses as part of a reactive oxygen detoxifica-
tion system: superoxide dismutase, thioredoxin peroxi-
dase, and glutathione S-transferases. Interestingly, host
superoxide dismutase was the only such protein identified
on the gel.

By comparison, molecular vaccines against proto-
zoans are proving considerable more elusive in both an-
imals and humans. This is no where more apparent than
in the case of malaria. This disease, caused, in its most
severe form, by the protozoan parasite Plasmodium falci-
parum, has plagued humanity throughout recorded his-
tory and results in the death of over 2 million people per
year. Other parasitic diseases, such as leishmaniasis and
schistosomiasis, are also important diseases in develop-
ing countries. Leishmaniasis, in its cutaneous (CL), mu-
cocutaneous (MCL), and visceral (VL) forms, affects di-
rectly about 2 million people per year, with about 350
million individuals at risk worldwide. The 35-Mb genome
of Leishmania, which should be sequenced late in 2002,
contains about 8500 genes that will translate into more
than 10000 proteins. Of all vaccines against human par-
asitic disease, those targeting malaria, leishmaniasis, and
schistosomiasis are in the most advanced stages of devel-
opment. However, despite the remarkable progress made
in identifying protective antigens, at present there are
no generally accepted vaccines against parasitic diseases.
Vaccines for malaria and leishmaniasis have been taken
to clinical trials while vaccines for schistosomiasis are in
phase I/II trials. The control of leishmaniasis remains a
problem and no vaccines exist for the VL, CL, or MCL
forms of the disease.

While postgenomic approaches are being pursued
actively for Leishmania [67], which combine MicroAr-
ray transcriptomics with random vaccine screening using
cDNA libraries, relatively little has been done within the
proteomic arena. Thiel and Bruchhaus [68] have analyzed
the expression specific differences between the proteomes
characterizing the promastigotes and amastigotes forms
of Leishmania and also the transition between them.
They mapped the Leishmania donovani proteome dur-
ing distinct metamorphic stages, identifying stage-specific
proteins and regulons, using isoelectric focusing compati-
ble protocol. Around 400 proteins could be visualized and
a significant decrease in protein synthesis during differen-
tiation from promastigotes to amastigotes could be ob-
served.

Toxoplasma gondii is another protozoan parasite that
has been investigated using proteomic technology. There
are two forms of T gondii associated with human hosts.
The rapidly growing tachyzoites give rise to acute illness
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and the slowly dividing encysted bradyzoites can remain
dormant within tissues for a lifetime. During infection,
conversion occurs between the rapidly dividing tachyzoite
stage (responsible for acute toxoplasmosis) and the much
more slowly replicating bradyzoite, a process central to
both pathogenesis and longevity of infection. Proteomics
has helped identify several proteins specific to these dif-
ferent stages.

Cohen et al [69] analyzed proteins expressed dur-
ing the tachyzoite stage of T gondii and separated over
1000 proteins in the pH ranges 4–7 and 6–11. Because
the genome was not available in full, they were obliged
to combine their proteomic approaches with searches of
EST databases in order to identify proteins less equivo-
cally. Many protein spots were encoded by the same gene,
indicating that posttranslational modification and alter-
native splicing are common features of gene expression
in T gondii. In a similar study, Dlugonska et al [70] an-
alyzed a lysate of the tachyzoite stage of T gondii and sep-
arated 224 proteins. They could identify 14 proteins using
mass fingerprinting including the excretory dense granule
proteins GRA1-GRA8, S16/acid phosphatase, nucleoside
triphosphate hydrolase, and the H4 protein, and two se-
creted antigens p36 and p40 were identified.

Proteomic analysis of host-pathogen interactions

The story of the proteomic analysis of host-pathogen
interactions is the story of a series of dichotomies, which
is to say that we can partition the subject into a bifur-
cating series of binary divisions. One division is between
the nature of target cells (antigen presenting cells versus T
cells), another is between the nature of stimulation used
to engender changes in gene expression within target cells
(bacterial or viral infection versus isolated immunomod-
ulators, such as LPS). In the following section we will
briefly review a number of studies addressing these issues.
Each highlights a different theme or aspect relevant to the
development of proteomic immunovaccinology. We be-
gin with alterations apparent in gene expression within a
small number of bacterial systems.

Fletcher et al investigated the effect of environmental
factors on the expression and release of secreted or surface
proteins, containing many virulence factors, from Acti-
nobacillus actinomycetemcomitans, a bacteria implicated
in periodontal diseases, where gum inflammation is as-
sociated with bone loss and gum recession leading to the
formation of a so-called periodontal pocket [71]. Differ-
ences in expression of many proteins, including glycolytic
enzyme triose phosphate isomerase, were observed for
bacteria grown under varied conditions (anaerobic versus
aerobic growth, biofilm versus planktonic growth, under
iron depletion, or in the presence or absence of serum or
blood), indicating its adaptability to changes within the
periodontal microenvironment. Monahan et al analyzed
changes in protein expression in attenuated vaccine strain
M bovis BCG induced by host macrophage phagocytosis
[72]. They used proteomics to show that BCG phagocy-
tosed by the human macrophage cell line THP-1 expresses

proteins not seen during heat shock or growth in cul-
ture media, and were able to identify six proteins show-
ing increased expression: 16 kd alpha-crystalline (HspX),
GroEL-1 and GroEL-2, a 31.7-kd hypothetical protein
(Rv2623), InhA, and elongation factor Tu (Tuf).

We now turn to proteomic changes in antigen present-
ing cells and begin with the inverse experiment to that
performed by Betts. Ragno et al combined transcriptomic
and proteomic methods to evaluate changes in gene and
protein expression in the leukaemic macrophage cell line
THP-1 after infection with TB [73]. Initially, microarrays
of 375 immunologically implicated human genes identi-
fied a set of early upregulated proteins that not unsur-
prisingly included a range of chemokines and cytokines,
as well as other cell surface molecules. It was more dif-
ficult to detect changes using proteomics, although hu-
man IL-1beta and superoxide dismutase were shown to
have increased expression after infection, and, in con-
trast, the heat-shock protein hsp27 was downregulated.
In a similar study, Kovarova et al analyzed phagosome ex-
tracts from macrophages derived from host organisms re-
sistant or susceptible to infection by Francisella tularen-
sis LVS (live vaccine strain) [74]. They identified several
proteins upregulated in susceptible macrophages includ-
ing host proteins mitochondrial ATP synthase beta-chain
and NADH-ubiquinone oxidoreductase as well as the bac-
terial 60-kd chaperonin GroEL and a hypothetical 23-kd
protein, whose expression level correlate with susceptibil-
ity and F tularensis LVS pathogenicity. Pizarro-Cerda et al
examined the molecular components that facilitate cellu-
lar uptake of Listeria monocytogenes into the phagosome
in the human epithelial cell line LoVo using proteomics
[75]. Their results confirmed literature precedents, with
the exception of MSF, a member of the septin family of
GTPases, which forms filaments that colocalize with the
actin cytoskeleton in quiescent cells.

Moving now from cells presenting antigen to cells
mediate immune recognition, we focus now on T cells.
Truffa-Bachi et al used protemics to analyze the changes
contingent on the removal of Concanavalin A or Cy-
closporin A from cultures of activated murine T cells [76].
They found that a large number of proteins were strongly
upregulated and downregulated after the immunosup-
pressive drugs were removed, indicating that T cells were
programmed by Cyclosporin A to change expression lev-
els without reactivation. In the context of developing a
proteomic database of helper T cells, Nyman et al acti-
vated CD4+ T cells with anti-CD3+ anti-CD28 antibodies
and visualized 2000 spots with autoradiography and 1500
spots using silver staining and identified 91 proteins us-
ing mass fingerprinting [77]. By using proteomics, Fratelli
et al sought to identify T-cell proteins that undergo glu-
tathionylation, the formation of mixed disulfides between
glutathione and other proteins, under conditions of ox-
idative stress [78]. They observed several proteins not pre-
viously known to be glutathionylated, including enzymes,
such as enolase (which is inhibited by glutathionylation);
redox enzymes, such as peroxiredoxin 1 or cytochrome
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c oxidase; cytoskeletal proteins, such as vimentin, pro-
filin, and actin; cyclophilin (which is not inhibited by
glutathionylation); stress proteins, such as HSP60 and
HSP70; and a number of miscellaneous proteins, such as
galectin and fatty acid binding protein. The authors felt
that their results supported the view that glutathionyla-
tion is a common global mechanism for the regulation of
protein function.

INFORMATICS OF THE IMMUNOME

Informatic support for proteomics is now well estab-
lished, and it would be futile to reiterate the content of
many useful reviews on the subject (see [79, 80, 81, 82]
and references therein). Equally software for the analy-
sis and exploration of proteomics is now well developed
and widely distributed. Indeed, online databases of pro-
teomes or collections of proteomes have now prolifer-
ated. However, the informatic analysis of the immunome
is currently less well developed. In many ways the in-
formatic analysis of the imunome is the complement
of the experimental analyzes described above. The im-
munome, the complement of short immunogenic pep-
tides derived, by the complex, poorly understood molecu-
lar machinery of the immune system, from the proteome
of some microbe is itself a subset of the peptidome. The
peptidome is the set of all peptides, as opposed to pro-
teins generated by the cell. It is composed of both ge-
nomic peptides, with a specific function, such as hor-
mones or neuropeptides, and cleavage products generated
by proteases. In some respects, it lies somewhere between
the proteome and metabolome of small biosynthesized
molecules and is highly compartmentalized within the
cell. Bioscience is only now beginning to explore the pep-
tidome. Because experimental methods do not address
either the peptidome or immunome, informatic predic-
tion has much to contribute here.

Approaches to predicting the immunone

A specialized type of immune cell mediates cellular
immunity, the T cell, which constantly patrols the body
searching out proteins that originate from a pathogenic
organism, be that virus, bacterium, fungus, or parasite.
The surface of T cells is, unsurprisingly, enriched in TCRs,
which function by binding MHCs expressed on the sur-
faces of other cells. These proteins bind small peptide frag-
ments derived from both host and pathogen proteins. It is
the recognition of such complexes that lies at the heart
of the cellular immune response. These short peptides are
referred to as epitopes. The overall process leading to the
presentation of antigen-derived epitopes on the surface of
cells is a complicated, and not yet fully understood, pro-
cess. There are many alternative processing pathways, but
we will confine our attention to the two major types: class
I and class II.

Class I MHCs are expressed by almost all cells in the
body. They are recognized by T cells whose surfaces are

rich in CD8 coreceptor protein. Class II MHCs are only
expressed on the so-called “professional antigen present-
ing cells” and are recognized by T cells whose surfaces
are rich in CD4 coreceptors. Class I peptides are ulti-
mately derived from intracellular proteins, such as viruses.
These proteins are targeted to the proteasome, which cuts
them into short peptides of 8 to 11 amino acids in length.
These peptides are then bound by the transmembrane
peptide transporter TAP, which translocates them from
the cell cytoplasm to the endoplasmic reticulum where
they are bound by MHCs. Theoretical analyzes of protea-
somal cleavage patterns have been conducted by several
groups [83, 84], leading in turn to a number of prediction
methods [85], some of which are available via the Internet
[86, 87]. The amount of data studied remains relatively
small, and the predictive power possessed by these differ-
ent methods has yet to be evaluated objectively. Nonethe-
less, they represent useful contributions and important
starting points for future study. Likewise, studies have also
been conducted on the peptide substrate specificities of
the TAP transporter [88], leading to the development of
predictive models [89] for the determination of peptides
that bind to TAP. Together, studies on proteasomal cleav-
age and TAP transport represent a good first attempt to
produce useful, predictive tools for the processing aspect
of class I restricted epitope presentation.

For class II, receptor-mediated ingestion of extracel-
lular protein derived from a pathogen is targeted to an
endosomal compartment, where the proteins are cleaved
by cathepsins, a particular class of protease, to produce
slightly longer peptides of 15–20 amino acids. Class II
MHCs then bind these peptides. The peptide specificity of
protein cleavage by cathepsins has also been investigated
and simple cleavage motifs are well known [90]. However,
more precise investigations are required before accurate
predictive methods can be realized. The first attempts to
computerize the identification of MHC binding peptides
led to the development of motifs characterizing the pep-
tide specificity of different MHC alleles. Such motifs—a
concept with wide popularity amongst immunologists—
characterize a short peptide in terms of dominant anchor
positions with a strong preference for certain amino acids.
Probably the first proper attempt to analyze MHC binding
in terms of specific allele-dependant sequence motifs was
undertaken by Sette et al [91]. They defined motifs for the
mouse alleles I-Ad and I-Ed after measuring affinity for a
large set of synthetic peptides originating from eukaryotic
and prokaryotic organisms, as well as viruses; in addition
they also assayed a set of overlapping peptides encompass-
ing the entire staphylococcal nuclease molecule. Sette et al
quote prediction rates at the 75% level for these two alle-
les. A large number of succeeding papers, both from this
group and others, have extended this approach to many
other human and mouse alleles.

As we have said, these motifs are usually expressed in
terms of anchor residues: the presence of certain amino
acids at particular positions that are thought to be es-
sential for binding. For example, human class I allele
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HLA-A∗0201, probably the best studied of all alleles, has
anchor residues at peptide positions P2 and P9 for a nine
amino acid peptide. At P2, acceptable amino acids would
be L and M, and at the P9 anchor position would be
amino acids V and L. Secondary anchors, residues that
are favourable, but not essential for binding, can also
be present. Moreover, sequencing of peptides, that are
known to bind, show preferences for particular amino
acids at particular positions, although whether this rep-
resents anything other than the inherent bias in protein
sequences is seldom addressed. The method is admirably
simple: it is easy to implement either by eye or more sys-
tematically using a computer to scan through protein se-
quences.

However, there are many problems with the motif ap-
proach. Although it is possible to score the relative con-
tributions of primary and secondary anchors to produce
a rough and ready measure of binding affinity [92, 93],
the most significant problem with the motif approach is
that it is, fundamentally, a deterministic method. A pep-
tide is either a binder or is not a binder. Even a brief read-
ing of the immunological literature shows that matches
to motifs produce many false positives, and are, in all
probability, producing an equal number of false negatives,
though peptides predicted to be nonbinders are seldom
screened.

While useful in themselves, binding motifs are, as we
have said, very simplistic. They are not quantitative and
their over-reliance on anchor positions can lead to un-
acceptable levels of false positives and false negatives. Al-
ternative approaches abound and have different strengths
and different weaknesses. The strategy adopted by many
workers is to use data from binding experiments to gener-
ate matrices able to predict MHC binding. For want of a
better term, we refer to these approaches as experimental
matrix methods, as most such methods use their own
measured data and relatively uncomplicated statistical
treatments to produce their predictive models.

A step forward from deterministic motifs came with
the work of Kenneth Parker [94]. This method, which
is based on regression analysis, gives quantitative pre-
dictions in terms of half-lives for the dissociation of β2-
microglobulin from the MHC complex. It is founded on
a series of important observations about peptide bind-
ing to MHC molecules [95, 96, 97, 98, 99, 100, 101,
102] and has been used in a number of applications
[103, 104]. Moreover, apart from its intrinsic utility,
one of the other important contributions of this ap-
proach is that it was the first to be made available on-
line (http://bimas.dcrt.nih.gov/molbio/hla bind/). This
method, often referred to as BIMAS, or occasionally,
COMBIFORM, by immunologists, is, for this reason,
widely used. Other empirical methods include EpiMatrix
and EpiMer developed by DeGroot and coworkers and
TEPITOPE developed by Hammer and colleagues.

A number of groups have used techniques from artifi-
cial intelligence research, such as artificial neural networks

(ANNs) and hidden Markov models (HMMs), to tackle
the problem of predicting peptide-MHC affinity. ANNs
and HMMs are, for slightly different applications, the par-
ticular favourites when bioinformaticians look for tools
to build predictive models. However, the development of
ANNs is often complicated by several adjustable factors
whose optimal values are seldom known initially. These
can include, inter alia, the initial distribution of weights
between neurons, the number of hidden neurons, the gra-
dient of the neuron activation function, and the train-
ing tolerance. Other than chance effects, neural networks
have, in their application, suffered from three kinds of
limiting factors: overfitting, overtraining (or memoriza-
tion), and interpretation. As new, more sophisticated neu-
ral network methods have been developed and statistics
has been applied to their use, overfitting and overtrain-
ing have been largely overcome. Interpretation, however,
remains an intractable problem; few, if any, can easily vi-
sualize or interpret the very complex weighting schemes
used by neural networks.

Notwithstanding these potential problems, many
workers have adopted an ANN strategy in seeking to solve
the prediction of peptide-MHC binding. Bisset and Fierz
[105] were amongst the first to use ANN in this context.
They trained an ANN to relate binding to the class II al-
lele HLA-DR1 to peptide structure and reported a correla-
tion coefficient of 0.17 with a statistical significance of P =
.0001. Amongst the best known names of those interested
in the area of MHC binding prediction is Vladimir Brusic.
Over many years, he and his coworkers have developed a
range of artificial intelligence techniques, including, inter
alia, ANN, HMMs, and evolutionary algorithms, aimed
at solving problems of this kind [106, 107, 108, 109]. His
work contains models of both class I and class II MHC al-
leles, as well as the TAP transporter [88, 89], and within
the context of his own classification scheme [110], his
models seem highly predictive.

A quite different approach to obtaining predictions of
peptide is that MHC binding is based on atomistic molec-
ular dynamic simulations. It attempts to calculate the free
energy of binding for a given molecular system, which
is closely related to experimentally observable quantities
such as equilibrium constants or IC50s. It has the advan-
tage that, in principal, there is no reliance on known bind-
ing data, as it attempts the de novo prediction of all rele-
vant parameters given certain knowledge of the system.
Essentially, all what is required is the experimentally de-
termined structure, or a convincing homology model, of
an MHC peptide complex.

DeLisi and coworkers were among the first to ap-
ply molecular dynamics to peptide, MHC binding, and
have, subsequently, developed a series of different meth-
ods [111, 112, 113]. Part of this work has concentrated on
accurate docking using molecular dynamics and another
part on determining free energies from peptide MHC
complexes. Didier Rognan has, over a long period, also
made important contributions to this area [114, 115, 116].

http://bimas.dcrt.nih.gov/molbio/hla_bind/
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In his work, dynamic properties of the solvated protein-
peptide complexes, such as atomic fluctuations, solvent
accessible surface areas, and hydrogen bonding patterns
correlated well with available binding data. He has been
able to discriminate between binders that remain tightly
anchored to the MHC molecule and nonbinders that are
significantly weaker. Other work in this area has come
from two directions. The first direction is interested in
using the methodology to analyze and predict features of
peptide-MHC complexes. These methods have looked at
both class I [117, 118] and class II [119]. The second di-
rection is more interested in developing novel aspects of
molecular dynamics (MD) methodology, including both
simulation methodology [120] and solvation [121], and
using the MHC peptide systems as a convenient example
of binary molecular complex.

Quantitative approaches to predicting
the immunone

In this section, we review quantitative approaches to
the developing field of computational immunovaccinol-
ogy. This includes our own contribution, including a dis-
cussion of our newly released JenPep database and two
powerful new techniques for T-cell epitope prediction.
The first is a 2D quantitative structure-activity relation-
ships, or 2D-QSAR, approach which we have christened
the “additive” method [122]. The other is a 3D-QSAR
approach, based on comparative molecular similarity in-
dices analysis (CoMSIA) [123, 124]. The methods were
prototyped using the common class I allele, HLA-A∗0201,
for which numerous binding data is available.

Virtual screening

A methodology closely related to MD, both being
based, to a large degree, on molecular mechanics force
fields, or, at least, drawing on analogies from pairwise
atomistic potential energy functions, is a set of techniques
grouped loosely under the name of “virtual screening.”
There are two principal types of virtual screening method-
ology that have, thus far, been applied to the predic-
tion of MHC binding. One derives from computational
chemistry and the other from structural bioinformatics
and the development of tools for fold prediction. Virtual
screening is an expression derived from pharmaceutical
research that is the use of predicted ligand-receptor in-
teractions to rank or filter molecules as an alternative to
high-throughput screening. Approaches to virtual screen-
ing cover a spectrum of methods which vary in com-
plexity from molecular descriptors and QSAR variables,
through simple scoring functions (such as Ludi, FlexX,
Gold, or Dock), potentials of mean force (PMF) (such as
Bleep), force field methods, QM/MM and linear response
methods, to free energy perturbations. In this transition
from, say, atom counts through to full molecular dynam-
ics, we see a tremendous increase in required computer
time. Virtual screening can be seen as seeking a pragmatic

solution to the “accuracy gained” versus “time taken”
equation. The point at which one stops on this spectrum is
contingent upon the system being evaluated, the number
of peptides being evaluated, and the computing resources
available.

Didier Rognan has developed a virtual screening
method called FRESNO and applied this algorithm, which
relies on a simple physicochemical model of host-guest in-
teraction, to the prediction of peptide binding to MHCs
[125]. This model was trained on a combination of data
and experimentally derived 3D structures from the alle-
les HLA-A∗0201 and H-2Kk. He found that lipophilic in-
teractions contributed the most to HLA-A∗0201-peptide
interactions, whereas H-bonding predominated in H-2Kk
recognition. Cross-validated models were afterward used
to predict the binding affinity of a test set of 26 pep-
tides to HLA-A∗0204 (an allele closely related to HLA-
A0201) and of a series of 16 peptides to H-2Kk. He con-
cluded from their initial study that their scoring function
was able to predict, with reasonable accuracy, binding free
energies from 3D models. In a more comparative study
[126], Rognan and colleagues found that for predicting
the binding affinity of 26 peptides to the class I MHC
molecule HLA-B∗2705, FRESNO outperformed six other
available methods (Chemscore, Dock, FlexX, Gold, Pmf,
and Score).

Turning now to bioinformatic-based approaches, oth-
ers are using amino acid pair potentials, initially devel-
oped to predict the fold of a protein, to identify those
peptides which will bind well to an MHC. Margalit and
colleagues have proposed a number of virtual screen-
ing methodologies [127, 128], each is of increasing com-
plexity. They used amino acid pair potentials, originally
developed by Miyazawa and Jernigan [129], to evaluate
the interprotein contact complementarity between pep-
tide sequences and MHC binding site residues. They
presented an analysis of peptide binding to four MHC
alleles (HLA-A2, HLA-A68, HLA-B27, and H-2Kb), and
were successful in predicting peptide binding to MHC
molecules with hydrophobic binding pockets but not
when MHC molecules with charged or hydrophilic pock-
ets were investigated. Again focussing on class I alleles, a
more recent study from this group [130] used an updated
set of statistical pairwise potentials. These were developed
from the Miyazawa and Jernigan potential by Betancourt
and Thirumalai [131] and described the hydrophilic in-
teractions more appropriately. This enables more accurate
modelling of the threading of the candidate peptide se-
quence.

Because of the relative celerity of virtual screening
methods compared with MD methods and its ability to
tackle MHC alleles for which no known binding data is
available, this method has considerable potential. While
both MD and related methods hold out the greatest hope
for such true de novo predictions of MHC binding, their
present success rate is very much lower than that of data
driven models.
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Positional scanning peptide libraries

An alternative strategy is the use of positional scan-
ning peptide libraries (PSPLs) to generate such matri-
ces. A number of such studies have been conducted.
Some are aimed at investigating the problem of MHC-
peptide interaction [132, 133, 134], while others concern
themselves with evaluating how variations in peptide se-
quence contribute to TCR recognition and T-cell activa-
tion [135, 136]. One of the most recent of these is also one
of the most promising; Udaka et al [137] have used PSPLs
to investigate the influence of positional sequence varia-
tion on binding to the mouse class I alleles Kb, Db, and
Ld. From their analysis, a program that could score MHC-
peptide interaction was developed and used to predict the
experimental binding of an independent test set. Their re-
sults showed a good linear correlation but with substan-
tial deviation. About 80% of peptides could be predicted
within a log unit.

QSAR approaches

JenPep

Version 1.0 of JenPep [138] is composed of three sub-
databases: (i) a compilation of quantitative affinity mea-
sures for 6000 peptides which bind class I and class II
MHC; (ii) a compendium of 2300 dominant and sub-
dominant T-cell epitopes; and (iii) a set of quantitative
data for 400 peptide binding to the TAP peptide trans-
porter. The database, and an HTML interface for search-
ing, is freely available via the Internet. It can be found at
http://www.jenner.ac.uk/JenPep. JenPep contains binding
data on a wide variety of different MHC alleles; for class I
MHC molecules, JenPep has data for 68 different restric-
tion alleles with more than 50 genotype variations. For
class II MHC molecules, there are over 40 restriction al-
leles with 52 genotype designations. Peptide lengths for
class I MHC molecules are in the range of 7–16 residues
and for class II MHC molecules are in the range of 9–
35 residues. Measures of binding affinity include radio-
labelled and fluorescent IC50 values, BL50, and half-lives.
JenPep is the first database in immunology to concentrate
on quantitative measurements, complementing existing
systems. This compilation of binding data underlies our
attempts to derive statistically sound QSAR tools for the
accurate prediction of peptide binding to immunological
molecules.

A 2D-QSAR method for binding affinity prediction
We have developed predictive techniques based on

the so-called additivity concept, whereby each substituent
makes an additive and constant contribution to the bi-
ological activity regardless of variation in the rest of the
molecule. The IBS hypothesis, developed by Parker [94],
is the immunological analogue of this idea. We extended
this concept by adding additional terms that account for
near neighbour side-chain interactions [122]. The bind-
ing affinity of a peptide will depend on contributions from
each amino acid as well as interactions between adjacent

and every second side-chain:

binding affinity = const +
9∑

i=1

Pi +
8∑

i=1

PiPi+1 +
7∑

i=1

PiPi+2,

(1)

where the const accounts, at least nominally, for the
peptide backbone contribution,

∑9
i=1 Pi is the sum of

amino acids contributions at each position,
∑8

i=1 PiPi+1 is
the sum of adjacent peptide side-chain interactions, and∑7

i=1 PiPi+2 is the sum of every second side-chain interac-
tions.

Four hundred twenty IC50 values for 340 nonamer
peptides were used in the development of the additive
method. The peptide sequences and their binding affini-
ties to the HLA-A∗0201 molecule were extracted from the
JenPep database. More than one IC50 value was found for
some of the peptides. As is common practice amongst
QSAR practitioners, IC50 values were converted to P-units
(negative decimal logarithm).

A program was developed to transform the nine
amino acid peptide sequence into a row of a table. A
term is equal to 1 when a certain amino acid at a cer-
tain position or a certain interaction exists, and equal
to 0 when they are absent. Thus a matrix of 420 rows
and 6120 columns was generated. One hundred eighty
columns account for the contributions of the amino acids
(20 amino acids×9 positions), 3200 for the adjacent side-
chains, or 1–2 interactions (20 × 20 × 8), and 2800 for
the 1–3 side-chain interactions (20 × 20 × 7). To reduce
the number of columns, the program omits columns that
contain only zeros. The final matrix consists of 420 rows
and 2158 columns.

As the columns are more numerous than the rows,
the equations were solved using partial least square
(PLS) method. The predictive power was assessed by the
cross-validated q2 (as generated by “leave-one-out” cross-
validation [LOO-CV]), standard error of predictions
(SEP), and residuals between the experimental and pre-
dicted by LOO-CV PIC50 values. A mean |residual| value
and standard deviation for the set were also calculated.
The non-cross-validated model was assessed by multiple
linear regression (MLR) parameters: explained variance
(r2), standard error of estimate (SEE), and F ratio.

The final equation derived by the additive method
consists of 1815 terms including the constant. It con-
tains the contributions of the amino acids and the
contributions of the significant side-chain interactions.
There were 172 very well-predicted (residuals ≤ |0.5| log
unit) peptides (50.5%), 128 well-predicted (|0.5| ≤
residuals ≤ |1.0| log unit) peptides (37.5%), and only
41 poorly predicted (residuals > |1.0| log unit) peptides
(12.0%).

A 3D-QSAR method for binding affinity prediction

One of the most reliable methods for investigating
the structure-activity trends within sets of biological

http://www.jenner.ac.uk/JenPep
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molecules is 3D-QSAR. The explanatory power of 3D-
QSAR methods is considerable, manifests not only in
their ability to accurately predict binding affinities, but
also in their capacity to display advantageous and disad-
vantageous interaction potential mapped onto the struc-
tures of molecules being investigated. We have applied the
3D-QSAR method (CoMSIA) to gain an understanding
of the relationship between physicochemical properties
(steric bulk, electrostatic potential, local hydrophobicity,
hydrogen-bond donor, and hydrogen-bond acceptor abil-
ities) and the affinities of peptides that bind to the MHC
molecule HLA-A∗0201 [123, 124].

Two hundred sixty-six nonamer peptides are included
in the CoMSIA study. Their IC50 values were collected
from the JenPep database and converted to P-units. All
molecular modelling and QSAR calculations were per-
formed using the sybyl 6.7 molecular modelling soft-
ware. The X-ray structure of the nonameric viral pep-
tide TLTSCNTSV was used as a starting conformation.
The structures of the remaining peptides were built to
this conformation. The partial atomic charges used in
CoMSIA were computed using the AM1 semiempirical
method, as available in MOPAC.

Five types of similarity index (steric, electrostatic, hy-
drophobic, and hydrogen-bond donor and acceptor) were
calculated, using a common probe atom with 1 Å radius,
charge +1, hydrophobicity +1, hydrogen-bond donor and
acceptor properties +1. SEP, q2, and residuals assessed the
predictive power of the final model. The initial CV model
had low q2 and r2 values. This result was not surpris-
ing, given the great diversity of peptides collected from
a variety of sources. One hundred fifty-one were very
well predicted, 83 were well-predicted peptides, and only
32 peptides were poorly predicted. The mean |residual|
was 0.553. The model was improved by excluding a lim-
ited number of poorly predicted peptides in a stepwise
manner, beginning with the peptide with the highest
residual. The final CV model had significantly higher pa-
rameter values: q2 = 0.683 at 7 components and r2 =
0.891. This model was used to predict the binding affini-
ties of the excluded peptides. The predictions were better
for both the group of very well-predicted peptides and the
group of poorly predicted peptides.

Comparison of the two methods in the context
of peptide structure

It has long been known that all nine side-chains of
the bound peptide contact the HLA-A∗0201 molecule and
influence the energetics of binding. The antigen-binding
groove has a 30-Å long surface accessible to a solvent
probe. There are six pockets in the surface denoted by
A through F. Some of them are nonpolar and can form
hydrophobic contacts, while others contain polar atoms
and can make hydrogen bonds with the side-chains. As
statistical approaches, the additive method and CoM-
SIA seek to correlate relative differences in discriminat-
ing molecular descriptor values to a dependent property
(eg, the binding affinity). In that respect, CoMSIA is a

method able to map similarities or dissimilarities between
molecules. The additive method is able to quantify the
contributions made to the binding affinity by each amino
acid, at each position, and by the interactions between
them. Comparing the results of the additive method and
CoMSIA, we have found a remarkable degree of congru-
ence.

Positions within the peptide are defined as P1 to P9.
CoMSIA suggests that hydrophobic steric bulk with neg-
ative potential is well tolerated at P1. Topologically, P1
corresponds to pocket A. The most suitable amino acids
for this position seem to be Phe and Tyr. According to
the additive method, Tyr is the favourite amino acid for
P1. Phe and Lys also make positive contributions, while
Arg, His, and Thr are not preferred. The steric map at P2
indicates that long side-chains such as Leu, Ile, and Met
are well tolerated here. The additive method distinguishes
two favourite amino acids for this position (Met and Leu).
Ala, Cys, Gly, and Thr make negative contributions.

Hydrophobic volume with negative potential is pre-
ferred at P3. The side-chains of the amino acids at this
position fall into pocket D. The hydrogen bonding abil-
ity map indicates that amino acids able to form hydrogen
bonds will also be well accepted here. Tyr and Trp have the
greatest positive contributions for this position, but Leu
and Phe are also well accepted. Glu, Cys, His, Pro, and Ser
negatively contribute. Short hydrophilic amino acids able
to form hydrogen bonds are well tolerated at P4. Ser or
Thr would be well tolerated here. According to the addi-
tive method, there is no favourite amino acid at P4. Gly,
Pro, Ser, and Thr are well accepted here while Ile, Phe, Cys,
and Met make negative contributions.

The maps indicate that amino acids with hydropho-
bic, branched or aromatic side-chains ending with small
hydrophilic groups are well tolerated at P5. Favourite
amino acids for P5 are Phe and Tyr. His, Leu, and Trp
also positively contribute, while Arg should be avoided at
this position. Amino acids with long hydrophobic side-
chains are preferred at P6. Hydrogen-bond ability is an
additional priority. Ile, Leu, Thr, and Tyr are well accepted
here. Ala, Arg, Asp, Gln, His, and Lys negatively con-
tribute. This side-chain falls into pocket C. This pocket is
predominantly polar, which explains the acceptance of the
hydrophilic Thr and Tyr, but it cannot explain the pref-
erence for the hydrophobic Ile and Leu. Short side-chains
are favoured sterically at P7. The side-chain at P7 falls into
pocket E. Pro is the favourite amino acid for this posi-
tion according to the additive method, although His also
makes a good contribution. Asn, Arg, Gln, Gly, Ser, and
Thr are deleterious.

The side-chain at P8 should be short, with a hy-
drophobic core and an end capable of forming hydrogen
bonds. Gln, Phe, Pro, and Ser are all well accepted here.
The presence of Asp, Ile, His, Met, or Val is deleterious.
Amino acids with hydrophobic, short side-chains are re-
quired for P9. Val is the favourite amino acid here. Inter-
estingly, a small hydrophilic area, carrying negative poten-
tial, appears near P9, which is due to the Thr introduced
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here by the intermediate binder MLQDMAILT and the
high binder YMLDLQPET. However, according to the ad-
ditive method, Ser and Thr should be avoided.

Predicting subcellular location

There are obviously many other aspects to computa-
tional vaccine design other than the prediction of poten-
tial epitopes. Many of them are as yet only poorly devel-
oped. While we have seen that T-cell epitope prediction is
now well developed, at least to the stage where it is begin-
ning to become useful, the prediction of immunogenic-
ity, particularly for subunit vaccines, which necessarily in-
volves a deeper understanding of host responses, remains
primitive. The prediction of antibody- or B-cell-mediated
antigenicity is at an even more primitive stage [139, 140].
This relies on concepts of some antiquity [141, 142, 143]
and quite simplistic software [144, 145]. However, some
other techniques complementary to the prediction of host
responses, such as the prediction of the subcellular loca-
tion of potential antigen proteins, have reached a greater
level of maturity. A prevailing hypothesis, amongst many,
involved directly in the hunt for protective antigens is a
belief that the majority of such immunogens will be se-
creted proteins. Proteomics can help in the systematic
search for secreted proteins [146, 147]. This is also an area
where computational techniques can produce direct re-
sults.

Consider a microbial genome or, more specifically, a
bacterial genome. The total protein complement—say a
few thousand gene products—is distributed between the
inner and outer compartments of the bacteria. Some will
reside in the cytoplasm, some will find their way to the
periplasmic space, at least in Gram-negative bacteria, and
others will be secreted from the cell. Some proteins will
become integral membrane proteins located in the inner
or outer membranes and some will become lipoproteins.
An ability to predict these locations would be a great ben-
efit when choosing which proteins to investigate as candi-
date vaccines; a secreted protein, for example, can be re-
garded, at least naively, to be a more likely target than, say,
a cytoplasmic enzyme. A number of bioinformatic meth-
ods have been developed which address the prediction of
subcellular location which has proved to be more complex
than was originally envisaged.

In 1982, a strong link between amino acid composi-
tion (eg, Leu and Trp favoured, Pro disfavoured [148])
and cellular location was identified [149], but as the num-
ber of available protein structures increased, this relation-
ship has become more blurred [150]. Despite the ambigu-
ous relationship between amino acid composition and
subcellular localization, many methods of increasing so-
phistication have been created that exploit this connec-
tion [151, 152, 153]. Nakashima and Nishikawa [154] de-
scribe a method where the average amino acid composi-
tion for a number of proteins, whose subcellular localiza-
tion is known, was calculated. From these simply obtained
results, trends in amino acid composition were observed
such as intracellular proteins relatively rich in aliphatic

residues. Just using basic rules like these, they were able
to correctly identify 78% of the test set as being either in-
tracellular or extracellular.

This idea was developed further by Andrade et al [155]
who hypothesized that throughout evolution, each sub-
cellular location has maintained a characteristic physio-
chemical environment. The proteins in each location
would have adapted to the environment and therefore
each location would have proteins with signature struc-
tural characteristics. These characteristics are more likely
to manifest at the surface (which is exposed to the envi-
ronment) and therefore the surface residue composition
is likely to give a very strong identification of the subcel-
lular location. This method predicted 77% of protein lo-
cations accurately. Although amino acid composition is
correlated with subcellular location, the former cannot be
exclusively defined by the later. Neural networks have also
been applied to this problem [156] and are the basis of the
NNPSL web-based server. This provided an accuracy of
81% for prokaryotic prediction but only 66% for eukary-
otic. This seems likely to be due to the persistent neural
network shortcoming of overfitting to training data espe-
cially when the variables are complex.

The majority of methods for predicting localization
are based on protein sorting signals [157]. These signals
are normally represented as a short sequence with vari-
able levels of conservation. Many are represented as well-
defined motifs while others show vague sequence fea-
tures that are undetectable by simple homology search-
ing [158]. The most obvious protein sorting signal to in-
vestigate is the signal peptide. Looking at a simple bacte-
rial model, if a protein has a signal peptide but no trans-
membrane domain, then it will be excreted through the
inner membrane. If a protein with a signal peptide has a
transmembrane domain, then it will become inserted into
the membrane [159]. All signal peptides have a 3-region
structure, the amino (N), the hydrophobic (H), and the
carboxy (C) with a weak consensus pattern specifying the
cleavage site [160]. Signal peptides are divided into classes
on the basis of variation of structure of the N, H, and C re-
gions, structure of the cleavage site, and different propen-
sities for amino acids [161].

Many approaches have been taken to try and pre-
dict subcellular location from signal peptides and cleav-
age variations. The different amino acid propensities of
N, H, and C regions for different classes can be iden-
tified by multivariate analysis of the individual amino
acids [162]. A wide range of characteristics of amino
acid properties has been determined, and the similar-
ities/dissimilarities in the property profiles for differ-
ent signal peptide classes were compared. Initially this
method was applied just to E coli with some success but
later expansion to Gram-positive bacteria was less suc-
cessful and varied greatly from species to species [163].
Though, there were some factors such as charge, length,
side-chain hydrophobicity, and volume that proved rea-
sonably reliable factors that could be used as part of pos-
sible new techniques. The prediction of cleavage sites and
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inference of subcellular location has proved more fruitful
than amino acid composition-based methods, with pre-
diction as high as 96% [164, 165].

DISCUSSION

Prophylactic vaccination has made an essential con-
tribution to the improvement of human health over the
20th century. However, we still lack efficient vaccines
against major human diseases such as malaria or tuber-
culosis. Historically, at least in the area of parasite vacci-
nology, as in many other areas of the subject, one of the
greatest problems has been the scarcity of relevant ma-
terial and our concomitant inability to generate purified
vaccine candidates using conventional protein chemistry.
Proteomic and other postgenomic and molecular biology
approaches, through the preparation of cDNA expression
libraries, are now proving central to the identification of
immunogenic proteins.

Preceding sections have addressed two approaches to
the identification of the immunome: experimental pro-
teomic analysis of microbial proteins and mechanistic in-
formatic prediction. However, the present review is by
no means exhaustive, nor does it pretend to be. We
have not specifically addressed other important uses for
proteomics within vaccine research, such as the system-
atic discovery of adjuvants and diagnostic and prognos-
tic biomarkers. Rather, we have to suggest how computa-
tional strategies and experimental proteomic approaches
are highly complimentary to the aim of identifying the
immunome. In particular, proteomics will prove crucial
in the correct identification of appropriate posttransla-
tional modification and conformation, upon which the
immunogenicity of many vaccines will depend. Various
informatics strategies hold out the hope that they will be
able to short cut some of the more intractable experimen-
tal procedures by quickly prioritizing candidate genes.

As we have shown, experimental proteomics can iden-
tify proteins that represent potential candidate vaccines.
It can achieve this either by identification of highly ex-
pressed genes or proteins secreted from the cell. The
discovery of potential virulence factors or antigens is
achieved by comparing the proteomes of virulent and
avirulent microbes, or microbes grown under different
conditions, or changes apparent upon infection, or by
identifying proteins that are coregulated with already
known virulence genes. For example, identification of
proteins by such strategies may help elucidate the molecu-
lar basis of the attenuation of BCG, and may provide anti-
gens that distinguish infection with M tuberculosis from
vaccination with BCG. Proteomics can also help trace out
how pathogenic bacteria cope with the challenges im-
posed on them by therapy or host responses to infec-
tion. Generally, however, proteomics will only form part
of large postgenomic strategies, incorporating many other
techniques. Appropriate use of this technology should
allow us to reduce the large number of protein prod-
ucts within the proteome down a much more manage-

able short list of candidate vaccines, perhaps number-
ing no more than a few dozens. Such candidates would
then require subsequent channeling through recombinant
expression, purification, and testing for immunogenicity
and protective efficacy [55]. For example, the electroe-
luting of single protein spots, and the subsequent test-
ing of eluted protein against an APC-T-cell clone sys-
tem, for immunogenicity, is an interesting combination
postgenomic approach which addresses the concept of
whole protein antigenicity. Epitomics, the postgenomic
identification of epitopes, is also an area falling under the
proteomics revolution. Mass spectrometry is now being
used routinely to sequence peptides eluted from MHC
molecules [166, 167, 168].

The experimental and informatic techniques de-
scribed above address the determination of immuno-
genicity, albeit parenthetically. Immunogenicity is one
of the most widely used terms within immunobiology.
Simply, immunogenicity is that property of a chemical
moiety—be that protein, lipid, carbohydrate, or some
combination thereof—that allows it to induce a signifi-
cant response of the immune system. An exact definition
might not be possible to formulate, being dependent on
context. Put simply, a protein which is highly immuno-
genic within one species, within one population, or within
one particular individual within a population is not nec-
essarily immunogenic within another species, population,
or individual. Immunogenicity is not the same as protec-
tive immunity although it is bound up with it, particularly
from an immunovaccinology perspective. Protective im-
munity is, essentially, an enhanced immunity to reinfec-
tion, or to a first infection in the case of a successful vac-
cine. It is composed of an augmentation of preformed im-
mune reactants, such as antigen-specific antibodies, and
the formation of long lasting immune memory, which
is mediated by memory B cells and memory T cells.
Immunogenicity, per se, is an obvious requirement for
protective immunity, yet while it is necessary, it is also
clearly not sufficient. There are other factors—probably
many other factors—as yet unknown, that mediate pro-
tection.

Although we cannot easily define immunogenicity,
nonetheless, a fundamental understanding of immuno-
logical mechanisms operating, within this context, at the
molecular level underlies most modern attempts to design
vaccines rationally. The newly emergent discipline of im-
munovaccinology is bound up with the development of
immunobiology as a postgenomic science. The sequences
of genomes from both microbial pathogens and verte-
brate hosts are now available, and the power of parallel ap-
proaches such as transcriptomics and proteomics is now
being felt in the search for new vaccines. However, the
manifestation of immunology at the whole animal level is
an exceedingly complex phenomenon. It is only by inves-
tigating each of its individual stages, at the level of inter-
acting molecules and cells, and in a physicochemical man-
ner, that we can hope to formulate ways of modelling and
manipulating the process effectively.
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