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Network-based machine learning in colorectal and
bladder organoid models predicts anti-cancer drug
efficacy in patients
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Sanguk Kim 1,2✉

Cancer patient classification using predictive biomarkers for anti-cancer drug responses is

essential for improving therapeutic outcomes. However, current machine-learning-based

predictions of drug response often fail to identify robust translational biomarkers from pre-

clinical models. Here, we present a machine-learning framework to identify robust drug

biomarkers by taking advantage of network-based analyses using pharmacogenomic data

derived from three-dimensional organoid culture models. The biomarkers identified by our

approach accurately predict the drug responses of 114 colorectal cancer patients treated with

5-fluorouracil and 77 bladder cancer patients treated with cisplatin. We further confirm our

biomarkers using external transcriptomic datasets of drug-sensitive and -resistant isogenic

cancer cell lines. Finally, concordance analysis between the transcriptomic biomarkers and

independent somatic mutation-based biomarkers further validate our method. This work

presents a method to predict cancer patient drug responses using pharmacogenomic data

derived from organoid models by combining the application of gene modules and network-

based approaches.
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Identifying molecular biomarkers for classification of cancer
patients according to drug sensitivity is crucial for the suc-
cessful treatment of cancer patients1–3. Although biomarkers

associated with drug response are often found in patient cohort
data, clinical trials are still extremely expensive and time-
consuming to conduct4. Therefore, the accurate discovery of
robust biomarkers from preclinical models, which are more
accessible than clinical data, is becoming increasingly important.
Accordingly, previous findings from large-scale pharmacoge-
nomic screenings of preclinical models have been extremely
useful in the discovery of clinically relevant biomarkers. More-
over, studies have reported that machine-learning (ML) algo-
rithms trained from preclinical model data were predictive of
cancer patient drug responses1, which further supports the use of
preclinical models for understanding the therapeutic responses of
human cancers3,5–7.

However, preclinical models for drug biomarker identification
or ML model development frequently fail to predict drug sensi-
tivity in human tumors8,9. Differences in the complexity of the
biological systems are one challenge of these models10,11. Also,
limited training data can hinder the performance of ML techni-
ques, in contrast to data-rich input features, such as gene
expression profiles. Input feature complexity, also known as input
heterogeneity, poses key challenges in most biological studies,
including drug-response prediction tasks, in which drug screen-
ing results are scarce compared to the density of high-throughput
sequencing data. Therefore, a method to reduce biological het-
erogeneity and to select relevant features, while developing an
efficient model for ML, is required to make robust predictions.

Network-based methods offer a powerful framework to suc-
cessfully enable feature selection, which in turn may be leveraged
to develop robust ML techniques for drug-response prediction.
Previous studies have found that genes that are associated with
similar phenotypes are in proximity to each other in
protein–protein interaction (PPI) networks12,13, suggesting that
drug-response-associated biomarkers may also cluster within
specific PPI networks. In addition, Guney et al. demonstrated that
the therapeutic effect of a drug could be inferred from the drug-
disease proximity within a PPI network, and Fernández-Torras
et al. showed that gene modules in a network could be used to
predict drug response7,14. Furthermore, Cheng et al. applied a
network approach to generate the framework for identifying drug
repurposing candidates for 220 million patients15. Recently, this
work was expanded on using network analysis for drug repur-
posing for cancer patients16. Altogether, these findings demon-
strate that network-based approaches can be utilized to reduce
biological complexity and to improve the performance of ML
methods to predict therapeutic outcomes in cancer patients.

Three-dimensional (3D) organoid culture models are being
actively developed to improve the pharmacogenomic similarities
between preclinical models and human tumors. A recent study
found that the transcriptomes of organoid models closely
resembled those of human metastatic breast cancer17. In addition,
Vlachogiannis et al. observed that drug sensitivity data from
organoid models were similar to the drug responses observed in
gastrointestinal cancer patients18. Similarly, Ooft et al. discovered
that organoid models were predictive of colorectal cancer patient
responses to irinotecan-based chemotherapy19. Thus, because of
the high similarity between organoid models and human tumors,
methods to culture and screen organoid models in an automated,
high-throughput manner are actively being developed20. Taken
together, organoid models recapitulate human tumors at mole-
cular and phenotypic levels, further supporting their use in drug
biomarker discovery. However, a method to systematically iden-
tify biomarkers from organoid models to predict drug responses
in cancer patients remains an unmet need.

In this study, we integrated pharmacogenomic data derived
from 3D organoid culture models and network-based methods to
develop an ML framework for the prediction of patient–drug
responses. Specifically, prior to ML, we conducted a feature
selection procedure in which features (pathways) were selected by
their proximity to drug targets in a PPI network. We then used
the expression profiles of the pathways proximal to the drug
targets from organoid models to train ML models and to obtain
drug-response biomarkers. To test the predictive performance of
the ML model, we analyzed the drug treatment responses of
colorectal and bladder cancer patients to 5-fluorouracil (5FU) and
cisplatin, respectively. The biomarkers identified by our method
were predictive of overall survival in both the colorectal and
bladder cancer patients, whereas conventional ML models using
whole-genome or whole-pathway transcriptomics were not strong
predictors of overall survival. We further confirmed our bio-
markers in independent transcriptomic datasets of drug-sensitive
and -resistant isogenic cancer cell lines and found that the dif-
ferential expression patterns were consistent with our network
model predictions. Furthermore, predicted biomarkers from our
models were similar to somatic mutations of clinically identified
independent biomarkers. To the best of our knowledge, this work
presents the first systematic framework to leverage organoid
pharmacogenomic data and network-based computational
approaches to obtain robust drug biomarkers for successful
treatment of human tumors.

Results
Identification of biomarkers associated with anti-cancer drug
responses using a network-based machine-learning approach.
Our approach integrates pharmacogenomic screening in 3D
organoid culture models with network-based analysis to provide
molecular signatures associated with drug responses. Existing
drug-response prediction methods often rely solely on molecular
signatures, such as transcriptomic data, to generate predictive
models and/or to identify drug-response biomarkers. In contrast,
we applied PPI networks and known drug targets to identify
potential biological pathways that are associated with drug
responses (Fig. 1a). Distances between biological pathways and
known drug targets within a PPI network were computed, and
pathways that were more proximal than random expectations
were considered as potential drug biomarkers (Fig. 1b.1). Here,
we used the STRING PPI network, which is comprised of 13,824
proteins and 323,774 interactions21. Of note, the STRING net-
work is an undirected network and therefore does not have
“upstream” or “downstream” directionality. To train the ML
model, we used recent pharmacogenomic screening data from 3D
organoid models for 19 colorectal cancer22 and nine bladder
cancer organoid samples23. We used ridge regression as our
primary ML model, but we also used linear and support vector
regression to test it. Expression profiles of inferred biomarker
pathways were used as the input data to train the ML model
against drug-response measurements (IC50, the half-maximal
inhibitory concentration) from organoid models (Fig. 1b.2).
Finally, pathways with high predictive performance in the ML
model were considered to be drug-response biomarkers
(Fig. 1b.3). To validate the identified drug-response biomarkers,
we measured and compared the clinical benefits of overall sur-
vival in the predicted responders and non-responders, who were
classified according to transcriptomic levels of the identified
biomarkers (Fig. 1b.4).

Identification of biomarkers in organoid models. We first
applied our model for the identification of drug-response bio-
markers following 5FU treatment in colorectal cancer. Among
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674 reactome pathways, we found 37 pathways that were prox-
imal to the 5FU target in the PPI network (Fig. 2a). To measure
the predictive performance of the proximal pathways against the
5FU drug response in colorectal cancer, we applied ridge
regression on the expression profiles of proximal pathways
against the 5FU IC50 values using the colorectal organoid data.

Specifically, we used threefold cross-validation to optimize the
hyperparameter for the regression model (see “Methods”). We
found that “activation of BH3-only proteins” displayed high
predictive performance for 5FU treatment in colorectal cancer
(Fig. 2b, c). Consistent with our result, previous studies found
that loss of BH3-only protein expression was associated with 5FU
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treatment in many types of cancer24–27. We performed our
analysis against other ML algorithms, such as linear and support
vector regression (Supplementary Figs. 2 and 3), and found that
the identified biomarker consistently displayed high predictive
performance across all the algorithms, suggesting that our result
did not depend on a particular algorithm. Thus, the pathway was
selected as the response biomarker for 5FU efficacy.

We also applied our ML pipeline to identify drug-response
biomarkers in bladder cancer after cisplatin treatment. We found
30 pathways that were proximal to cisplatin targets within the PPI
network (Fig. 2e). Using bladder cancer organoid data, we
measured the predictive performance of proximal pathways
against the drug response of cisplatin. The “amino acid synthesis
and interconversion” pathway showed high predictive perfor-
mance among the proximal pathways that were consistently
identified across multiple ML algorithms (Fig. 2f, g; Supplemen-
tary Figs. 2 and 3), and it was therefore selected as the biomarker
for cisplatin response in bladder cancer. Consistent with our
prediction, a recent study found that changes in the expression of
genes associated with amino acid metabolism were attributed to
cisplatin resistance in bladder cancer28.

Drug-response prediction in cancer patients using a network-
based machine-learning approach. We tested whether the
identified drug biomarker could predict the drug-response out-
comes of colorectal cancer patients after 5FU treatment. We used
the biomarker transcriptomic data and clinical survival outcomes
of 114 colorectal cancer patients treated with 5FU to predict and
validate our approach. Statistical difference in overall survival
between the predicted responders and non-responders was
used as a proxy for drug-response prediction performance
(Kaplan–Meier log-rank test). We observed that the predicted
responders had a significantly longer overall survival compared to
the non-responders (Fig. 2d; P= 0.014). Specifically, the
responders group exhibited no deaths among the 5FU-treated
colorectal cancer patients, whereas the non-responders group
exhibited a 5-year overall survival of only ~50%. As a negative
control, we compared the differences in overall survival of 298
colorectal cancer patients with no prior treatment who were
predicted to be sensitive or resistant to 5FU treatment (Fig. 2d).
From the negative control cohort, we observed no significant
differences between the two classified groups (P= 0.16). These
results suggest that the identified biomarker is predictive of drug
response and is not simply associated with patient overall
survival.

We also validated our approach using the data from 77
bladder cancer patients treated with cisplatin and found that the
predicted responders had better survival outcomes compared to
those of the predicted non-responders (Fig. 2h; P= 0.01). The 5-
year survival rates were ~75 and 50% for the predicted
responders and non-responders, respectively. Next, we investi-
gated 294 bladder cancer patients without any previous
pharmacologic intervention as a negative control cohort to test

whether our biomarker was prognostic of patient survival. We
found that the expression levels of our biomarker lacked
association with overall survival in the negative control cohort
(Fig. 2h; P= 0.066). Altogether, these findings suggest that the
biomarkers detected using our framework can be used to select
subgroups of patients who may benefit from anti-cancer
treatments, which may also dramatically reduce the use of the
treatment for potential drug non-responders.

We observed that the identified biomarkers were specifically
predictive of patient survival for each corresponding cancer type.
To test this, we intercrossed the biomarkers found from the
colorectal and bladder cancer organoids and measured their
predictive ability. Specifically, we used “amino acid synthesis and
interconversion” pathway to predict the drug responses of 5FU-
treated colorectal cancer patients and “activation of BH3-only
proteins” pathway for cisplatin-treated bladder cancer patients.
The prediction performances were statistically insignificant, with
log-rank P-values of 0.16 in the 5FU-treated colorectal cancer
patients and 0.86 in the cisplatin-treated bladder cancer patients
(Supplementary Fig. 4). This result suggests that the identified
biomarkers are specific to the corresponding cancer and
drug types.

Next, we wanted to know if the drug responders and non-
responders that were classified using our method had distinguish-
ing clinicopathologic characteristics. Therefore, we investigated
whether the classified drug-response groups correlated with any
clinicopathologic features. We collected age, gender, clinical
tumor stage, and lymph node metastasis status data for the
colorectal and bladder cancer patients who were treated with 5FU
and cisplatin, respectively, and compared them with the data of
the predicted drug responders and non-responders. In both
cohorts, no clinical factors were significantly associated with any
classified group (Supplementary Tables 1, 2). These results
suggest that the expression profiles of our biomarkers are
independent of other clinical features.

Recently, Aguirre-Plans et al.29 showed that the ability of a
drug to target multiple biological pathways could be leveraged to
find disease-specific treatments. Thus, we wanted to know if using
multiple pathways, rather than a single pathway, in our method
could improve the predictive performance for drug response. We
calculated the weighted sum of the expression levels of multiple
pathways for individual cancer patients, using the predictive
performances of the pathways in the organoid models to
determine the weights (see “Methods”). We found that when
using the top two pathways with the highest predictive
performances, the prediction of drug responses was maintained
for the cisplatin-treated bladder cancer patients (log-rank test;
P= 0.022; Supplementary Fig. 5a), but no predictive advantage
was observed for the 5FU-treated colorectal cancer patients (P=
0.88; Supplementary Fig. 5b). This suggests that the treatment
capacities to target multiple pathways may differ across drugs and
cancer types. Furthermore, the results when using up to the top
10 predictive pathways are provided in the Source data.

Fig. 1 Identification of biomarkers associated with drug response using a network-based machine-learning approach. a Overall framework for the in
silico identification of drug-response biomarkers through network-based machine-learning (ML). Input biological pathways for ML were first filtered to
those proximal to drug targets in a protein–protein interaction network (green). The proximal pathways were then used as inputs to train the ML model
(blue), revealing the predictive performance for each input pathway. Pathways with high predictive performance (orange) were selected as biomarkers and
used to classify patients into drug responders and non-responders. b (1) Network average shortest-path lengths between drug targets and pathways were
calculated to identify the proximal pathways of drug targets (see “Methods”). (2–3) Pathway expression levels for proximal pathways and drug IC50 values
from pharmacogenomic data derived from organoid models were used to train the ML model. Predictive performance was determined from the regression
coefficients of the ML output, and pathways with high predictive performance were selected as drug biomarkers. (4) Expression profiles of the drug
biomarkers were used to classify patients into responders and non-responders. Drug-response predictions were validated by comparing the overall survival
of drug-treated patients.
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Predictive ability of no feature selection models, alternative
feature selection models, and a deep-learning model. To
demonstrate the utility of our method, we first tested the per-
formance of drug-response prediction without a feature selection
process (Fig. 3a–c). We found that the application of ridge
regression models on whole-genome or whole-pathway tran-
scriptomic data from 3D organoid models was not predictive of

drug responses in both 5FU-treated colorectal and cisplatin-
treated bladder cancer patients (Fig. 3b, c). This result suggests
that feature reduction may be required prior to training an ML
model for drug-response prediction.

Next, we replaced the network proximity-based feature
selection process with other feature selection procedures to
compare drug-response prediction performances. We tested
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predictive performances of feature selection based on (1) network
centrality, (2) direct network neighbors of drug targets, and (3)
the pre-selection of genes with expression levels highly correlated
to drug responses (see “Methods”). We found that all of the tested
feature selection methods were not strong predictors of patient
survival (Fig. 3d, e, Supplementary Figs. 6 and 7). More
specifically, for feature selection based on network centrality, we

used three different measurements (degree, betweenness, and
closeness centrality) to calculate the centrality of each pathway
(see “Methods” for details). Feature selection was conducted by
selection of network central pathways that matched the number
of proximal pathways. We found that all of the combinations of
different feature selection procedures based on network centrality
were not strongly predictive of patient survival after drug

Fig. 2 Identification of biomarkers in organoid models and validation in human tumors. a Network distances and z-scores of Reactome pathways for 5-
fluorouracil. Proximal pathways (see “Methods”) are shown in blue. b Predictive performances of pathways from colorectal cancer organoid models. Ridge
regression was performed to calculate predictive performances. Selected drug-response biomarker for clinical drug-response prediction is shown in orange.
c Network representation of 5-fluorouacil target and the biomarker pathway. d (Left) Drug-response predictions for 5-fluorouracil-treated colorectal cancer
(COAD). Predicted responders and non-responders are depicted in purple and yellow, respectively. (Right) Predictions for patients with no known
treatment history are shown for COAD patients. Number of patients is shown inside the parenthesis. 95% confidence interval was used. Statistical
significance was measured using Kaplan–Meier survival curves and two-sided log-rank tests. P-values <0.05 were considered significant. e, f Biomarker
identification from cisplatin-treated bladder cancer (BLCA) organoids. g Network representation of cisplatin targets and the biomarker pathway. h Drug-
response prediction for cisplatin-treated BLCA patients. Kaplan–Meier survival plots and two-sided log-rank P-values are displayed.
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treatment (Supplementary Figs. 6 and 7). Furthermore, we found
that the expression levels of drug targets or up to the first, second,
or third-degree network neighbors failed to classify patient
survival with statistical significance (Fig. 3d, Supplementary
Figs. 8 and 9). These results supported recent observations that
the expression profiles of drug targets alone as well as the network
neighbors of drug targets were not predictive of drug
response6,7,30,31, suggesting that utilization of network proximity
allowed robust signals to be captured at the pathway level, but not
at the gene level. Moreover, we also applied the feature selection
procedure by Bolis et al., which leverages 10 iterations of leave-
half-out cross-validation to select genes for ML training (see
“Methods”). The trained ML models showed less predictive
power, with log-rank test P-values of 0.15 in 5FU-treated
colorectal and 0.96 in cisplatin-treated bladder cancer patients
(Fig. 3e). These results provide further evidence that feature
selection based on pathway-level network proximity is useful to
find robust biomarkers.

Finally, we compared our method to a deep-learning method
developed by Sharifi-Noghabi et al.32. We observed that the deep-
learning model was not predictive of patient survival in 5FU-
treated colorectal and cisplatin-treated bladder cancer patients.
Briefly, a combined loss function using a triplet loss and a binary
cross-entropy loss was implemented to optimize the prediction
model (see “Methods”). The prediction performances were
measured by the log-rank test, with P-values of 0.91 for the
5FU-treated colorectal and 0.82 for the cisplatin-treated bladder
cancer patients (Fig. 3f). Of note, the deep-learning method was
developed for multi-omic purposes; therefore, the prediction
performance may have declined when it was trained with
transcriptomic data alone.

Validation of identified drug-response biomarkers in drug-
sensitive and -resistant isogenic cancer cell lines. Motivated by
the predictions of the network-assisted ML algorithm, we next
tested whether the molecular profiles of identified drug bio-
markers were mechanistically associated with drug sensitivity. We
observed transcriptomic biomarker rewiring in 5FU-sensitive and
-resistant isogenic colorectal cancer cell lines (Fig. 4a, b). Speci-
fically, we examined a dataset measuring the gene expression
profiles of drug-sensitive and -resistant isogenic colorectal cancer
cell lines, in which resistance was elicited via exposure to gra-
dually increasing concentrations of 5FU33 (Fig. 4a). We hypo-
thesized that the colorectal cancer cell transcriptomic signatures
associated with drug response would change following the
development of resistance to 5FU. When measuring the expres-
sion levels of the “activation of BH3-only proteins” pathway in
the 5FU-sensitive and -resistant colorectal cancer cell lines, we
observed significant changes in the biomarker pathway expres-
sion levels between the two types of cells (Fig. 4b). Specifically, we
found that the 5FU-sensitive cells overexpressed components of
the biomarker pathway compared to the 5FU-resistant cells (two-
sample, two-tailed Student’s t-test; P= 0.0085), which was con-
sistent with our model’s predictions.

We also evaluated any changes in the transcriptomic signatures
of cisplatin-sensitive and -resistant isogenic bladder cancer cell
lines and found alterations in the expression levels of the
identified biomarker pathway between the two types of cells
(Fig. 4c). Specifically, we investigated the “amino acid synthesis
and interconversion” pathway, which was selected as the drug-
response biomarker for the cisplatin-treated bladder cancer
organoids. To investigate the potential role of the biomarkers in
drug sensitivity, we measured the transcriptomic profiles of the
isogenic cisplatin-sensitive and -resistant bladder cancer cell lines.
Because biomarker pathway overexpression was associated with

increased drug sensitivity in the network-based ML model, we
hypothesized that cisplatin-resistant cells would demonstrate
reduced expression of the biomarker pathway. Accordingly, we
observed significantly lower expression levels of the biomarker
pathway in the cisplatin-resistant cells compared to the cisplatin-
sensitive cells (Fig. 4c; P= 0.00022). Similar to our data, previous
studies reported that amino acid metabolism was mechanistically
associated with cisplatin sensitivity in bladder cancer28. Alto-
gether, these findings suggest that our ML model provides a
mechanistic hypothesis for drug responses that can be tested
against experimental analysis. Expression differences between
drug-sensitive and -resistant cancer cell lines for the top three
proximal pathways are provided in Supplementary Table 3.

To confirm that the identification of predictive biomarkers was
not obtained by arbitrary feature selection, we performed a
bootstrapping analysis that aimed to determine whether ran-
domly selected features could predict the drug responses of 5FU-
treated colorectal and cisplatin-treated bladder cancer cells. For
10,000 iterations, we first selected random pathways that matched
the number of proximal pathways for each anti-cancer drug.
Next, we conducted ridge regression using the transcriptomes of
randomly selected pathways and the drug-response data from
organoid models. Finally, in each iteration, we ranked pathways
that were predictive of patient survival and drug sensitivity in
isogenic cancer cell lines (Fig. 4d). We observed that our
predictions using proximal pathways were statistically significant,
as measured by empirical P-values (0.0012 and 0.014 in 5FU-
treated colorectal cancer and cisplatin-treated bladder cancer,
respectively), and were not likely to be observed by random
feature selection (Fig. 4e, f). In addition, we found that the
number of genes in a pathway was not a strong predictor of drug
response in cancer patients, suggesting that it was not a
confounding factor in our analysis (Supplementary Fig. 10). All
of the predictive pathways that were ranked equal to or higher
than our biomarkers are presented in Supplementary Table 4.
Taken together, these results imply that the combined use of gene
modules and network analysis in organoid pharmacogenomic
models may be required to identify robust biomarkers for the
prediction of drug response.

Identification of known drug-response biomarkers using a
network-based machine-learning approach. To further validate
our network-based ML approach, we investigated whether our
method could identify known clinical drug-response biomarkers.
We compared our predictions with known drug-response bio-
markers derived from independent datasets, according to pre-
vious work by Geeleher et al.34 and Mourragui et al.35 (see
“Methods”). Specifically, we calculated the predicted drug resis-
tance scores for each patient using our network-based approach
using transcriptomic data, and then we investigated whether the
predicted drug resistance scores correlated with alterations of
known drug-response biomarkers (i.e., mutation status).

First, we investigated the presence of a BRAFV600E mutation,
which is known to be reliably predictive of resistance to the EGFR
inhibitor cetuximab in colorectal cancer. Using our network-
based approach, we found that the “Gastrin-CREB signaling
pathway via PKC and MAPK” pathway was associated with the
response to cetuximab treatment in colorectal cancer organoids
(Supplementary Fig. 11). Thus, we used the expression levels of
the predictive pathway components to derive the predicted drug
resistance scores (see “Methods”). We found that the predicted
drug resistance scores were significantly higher in patients
bearing the BRAFV600E mutation compared to those with wild-
type BRAF (Fig. 5a; one-sided Mann–Whitney U test; P= 0.037).
This result was consistent with previous observations in which
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colorectal adenocarcinoma patients with BRAFV6600E mutation
were resistant to cetuximab treatment36,37. We compared our
results from the network-based method with other ML methods
used in Fig. 3 (whole-transcriptome, whole-pathway, or drug
target neighbors). Except for our network-based method, none of
the other comparable methods were able to identify the
association between BRAFV600E mutation and cetuximab resis-
tance in colorectal cancer (Supplementary Fig. 12). These results
further demonstrate the utility of a network-based approach to
discover robust biomarkers in cancer.

Next, we tested the association between mutations in the
excision repair cross-complementing 2 (ERCC2) DNA repair
gene and the cisplatin drug response in bladder cancer. We used
the expression profiles of the “amino acid synthesis and
interconversion” pathway to measure the predicted drug
resistance scores for bladder cancer patients. We observed that
the presence of ERCC2 mutations predicted lower drug resistance

to cisplatin (Fig. 5b; P= 0.002), which was also observed in
previous reports in which ERCC2 mutations sensitized patients to
cisplatin treatment38,39. All of the drug-response predictions
using other ML methods showed reduced statistical power
compared to our method (Supplementary Fig. 13). Altogether,
these results suggest that a network-based approach is useful to
capture the concordance across omic datasets for prediction of
drug sensitivity.

Discussion
In this study, we tested if the incorporation of network analysis
into an ML framework could accurately identify robust drug-
response biomarkers using organoid models. Indeed, we found
that our method accurately predicted cancer patient–drug
responses, whereas conventional ML approaches showed less
optimal predictive performances. Importantly, our network-based
ML model provided interpretable results for drug-response
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prediction, which were further tested in external experimental
datasets. Our results suggest that network-based ML in organoid
models can improve drug-response prediction for cancer patients.

Interpretability of ML models is becoming increasingly
important, especially when it comes to the high-stakes decision-
making of healthcare40. To generate interpretable ML models,
incorporation of biological structures, such as PPI networks, into
the ML models assists in making comprehensive predictions10,11.
Recently, Ma et al. showed that the infusion of hierarchical
structures of biological functions into neural networks accurately
predicted cellular growth from genotypes41. Unlike standard
deep-learning methods, interpretable prediction results provide
information on the underlying biological mechanisms of
genotype–phenotype relationships10,41 which can be experimen-
tally validated and leveraged for the development of novel, per-
sonalized, targeted therapies or for an increased understanding of
a disease.

Our research further supports the utility of network analysis to
reduce the biological complexity of input datasets by capturing
robust signals, which can improve the predictive performances of
ML tasks10,11. Recently, the PsycheENCODE Consortium
embedded a regulatory network into a deep-learning model and
demonstrated that functional genomic data improved the detec-
tion of gene-phenotype associations in neurological disorders42.
In addition, Yang et al. used an ML approach that learned via
biologically known cause-and-effect relationships by utilizing
metabolic flux networks, which revealed interpretable treatment
effects of antibiotics43. Moreover, Hofree et al. found that sub-
typing cancer patients into groups based on the harboring of
mutations in a similar region of a PPI network was predictive
of overall survival44. In addition, we previously reported that
PPI networks could be leveraged to identify various
genotype–phenotype associations, including disease–gene rela-
tionships45–49, the clinical severity of human diseases50, gene
essentiallity51,52, and phenotypic outcomes of chemical treat-
ments53. Altogether, network analysis may help detect effective
biological signals that can be manipulated for ML tasks, such as
drug-response prediction.

Currently, 5FU is the standard treatment for colorectal cancer;
however, only 10–15% of patients have a measurable response to
this therapy24. Thus, there is an urgent need to develop

computational methods for the discovery of novel biomarkers
for 5FU resistance in colorectal cancer. Our method identified
such biomarkers (Fig. 2). We found that the expression levels of
the components of the “activation of BH3-only proteins”
pathway were associated with the responses of colorectal cancer
organoids to 5FU treatment. Because BH3-only proteins are
essential initiators of apoptosis in response to intracellular
damage26,54, their activity levels may affect anti-cancer drug
responses that induce DNA damage. Thus, the activity of BH3-
only proteins is likely associated with 5FU drug sensitivity
because the drug works by (1) blocking thymidylate synthase
and inhibiting DNA replication and repair and by (2) greatly
impacting cell metabolism and vitality via its incorporation into
DNA and RNA24. Indeed, previous studies have demonstrated
that 5FU resistance is attributed to the loss or reduction of BH3-
only protein expression levels in various cancer types24–27,
which was consistent with our findings. These results suggest
that there is a connection between BH3-only protein activity
and 5FU sensitivity; however, this relationship requires further
elucidation in colorectal cancer.

We also discovered that our model could predict the ther-
apeutic response to cisplatin in bladder cancer. Cisplatin is
commonly administered to bladder cancer patients, but only
30–40% of the patients exhibit a response with this therapy55,
suggesting that predictive biomarkers are essential to drastically
improve the benefit of the treatment. We found that the elevated
expression of the components of the “amino acid synthesis and
interconversion” pathway was associated with cisplatin response
in bladder cancer organoids. This association was further vali-
dated by survival prediction in bladder cancer patients after cis-
platin treatment (Fig. 2). These data were consistent with a recent
report in which amino acid and polyamine metabolism-
associated gene promoters were hypermethylated, resulting in
the lower expression of these genes in cisplatin-resistant bladder
cancer cell lines28. Because amino acid metabolism is closely
related to cancer progression56,57, several clinical trials are cur-
rently being conducted (e.g., ADI-PEG 20 treatment) that are
tailored toward depleting the amino acid supply to cancer cells
that are highly dependent on amino acid metabolism58,59.
Although it would be interesting to investigate whether amino
acid depletion therapy improves cisplatin efficacy in bladder
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cancer, the mechanistic role of amino acid metabolism in bladder
cancer resistance requires further clarification.

We were able to validate our biomarker analysis framework
using external molecular measurements in drug-sensitive and
-resistant isogenic cancer cell lines (Fig. 4). Although no infor-
mation on the molecular states before and after the drug treat-
ments was provided for biomarker discovery, our molecular
biomarker profiles were altered in concordance with our model
predictions from the organoid data. In the future, paired datasets
that provide molecular changes prior to and after drug treat-
ments, such as the Library of Integrated Network-based Cellular
Signatures (LINCS) L1000 datasets60, could be leveraged into the
ML model to improve the prediction of drug responses or iden-
tification of biomarkers. Also, Acar et al. recently reported a
procedure that generated a large population of reproducible,
drug-resistant cancer cells61, which were used to further validate
drug-response biomarkers. However, one caveat of using cancer
cell lines is that some cancer cells do not accurately represent
primary human tumors17,62. Accordingly, compared to using
patient-derived organoid data, we found that using large-scale
pharmacogenomic data of all the cancer cell lines did not strongly
predict survival in 5FU-treated colorectal and cisplatin-treated
bladder cancer patients (Supplementary Fig. 15). This suggests
that careful selection of cancer cell lines with high resemblance to
primary tumors is necessary for successful translational
medicine17,62,63.

Because concordance between multiple molecular levels for the
prediction of drug sensitivity was previously shown64, we wanted
to know whether our biomarker predictions were concordant
with other known biomarkers derived from non-transcriptomic
data. Indeed, we observed that our biomarkers identified from
transcriptomic data correlated with the known biomarkers
detected from somatic variants, further supporting the existence
of concordance between molecular layers (Fig. 5). Consistent with
our results, a recent study integrated multi-omic data of cancer
cell lines into network modules to improve the discovery of
biomarkers and the prediction of therapeutic responses5.
Although an ML model that integrates various molecular data
types could better facilitate the discovery of robust therapeutic
biomarkers from organoid models, such analyses would require
further molecular layer profiling in organoids, which is beyond
the scope of this study.

Because clinical trials require vast resources, we envision that
the translation of predictive biomarkers identified in preclinical
models to human tumors will continue to be an active area of
research in cancer pharmacogenomics. Importantly, we expect
that this translation will become increasingly important due to
the high molecular similarities between the organoid models and
human tumors as well as the capacity of the organoid models to
reflect drug treatment outcomes that are comparable to those
observed in human clinical trials17,18. As organoid models
become more sophisticated with the incorporation of additional
microenvironment and immune components, we believe that
biomarker discovery for cancer therapies will more quickly
advance.

Methods
Organoid model and human tumor pharmacogenomic data. We collected gene
expression and drug-response data of colorectal and bladder cancer organoids from
van de Wetering et al.22 and Lee et al.23, respectively. Drug IC50 values were used
for drug sensitivity measurements. For microarray data, we used robust multi-array
average (RMA)65 normalized expression data. For cancer patient data, we curated
mutation and gene expression, drug treatment status, and clinical outcomes from
TCGA data (https://www.cancer.gov/tcga) for colorectal (TCGA-COAD) and
bladder (TCGA-BLCA) cancers. Sequencing of human participants was performed
by TCGA consortium under a series of locally approved Institutional Review Board
(IRB) protocols as described by the consortium66. We downloaded the FPKM-UQ

(upper quartile) dataset from TCGA data portal for expression analysis. The
patient expression values were further converted to log2 (FPKM-UQ+ 1) for
convenient analysis. Because various synonymous drug identifiers were used in
TCGA clinical drug data, drug names were standardized using the DrugBank IDs
(https://go.drugbank.com/) to provide consistent naming between the two data
sources67. All gene IDs were mapped to Uniprot IDs (https://www.uniprot.org/)68.
To estimate expression activity levels of each pathway, we performed single sample
GSEA (ssGSEA) analysis using the GSEAPY python module, and the normalized
enrichment score (NES) was used to indicate pathway activation levels69. We
performed z-score standardization on each gene or pathway across all samples
within a dataset to ensure a mean equal to zero and standard deviation of one.
Finally, we assessed batch effects between the organoid and patient data using
principal component analysis (PCA) (Supplementary Fig. 1).

Preparation of protein–protein interaction network, drug target, and pathway
data. We derived the human PPI network from the STRING database (https://
string-db.org/)21. For high-confidence links, we used interactions with confidence
scores >700, as done by Fernández-Torras et al.7. We used the largest connected
component of the interactome for our analysis, which resulted in 323,774 inter-
actions between 13,824 proteins. Uniprot Gene IDs were used to map genes to the
corresponding proteins in the interactome.

To calculate the proximity of drugs to pathways, we downloaded drug–drug
target associations from DrugBank and the Reactome pathway from the MSigDB
database (C2: REACTOME [https://www.gsea-msigdb.org/gsea/msigdb/collections.
jsp])70–72. All genes found within pathways as well as annotated drug targets were
then mapped to Uniprot IDs. Finally, the network was used to filter pathways and
drugs with no genes in the PPI network.

Network-based proximity between drugs and pathways. The distance between
the pathway genes and drug-associated genes that were normalized by the random
expectation defined the proximity between pathways and drug-associated genes.
The network-based distance was calculated using the closest distance
parameter14,15. The measurement was represented by the average of the shortest-
path lengths between drug-associated genes and the nearest pathway genes,
according to the following equation:

dc ¼
1
jTj

X

t2T
mins2Sdðs; tÞ ð1Þ

where T is the set of drug-associated genes, S represents the pathway genes, and d(s,
t) is the shortest path between the drug-associated and pathway genes. Codes for
calculating network proximity were downloaded from https://github.com/emreg00/
toolbox. All of the calculations were done using python packages including pandas
(v 0.24.2), matplotlib (v 2.0.0), numpy (v 1.16.6), scipy (v 1.2.2), sklearn (v 0.20),
lifelines (v 0.19.5), and gseapy (v 0.10.1).

To assess the significance of the distance d(s,t), we bootstrapped random genes
to produce a reference distribution. We randomly selected genes by matching the
size and the number of network neighbors (degree) of the original drug-associated
genes and pathway genes and computed the closest distance. We repeated the
procedure for 1000 iterations, and the mean and standard deviation of the
reference distribution were used to calculate a z-score. A pathway resulting in a z-
score lower than 90% (α= 0.10) of the reference distribution scores (z-score ≤
−1.2816) was considered proximal.

To test whether the randomized procedure successfully limited high-
dependency toward central pathways, we checked if some pathways were always
proximal to anti-cancer drugs. We tested 44 drugs that were screened in colorectal
and bladder cancer organoids by van de Wetering et al.22 and Lee et al.23,
respectively. We found that only 3 out of 674 pathways (0.45%) were proximal to
more than half of the drugs tested (proximal to 22 drugs or more), whereas on
average, a pathway was proximal to 4.9 drugs (median: 4 drugs per pathway),
suggesting that randomized process was useful to reduce potential bias toward any
network central pathways (Supplementary Fig. 16).

Calculation of pathway predictive performance via machine-learning training.
For ML training, we used linear regression, ridge regression, and support vector
regression, which were all implemented using Scikit-learn in python73. To train ML
algorithms, we used expression profiles of genes/pathways against drug IC50 values.
Default settings of the linear-regression model (sklearn LinearRegression python
module) were used to build linear regression. For support vector regression, we
used linear kernel (sklearn SVR python module). Ridge regression was performed
using the sklearn RidgeCV function. The optimal α value was selected using
RidgeCV’s cross-validation function (threefold cross-validation) by iterating α
from 0.1 to 1 using a 0.1 interval. The regression model with the optimal α value
was used to train organoid models. Pathways were ranked based on the magnitude
of their regression coefficient, and then we defined the magnitude as the pathway
predictive performance. Pathways with high predictive performance were selected
as drug-response biomarkers.

Predictive ability of proximal pathways in organoid models. To test the per-
formance of proximal pathways in predicting drug response for organoid models,
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we split the organoid dataset into training (60%), validation (10%), and test (30%)
sets, similar to what was done by Bolis et al.74. We used ridge regression to train
and predict drug responses, and we iterated the α value from 0.1 to 1 using a 0.1
interval to train the training set and to predict drug response in the validation set.
The optimal α was selected where the root-mean-squared error was lowest in the
validation set. The optimized model was then used to predict the drug response in
the test set. The final predictive performance was measured by comparing the
correlation between the observed and predicted drug responses in the test set (R2).
To test whether a specific validation set could have effects on our results, we
sampled all possible combinations of validation sets within the training set to
predict drug responses in the test set. We found high correlation between the
observed and predicted drug responses in both colorectal cancer (R2= 0.98) and
bladder cancer organoids (R2= 0.89) (Supplementary Fig. 17), which suggests that
training the ML model with transcriptomes of proximal pathways has predictive
ability.

Inference of patient-specific drug responses. To infer patient-specific drug
responses, we introduced a measure that takes the expression levels of a pathway
and its corresponding regression coefficient, which was computed from the orga-
noid models. The drug resistance score for each patient–drug pair was calculated
according to the following function:

Scorepatient ¼ Exppatient ´ βpreclinical ð2Þ

ExpPatient represents the expression levels of a pathway for a given patient and
βpreclinical is the regression coefficient (using either linear, ridge, or support vector
regression) from preclinical models.

To enable prediction models that utilize multiple pathways to infer each
patient’s drug response, we first ranked pathways from the highest to lowest
predictive performance. The Eq. (2) was modified into the following function:

Scorepatient ¼
XN

p2P
Exppatient;p ´ βpreclinical;p ð3Þ

where N is the total number of the top predictive pathways selected for multi-
pathway analysis, p is a pathway among the selected top predictive pathways,
ExpPatient,p is the expression levels of pathway p in a given patient, and βpreclinical,p is
the regression coefficient for the pathway p.

Based on the inferred drug resistance, we rank-ordered patients and split them
into two groups (responders vs. non-responders) using the median as a cut-off, as
done by Nickerson et al.75. Kaplan–Meier survival analysis was conducted to
visualize and calculate the significance of the differences between the predicted
responders and non-responders. Kaplan–Meier survival plots were visualized using
Oasis276,77 and the lifelines package from python78. Log-rank test P-values were
calculated using the lifelines package to quantify statistical differences in overall
survival78.

Feature selection process based on network centrality. We separately used
degree, betweenness, and closeness centrality to compute network centrality scores
of each pathway. To define the representative centrality score for a pathway, we
calculated the average of all of the centrality levels of genes within the pathway. For
each drug, we selected features with high pathway centrality scores, while matching
the number of proximal pathways identified for the drug. The selected network
central pathways were tested against organoid pharmacogenomic data using ridge
regression.

Feature selection process based on a method by Bolis et al. We used a method
provided by Bolis et al.74 to select features for drug-response prediction. We
selected genes that showed significant average correlation (Spearman P-value
<0.05) with the IC50 values from the organoid screening data using 10 iterations of
leave-half-out cross-validation, as provided by the authors. These genes were then
used to train the ridge regression model and to predict drug response in cancer
patients. The median of the predicted IC50 values was then used to classify the
cancer patients as drug responders or non-responders. Of note, we were unable to
implement filtering genes by removing genes that were missing in the co-
expression network, as done by the authors, because no gene was retained after co-
expression network comparison using the organoid datasets.

Deep-learning-based prediction using a method by Sharifi-Noghabi et al. We
applied a deep-learning method by Sharifi-Noghabi et al.’s32 to our data using
transcriptomic organoid and patient data. To train organoid transcriptomic data,
we divided the organoid samples into drug responders and non-responders based
on the median IC50 value. We performed cross-validation to tune the hyperpara-
meters of the deep neural networks. The optimal hyperparameters were selected by
maximizing the area under the receiver-operating characteristic curve (AUC). The
tuned model trained on the organoid data was then used to predict the response
category for patients. All tested and selected hyperparameters are provided in the
Source data.

Analysis of isogenic drug-sensitive and -resistant cell lines. Microarray
transcriptomic data of 5FU-sensitive and -resistant isogenic colorectal cancer
cell lines were downloaded from the Gene Expression Omnibus (GEO) database
under the accession number GSE8100833. Transcriptomic data of cisplatin-
sensitive and -resistant isogenic bladder cancer cell lines were obtained from
Yeon et al.28 upon personal request. Gene expression profiles were transferred to
pathway expression levels using the single sample GSEA (ssGSEA) tool.
Unpaired, two-tailed, two-sample Student’s t-tests were used to quantify statis-
tical differences in the pathway expression levels between the drug-sensitive and
-resistant cell lines.

Association between known drug-response biomarkers and expression levels.
Following the previous work by Geeleher et al.34 and Mourragui et al.35, we
compared the predicted drug responses using equation (1) to the mutational sta-
tuses of known drug responses using TCGA cancer patient data. We investigated
the effect of BRAFV600E mutation on cetuximab (EGFR inhibitor) resistance in
colorectal cancer and of ERCC2mutations on cisplatin resistance in bladder cancer.

To analyze cetuximab resistance in colorectal cancer, we tested the extent to
which organoid samples could be removed and the associations with the
mutational biomarkers could still be recovered. We removed up to three organoid
samples to train the ML models and their performances to recover drug responses
based on known mutational biomarkers. Performances were measured by one-
sided Mann–Whitney U tests (P-value <0.05 was considered significant). We
computed the robustness of our approach by calculating the fraction of organoid
sets that recovered drug responses, using all of the possible combinations of
organoid samples to train ML models. We found that over 70% of the organoid sets
recovered drug responses when three samples were removed from the original data
(Supplementary Fig. 18). As a negative control, we trained an ML model using
whole-transcriptome or whole-pathway models and observed reduced robustness
compared to our method, demonstrating the robustness of our network-based
approach (Supplementary Fig. 18). We also showed the prediction results when
using reduced sample sizes, in which three organoid samples with hypermutations
(P19a, P19b, P24a) were removed from the analysis to reduce potential
confounding factors (Fig. 5a and Supplementary Fig. 12).

Pharmacogenomic data of cancer cell lines. We collected pharmacogenomic
data from the Genomics of Drug Sensitivity in Cancer (GDSC) database79. We
separately tested tissue type-specific cancer cell lines and all available cancer cell
lines to train the ML models because previous reports found that utilizing all cancer
cell lines compared to tissue type-specific cancer cell lines improved the prediction
performance of patient–drug responses for some anti-cancer drugs1. Potential
batch effect was corrected via z-score standardization, and the reduction of batch
effect was visualized by a PCA plot (Supplementary Fig. 14).

Data availability
Gene expression and drug-response data of colorectal cancer (COAD) organoids were
downloaded from the Gene Expression Omnibus (GEO) with the accession code
GSE64392 and from supplementary material from Wetering, Marc et al.22.
Pharmacogenomic data of bladder cancer (BLCA) organoids were downloaded from
supplementary material from Lee et al.23. Gene expression, mutation, drug treatment
status and clinical outcomes of COAD and BLCA cancer patients were downloaded from
the TCGA portal (https://www.cancer.gov/tcga). 5-Fluorouracil-sensitive and -resistant
COAD isogenic cell lines were downloaded from GEO with the accession code
GSE8100833. Large pharmacogenomic data of cancer cell lines were downloaded from
GDSC data portal (https://www.cancerrxgene.org/)79. STRING protein–protein
interaction network was downloaded from the STRING website (https://string-db.org/)21.
Drug and drug target relationship was downloaded from drugbank portal (https://go.
drugbank.com/). Gene IDs mapped to Uniprot ID were downloaded from UNIPROT
portal (https://www.uniprot.org/)68. REACTOME pathway data was downloaded from
MSigDB database (C2: REACTOME [https://www.gsea-msigdb.org/gsea/msigdb/
collections.jsp])70–72. Source data are provided with this paper.

Code availability
The source codes for reproduction of the results were developed in python 2.7 and are
available at a GitHub repository (https://github.com/billy-kong/
organoid_biomarker_detection).
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