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Abstract

The cellular immune response is the most important mediator of allograft rejection and is a major barrier to transplant
tolerance. Delineation of the depth and breadth of the alloreactive T cell repertoire and subsequent application of the
technology to the clinic may improve patient outcomes. As a first step toward this, we have used MLR and high-throughput
sequencing to characterize the alloreactive T cell repertoire in healthy adults at baseline and 3 months later. Our results
demonstrate that thousands of T cell clones proliferate in MLR, and that the alloreactive repertoire is dominated by
relatively high-abundance T cell clones. This clonal make up is consistently reproducible across replicates and across a span
of three months. These results indicate that our technology is sensitive and that the alloreactive TCR repertoire is broad and
stable over time. We anticipate that application of this approach to track donor-reactive clones may positively impact
clinical management of transplant patients.
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Introduction

Cellular immune response is the most important mediator of

transplant rejection and a major barrier to transplant tolerance [1–

3]. It is largely mediated by memory T cell populations specific for

allo-peptides presented either on allo-MHC (direct antigen

presentation) or on self-MHC (indirect antigen presentation) [3–

5]. Positive selection in the thymus requiring immature T cells to

have some binding affinity for self-HLA means that a significant

proportion of mature T cells also have off-target specificity for allo-

HLA alleles. Negative selection removes T cells specific for self-

peptides presented on self-HLA, buts leaves T cells specific for self-

peptides presented on allo-HLA [6–12]. The production of the

alloreactive T cell repertoire is further complicated by molecular

mimicry. Thus, in one well-studied example a public T cell

response specific to EBV in the context of HLA-B*08:01 has been

shown to exhibit cross-reactivity with a self-peptide presented by

HLA-B*44:02 [13–16]. These cross-reactive T cells have been

observed in HLA-B*08:01/HLA-B*44:02 mismatched lung allo-

grafts, suggesting direct clinical relevance for this mode of T cell

alloreactivity [17]. Even in individuals with no history of allo-HLA

sensitization, viral exposure or vaccine administration can create

HLA cross-reactive memory T cells [18–22].

Many studies have identified public and private alloreactive T

cell clones that can be primed by a variety of immunogenic events.

However, while public T cell clones may play an important role in

specific exposures they represent a very small proportion of the

entire T cell repertoire; investigating private T cell specificities

allows for a much broader view of the alloreactive T cell repertoire

but private T cell responses must be measured anew in each

subject.

It is our hypothesis that the alloreactive T cell repertoire can be

studied by performing mixed lymphocyte reaction cultures

[23,24], followed by molecular analysis of clonotypes thus

generated. The availability of high-throughput sequencing of

rearranged T cell receptor genes, which act as unique molecular

tags for each clonal population, now allows for unprecedented

depth and accuracy in the characterization of T cell repertoires.

Here, we employ this high-throughput TCR sequencing to test our

hypothesis by thoroughly interrogating the alloreactive T cell

repertoire between three pairs of healthy adult subjects as well as

the persistence of alloreactive T cell clones across biological

replicates and across time.
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Methods

Subjects
Human peripheral blood samples were obtained from labora-

tory volunteers under a protocol following written informed

consent approved and supervised by a Northwestern University

Institutional Review Board. These healthy volunteers were HLA-

typed by the Northwestern HLA laboratory using molecular

methods (reverse sequence specific oligonucleotide probe hybrid-

ization).

Mixed Lymphocyte Reaction (MLR) Culture and
Alloreactive Responding Cell Isolation

Peripheral blood mononuclear cells (PBMC) were isolated using

Ficoll-Hypaque. The responder cells were labeled with CFSE and

the stimulator cells labeled with PKH26 as described previously

[25,26]. The responders and stimulators were matched for 1 HLA-

DR antigen to mimic the minimum requirement for some clinical

transplants [27]. The PKH26 labeled stimulator cells were also

irradiated at 3000 rads. The responder and stimulator cells were

cultured in bulk in 15% normal AB serum containing RPMI 1640

culture medium (NAB-CM) at 16106/ml each. After 7 days these

were harvested and the proliferating responders were then sorted

on FACSAria (BD, San Jose, CA) by gating on the CFSE dim or

negative cells after gating out both CFSE high non-proliferating

and the very few PKH26+ stimulator cells that still survived.

In parallel, flow cytometric analysis of the above MLR cultures

was performed to determine which subsets of responder cells

proliferated in response to allostimulation, using fluorochrome

conjugated monoclonal antibodies. The data were acquired on an

FC500 flow cytometer (Beckman-Coulter) and analyzed for cell

subsets by gating on the CFSE dim or negative cells after gating

out both CFSE high non-proliferating and the very few PKH26+

stimulator cells [25,26]. Additionally, standard 7-day 3H-thymi-

dine incorporation assays were also performed to monitor the

strength of the MLR responses as described previously [25,26].

High-Throughput TCRb Sequencing
Genomic DNA was extracted from cell samples using Qiagen

DNeasy Blood extraction Kit (Qiagen, Gaithersburg, MD, USA).

We sequenced the CDR3 region of rearranged TCRb genes; the

TCRb CDR3 region was defined according to the IMGT

collaboration [28]. TCRb CDR3 regions were amplified and

sequenced using previously-described protocols [29,30]. Briefly, a

multiplexed PCR method was employed using a mixture of 60

forward primers specific to TCR Vb gene segments and 13 reverse

primers specific to TCR Jb gene segments. Reads of 87 bp were

obtained using the Illumina HiSeq System. Raw HiSeq sequence

data were preprocessed to remove errors in the primary sequence

of each read, and to compress the data. A nearest neighbor

algorithm was used to collapse the data into unique sequences by

merging closely related sequences, to remove both PCR and

sequencing errors.

PCR Template Abundance Estimation
To estimate the average read coverage per input template in our

PCR and sequencing approach, we employed a set of approxi-

mately 850 unique types of synthetic TCR analog, comprising

each combination of Vb and Jb gene segments [31]. These

molecules were included in each PCR reaction at very low

concentration so that only some types of synthetic template were

observed. Using the known concentration of the synthetic template

pool, we simulated the relationship between the number of

observed unique synthetic molecules and the total number of

synthetic molecules added to the reaction (this is very nearly one-

to-one at the low concentrations we employed). These molecules

Figure 1. Experimental design. We assayed three pairs of healthy adult subjects using mixed lymphocyte reaction cultures. For each pair,
lymphocytes from a responder subject were mixed with inactivated lymphocytes from a stimulator subject and cultured in duplicate. Uncultured
freshly isolated PBMC from the responder as well as proliferating T cell populations from the duplicate cultures were subjected to high-throughput
sequencing: we sequenced nine samples in total across the three pairs of subjects. Three months later, the experiments were repeated to generate
nine more samples for high-throughput TCRb sequencing.
doi:10.1371/journal.pone.0111943.g001
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then allowed us to calculate for each PCR reaction the mean

number of sequencing reads obtained per molecule of PCR

template, and thus to estimate the number of T cells in the input

material bearing each unique TCR rearrangement.

Results and Discussion

Isolation of the Alloreactive T Cell Repertoire
In order to study the breadth, clonal structure and dynamics of

the alloreactive T cell repertoire, we performed a one-way mixed

lymphocyte culture using CFSE-labeled responder cells and

PKH26-labeled stimulator cells on each of three pairs of healthy

adult subjects [25,26], with cell culture performed in duplicate.

Three months after the first experiment, we repeated this cell

culture protocol for the same three pairs of subjects. In total, we

generated 18 samples of T cells, comprising six samples from each

pair of subjects: uncultured total PBMC and purified proliferating

T cells from duplicate MLR, at baseline and after three months

(Figure 1 summarizes experimental design).

For each MLR reaction, after 7 days the proliferating

responders were sorted by gating on the CFSE dim or negative

cells after gating out both CFSE high non-proliferating and the

very few PKH26+ stimulator cells that still survived (Figure 2A).

The proliferating cells consisted of 40.364.7% CD3+CD4+ and

57.265.1% CD3+CD8+ T cells as well as minor subset of CD56+

NK cells (Figure 2B). Each population of uncultured PBMC or

Figure 2. Alloreactive Cellular Subset Profile Generated in MLR. Bulk MLRs were prepared as described in Materials and Methods. The cellular
makeup of responder cell populations were delineated at the onset and after 7 days in culture using fluorochrome coupled monoclonal antibodies.
The cells were analyzed first by gating on lymphocytes and then after gating either on total CFSE positive responder cells (A: Day 0) or on CFSE
diluted proliferating responder cells (B: Day 7).
doi:10.1371/journal.pone.0111943.g002
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proliferating T cells was subjected to amplification and high-

throughput sequencing of the CDR3 region of TCRb, which

somatically rearranges during T cell maturation and acts as a

unique molecular tag for each clonal population of T cells.

Sequencing results are presented in Table 1.

Size of the Alloreactive T Cell Repertoire
To determine the number of T cell clonal lineages involved in

the alloreactive T cell response, we analyzed the number of unique

CDR3 sequences observed in the proliferated T cell samples in

comparison to uncultured bulk T cells from the same subjects. We

defined alloreactive T cell clones as those observed in at least 10

cells in the proliferated sample and unobserved in the uncultured

T cell sample, or T cells whose frequency in the proliferated

sample was at least ten-fold higher than in the uncultured T cell

sample. We defined two sets of alloreactive T cell clones: low-

abundance alloreactive clones (below the threshold of detection in

the subject’s baseline T cell repertoire) and high-abundance

alloreactive clones (present at measurable frequency in the

subject’s baseline T cell repertoire). On average, we observed

14,000 alloreactive T cell clones in each experiment; 84% of

alloreactive T cell clones were low-abundance before proliferation,

but in total low-abundance clones made up 40% and high-

abundance clones made up 60% of the alloreactive T cell

repertoire when weighting by post-proliferation clonal abundance

(Table 2). While the number of proliferated low-abundance clones

varied considerably, variation in the number of high-abundance

(thus, presumably antigen-experienced) T cell clones between

subjects was much smaller, at about 2,000 clones in each of the six

experiments. These data indicate that thousands of different clonal

populations of T cells comprise the alloreactive T cell repertoire.

Reproducibility of the Alloreactive T Cell Repertoire
To assay the consistency of the alloreactive T cell repertoire, we

examined the persistence of each T cell clone. After defining high-

abundance and low-abundance alloreactive T cells, we compared

the set of alloreactive T cell clones generated in duplicate cell

culture experiments (Figure 3). In each subject, essentially all

clones that were highly expanded in proliferated cell culture

assorted to the high-abundance subset (i.e., were present at

Table 1. Summary of TCRb sequencing results.

Sample T cells assayed (estimated)a Unique TCRb sequences Sequencing readsb

Fresh PBMC sample #1, 0 months 4,336,812 750,211 51,160,577

Fresh PBMC sample #2, 0 months 4,774,312 1,375,340 46,370,325

Fresh PBMC sample #3, 0 months 4,016,260 991,848 33,633,101

Fresh PBMC sample #1, 3 months 713,990 264,159 17,437,692

Fresh PBMC sample #2, 3 months 1,847,987 1,046,492 23,507,950

Fresh PBMC sample #3, 3 months 2,197,064 1,061,154 18,766,880

Proliferated MLR responder #1A, 0 months 1,885,973 33,677 23,366,016

Proliferated MLR responder #1B, 0 months 1,997,723 33,387 26,098,554

Proliferated MLR responder #2A, 0 months 1,575,201 79,174 24,704,053

Proliferated MLR responder #2B, 0 months 1,527,643 68,505 13,832,785

Proliferated MLR responder #3A, 0 months 3,372,150 58,382 37,022,643

Proliferated MLR responder #3B, 0 months 3,190,902 53,316 23,126,368

Proliferated MLR responder #1A, 3 months 640,366 57,778 12,741,642

Proliferated MLR responder #1B, 3 months 587,681 53,260 9,806,707

Proliferated MLR responder #2A, 3 months 1,022,417 68,565 10,736,335

Proliferated MLR responder #2B, 3 months 522,273 53,337 10,679,864

Proliferated MLR responder #3A, 3 months 685,126 64,615 9,788,942

Proliferated MLR responder #3B, 3 months 760,990 67,586 10,999,866

35,654,870 6,180,786 403,780,300

asee Methods.
bthe total number of 87-bp sequencing reads generated.
doi:10.1371/journal.pone.0111943.t001

Table 2. Size of the alloreactive T cell repertoire.

Mean (N = 6) SD % of proliferated T cells

Number of alloreactive clones 13750 6823 100%

Low-abundance pre-culturea 11610 6494 40.0%

High-abundance pre-cultureb 2140 539 60.0%

aunobserved in pre-culture sample and $10 T cells after MLR.
bpresent in pre-culture sample and $106 enriched after MLR.
doi:10.1371/journal.pone.0111943.t002
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Figure 3. T cell clonal frequency among biological replicates of mixed lymphocyte culture. Above are six scatter plots showing the
number of T cells bearing each unique CDR3 sequence in replicate mixed lymphocyte culture experiments performed on three pairs of healthy adult
subjects. Each column corresponds to one pair of subjects; the top row of plots show T cell clones that were previously observed in a pre-MLR sample
of peripheral T cells (high-abundance), and the bottom row of plots show T cell clones unobserved in a pre-MLR sample of peripheral T cells (low-
abundance). Each point represents a unique T cell clone, and points are plotted at (# of observed T cells +1), so that clones unobserved in one
sample are plotted on the axes.
doi:10.1371/journal.pone.0111943.g003

Figure 4. T cell clonal frequency among temporal replicates of mixed lymphocyte culture. Above are three scatter plots showing the
number of T cells bearing each unique CDR3 sequence in replicate mixed lymphocyte culture experiments performed three months apart on each of
three pairs of healthy adult subjects. Considering only T cell clones previously observed in a pre-MLR T cell sample from each time-point and enriched
at least ten-fold after mixed lymphocyte culture, each point represents a unique T cell clone and points are plotted at (# of observed T cells +1) so
that clones unobserved in one sample are plotted on the axes.
doi:10.1371/journal.pone.0111943.g004
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appreciable frequency in the peripheral T cell repertoire to begin

with). Reproducibility between duplicate cell culture experiments

was high among this set of abundant and highly alloreactive T cell

clones (average r2 among three subjects = 0.96), indicating that

when presented with identical stimuli these clonal populations of T

cells responded in a very reproducible manner.

Since our replicate cell culture experiments did not address the

stability of the alloreactive T cell repertoire over time, we repeated

the T cell isolation and duplicate MLR experiments with the same

three pairs of subjects three months after our initial experiment.

Specifically, we hypothesized that high-abundance alloreactive

clones, which we presume to represent memory T cells due to their

frequency in the peripheral T cell repertoire, should be stable over

time and thus should remain in the alloreactive T cell

compartment. Figure 4 presents the high-abundance T cell

repertoire after three months in each pair of subjects. Many T

cell clones identified as part of the high-abundance alloreactive T

cell repertoire at baseline were observed in the high-abundance

alloreactive T cell repertoire three months later, at similar clonal

frequencies (Figure 4; average r2 = 0.78). To quantify similarity

between sets of T cells, we calculated a TCR overlap metric (the

proportion of T cells belonging to clones found in both samples)

[29]. Table 3 presents the TCR overlap between duplicate cell

culture experiments and between experiments spaced three

months apart. While duplicate cell culture experiments generated

more concordant sets of alloreactive T cell clones than experi-

ments from different time-points, overlap between different time-

points was nonetheless quite high (mean overlap = 0.97 for

duplicate experiments vs. 0.87 across time-points). We hypothesize

that the lower overlap over time might be due to the emergence of

naı̈ve T cell clones of exceptional size which would not be

expected to persist in the periphery and/or the noise in the

estimation of absolute cellular abundance could have caused a

subset of low-abundance clones to be erroneously classified as

high-abundance in our experiment [32–34].

The low-abundance alloreactive T cell clones, however, showed

lower reproducibility between duplicate cell culture experiments

(Table 3, bottom) and appeared to be considerably more transient.

Comparisons between biological duplicates were much more

concordant than comparisons between time-points (mean over-

lap = 0.55 for duplicate experiments vs. 0.10 across time-points).

Several hypotheses may explain why T cell clones were not

reproducibly found in the low-abundant alloreactive T cell

compartment; first, the lower overlap between biological replicates

is mostly due to sample error (most unique T cell lineages are at

very low abundance, and we cannot reliably find a T cell clone in

two biological replicates unless it is present in at least several cells);

second, the even lower reproducibility after three months can be

attributed to a preponderance of newly emerged naı̈ve T cell

clones among this subset; lastly, these clones may represent

memory T cell populations that did not persist at detectable levels

in the periphery over the intervening time [32–34].

Taken together, our TCR repertoire analysis is highly sensitive

and reproducible. Further, our results indicated that a majority of

the alloreactivity observed between three pairs of healthy adults

was attributable to a set of several thousand T cell clones, present

at reasonably high frequency in the peripheral T cell repertoire,

whose alloreactive potential remained stable over at least several

months. While we cannot conclusively demonstrate using TCR

sequencing that the proliferating clones identified are specifically

alloreactive, our screening algorithm (requiring a T cell clone to

represent a 106 higher proportion of the proliferated than the

fresh sample) should ensure that only a minimal number of

nonspecifically-proliferating clones are identified. Likewise, we do

not anticipate that our method will reliably identify all T cell

clones which will react to and infiltrate an allograft. However, we

expect neither tracking of some irrelevant T cell clones nor failure

to track some genuinely alloreactive clones should compromise

clinical utility so long as a sufficient number of truly alloreactive

clones are also identified and tracked, providing a means of

quantitating the host cellular immune response to the allograft.

We anticipate that application of our approach to transplanta-

tion could have a positive impact in the clinical management of

patients. This is to be achieved by performing donor-specific MLR

at transplant to pre-define the donor-reactive T cell repertoire,

and then tracking their presence, abundance and dynamics in

recipient primary tissues (e.g. peripheral blood, allograft biopsies,

urine) during the post-transplant period. Such an approach will

make this technology utilizable in both living donor and deceased

donor transplants. We speculate that foreknowledge of the

alloreactive T cell repertoire could thus be combined with post-

transplant immune profiling in the recipient peripheral blood for

non-invasive monitoring of cellular allograft rejection. Conversely,

Table 3. TCR overlap between biological & temporal replicate mixed lymphocyte culture experiments.

Biological replicates (N = 2)a Temporal replicates (N = 4)b

High-abundance pre-culturec

Subject 1 0.96 0.78

Subject 2 0.98 0.93

Subject 3 0.98 0.89

Average 0.97 0.87

Low-abundance pre-cultured

Subject 1 0.54 0.15

Subject 2 0.43 0.06

Subject 3 0.67 0.08

Average 0.55 0.10

aMLR Cultured in duplicate.
bMLR performed at three months apart.
cPresent in pre-culture sample and $106 enriched after MLR.
dUnobserved in pre-culture sample and $10 T cells after MLR.
doi:10.1371/journal.pone.0111943.t003
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absence of the donor reactive clones from the post-transplant

repertoire would indicate immune tolerance.
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