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Abstract

One of the biggest challenges in tissue engineering and regenerative medicine is to

incorporate a functioning vasculature to overcome the consequences of a lack of

oxygen and nutrients in the tissue construct. Otherwise, decreased oxygen tension leads

to incomplete metabolism and the formation of the so‐called reactive oxygen species

(ROS). Cells have many endogenous antioxidant systems to ensure a balance between

ROS and antioxidants, but if this balance is disrupted by factors such as high levels of

ROS due to long‐term hypoxia, there will be tissue damage and dysfunction. Current

attempts to solve the oxygen problem in the field rarely take into account the

importance of the redox balance and are instead centred on releasing or generating

oxygen. The first problem with this approach is that although oxygen is necessary for

life, it is paradoxically also a highly toxic molecule. Furthermore, although some

oxygen‐generating biomaterials produce oxygen, they also generate hydrogen

peroxide, a ROS, as an intermediate product. In this review, we discuss why it would be

a superior strategy to supplement oxygen delivery withmolecules to safeguard the impor-

tant redox balance. Redox sensor proteins that can stimulate the anaerobic metabolism,

angiogenesis, and enhancement of endogenous antioxidant systems are discussed as

promising targets. We propose that redox regulating biomaterials have the potential to

tackle some of the challenges related to angiogenesis and that the knowledge in this

review will help scientists in tissue engineering and regenerative medicine realize this aim.
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1 | OXYGEN IN TISSUE ENGINEERING AND
REGENERATIVE MEDICINE

One of the biggest challenges faced by tissue engineers is the engineer-

ing of a vasculature in their constructs (Stegen, van Gastel, et al., 2016).

This vasculature is needed to deliver oxygen and other nutrients, and

the lack thereof limits the size of tissue engineered constructs and is

a major barrier to their successful function. As an example, one of the

tissues that is very dependent on the delivery of oxygen is the
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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(bioengineered) pancreas. In type 1 diabetes, the insulin‐producing beta

cells are destroyed by the immune system. In order to cure this, one of

the current therapies is the transplantation of de novo beta cells, but

the success of this therapy is hindered by the lack of vascularization

and accompanying low oxygen and nutrient levels (Figure 1). Indeed,

oxygen is an essential metabolic requirement that needs to be delivered

to cells, but it is also a molecule with a biological function. It is known to

regulate stem cell fate (Simon & Keith, 2008; Tan & Suda, 2017; Ushio‐

Fukai & Rehman, 2014; Veber, Dolivo, Rolle, & Dominko, 2017), with
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higher endogenous antioxidant levels seen in stem cells than in differ-

entiated cells (Valle‐Prieto & Conget, 2010). When cells experience a

lack of oxygen, or hypoxia, a rise in reactive oxygen species (ROS) is

induced. A physiological rise in ROS leads to proliferation, whereas a

larger increase in ROS induces differentiation (Tan & Suda, 2017;

Ushio‐Fukai & Rehman, 2014). Apart from a direct effect, a lack of

oxygen can influence the transcription factor hypoxia inducible factor

(HIF) that affects Notch and Wnt/β‐catenin signalling to induce

differentiation of endogenous neural stem and progenitor cells that

are activated after stroke (Cunningham, Candelario, & Li, 2012).

Interestingly, in tissue engineering and regenerative medicine,

oxygen is known as a life‐giving necessity. However, from a redox

biology perspective, oxygen is considered an extremely toxic molecule

(Sies, 2015). In this review, we explore this paradox, examine current

approaches for delivering oxygen in tissue engineering, and propose

that it is time for an alternative strategy inspired by redox biology.
2 | THE IMPORTANCE OF THE REDOX
BALANCE

Functional tissues and organs maintain a tightly regulated balance

between oxidants and antioxidants (Figure 2a). Oxidants are com-

pounds that generate ROS such as radicals, whereas antioxidants

scavenge radical species and prevent other compounds from being

oxidized (Ursini, Maiorino, & Forman, 2016). The reactions induced

by oxidants and antioxidants are collectively called redox reactions,

or reduction and oxidation reactions, respectively.
(a) (b)

FIGURE 1 (a) Alpha and beta cells are organized in the highly vascularized
include maintaining balanced glucose levels. Alpha cells release glucagon in
in periods of starvation, whereas insulin is released by the beta cells directly
the immune system attacks the beta cells, (c) and one option for a cure is a
be implanted at different sites (e.g., liver, peritoneum, or subcutaneous). H
and nutrients levels, the transplanted cells may not function properly
Cells can experience higher concentrations of oxidants due to

endogenous factors such as enhanced aerobic metabolism, or exoge-

nous factors such as radiation (Figure 2b). Fortunately, every cell is

equipped with multiple endogenous antioxidant systems including

the glutathione (GSH) system, thioredoxin system, different vitamins,

and protective enzymes such as catalase or superoxide dismutase that

can be upregulated to restore the redox balance on demand. In this

regulation, different redox regulated transcription factors are involved,

for example, nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) or HIF

(Figure 2c). These endogenous antioxidant systems are compartmen-

talized. For example, GSH and superoxide dismutase are present at

high levels in mitochondria, where aerobic metabolism takes place,

whereas vitamin E can mainly be found in the plasma membrane.

During oxidative stress, oxidants such as ROS are generated in

excess relative to endogenous antioxidant levels, and the balance cannot

be maintained (Sies, 2015). Although a short‐term and relatively small

increase in ROS is necessary for the redox signalling that is important in

processes such as inflammation (NADPH oxidases) or angiogenesis

(HIF‐regulated; Sthijns, Weseler, Bast, & Haenen, 2016), a long‐term

and relatively large rise in ROS induces damage to essential cellular mac-

romolecules, DNA, proteins, or lipids that may ultimately lead to the

development of diseases such as diabetes (Gough & Cotter, 2011). For

example, the onset of both type 1 and type 2 diabetes appear to be partly

caused by beta cell dysfunction following oxidative stress (Fridlyand &

Philipson, 2004). Indeed, beta cells are very sensitive to oxidative stress

because they contain lower endogenous antioxidant levels than many

other cell types (Robertson, Harmon, Tran, Tanaka, & Takahashi, 2003).

And the high blood glucose levels characteristic in diabetes lead to
(c)

islets of Langerhans in a healthy human pancreas, and their functions
response to low blood glucose levels, ensuring sufficient energy supply
after a meal, inducing storage of excess glucose. (b) In type 1 diabetes,
bioengineered pancreas of encapsulated islets of Langerhans that can
owever, because of reduced angiogenesis and subsequent low oxygen



FIGURE 2 (a) In physiological conditions, cells have a tightly
regulated and highly dynamic redox balance to maintain an
equilibrium between oxidants and antioxidants. The cell is
continuously exposed to different endogenous and exogenous oxidant
and antioxidant challenges, but with endogenous oxidant generators
and modulation of endogenous antioxidant systems, the cell is capable
of maintaining the balance. (b) When the cell is exposed to more
oxidants than the endogenous antioxidant systems can handle, this
can disrupt the balance and induce a phenomenon called oxidative
stress. This can happen, for example, when cells are exposed to an
excess of oxygen, called hyperoxia. Hyperoxia dramatically increases
the rate of aerobic metabolism, resulting in the generation of reactive
oxygen species (ROS) due to incomplete metabolism, which in turn
disrupts the redox balance and results in damage to cellular
macromolecules, including DNA, lipids, and proteins. (c) The redox
balance can be restored by targeting endogenous modulators of the
endogenous antioxidant systems. For example, enhancement of the
transcription factor Nrf2 increases (basal) levels of endogenous
antioxidant systems (Sthijns et al., 2017), whereas increasing the
transcription factor hypoxia inducible factor (HIF) induces anaerobic
metabolism, stimulates angiogenesis, and increases glutaminase‐
mediated glutathione synthesis, thereby enhancing endogenous
antioxidant systems (Stegen, van Gastel, et al., 2016; Thirlwell, Schulz,
Dibra, & Beck, 2011)
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increased metabolism that induces the formation of oxidative stress by,

for example, reducing the NADPH that is necessary for maintaining the

level of the antioxidant GSH (the polyol pathway; Brownlee, 2001) or

by overloading the electron transport chain thereby inducing the
formation of ROS. Subsequently, the formed ROS contribute to the

pathology of diabetes in multiple ways. First of all, the expression of insu-

lin mRNA and other genes important in its regulation (e.g., GLUT‐4) are

decreased, as is the binding of the transcription factor PDX1 to its

promotor site (Kajimoto& Kaneto, 2004; Rains & Jain, 2011). On the pro-

tein level, oxidation of Ser/Thr protein kinases leads to the phosphoryla-

tion and activation of the insulin receptor substrate‐1 that inhibits

downstream phosphatidyl‐inositol‐3‐kinase activation, thereby impairing

glucose transport, glycogen formation, and gluconeogenesis and further

contributing to insulin resistance in diabetes (Tiganis, 2011). And finally,

when focusing on lipids, lipid peroxidation products are mediators of

the immune system involved in the degradation of pancreatic beta cells,

which can further deteriorate the status of the patient (Tangvarasittichai,

2015). Beyond diabetes, oxidation of cellular DNA, proteins, and lipids

can contribute to a wide range of pathologies, including cardiovascular

or neurodegenerative diseases (Maher, 2017; Ooi, Goh, & Yap, 2017).
3 | OXYGEN‐RELEASING AND OXYGEN‐
GENERATING BIOMATERIALS

Knowing its importance in biology, many biomaterials have been

designed to either release or generate oxygen (Farris, Rindone, &

Grayson, 2016; Gholipourmalekabadi, Zhao, Harrison, Mozafari, &

Seifalian, 2016; Harrison, Eberli, Lee, Atala, & Yoo, 2007; Ma et al.,

2016). The so‐called oxygen‐releasing biomaterials comprise the oxygen

carriers, including perfluorocarbons, silicone oils, or crosslinked

haemoglobin (Kimelman‐Bleich et al., 2009; Radisic et al., 2006). The

most common oxygen‐generating biomaterials contain peroxides,

sodium percarbonate, calcium oxide (Coronel, Geusz, & Stabler, 2017),

cerium oxide (Mahapatra et al., 2017; Marino et al., 2017), magnesium

oxide (Roh et al., 2017), or fluorinated materials. However, the success

of these materials is limited by a major biological challenge because

hyperoxia induces the formation of ROS by dysregulating the redox

balance, and this can have dire effects on cell survival and function.

Further complications are present when the material contains peroxides,

as these also generate hydrogen peroxide (H2O2) upon contacting water

(Farris et al., 2016). H2O2 is one of the ROS that damages essential

cellular macromolecules, and in response, lipid peroxidation is induced

(D'Agostino, Olson, & Dean, 2009), proteins are oxidized (Awasthi,

Gyurasics, Knight, Welty, & Smith, 1998), and DNA strand breaks and

associated mutations are provoked (Cacciuttolo, Trinh, Lumpkin, & Rao,

1993), potentially leading to cellular dysfunction and death (Wijeratne,

Cuppett, & Schlegel, 2005). It should be clear that the use of oxygen‐

releasing or oxygen‐generating biomaterials should be considered with

caution, as many of the intended positive effects of supplying oxygen

may be accompanied by devastating effects of oxidative stress.
4 | BIOMATERIALS MODULATING THE
ENDOGENOUS ANTIOXIDANT SYSTEMS

Knowing that cells need oxygen to survive, but that supplying oxygen

carries a sizeable risk of disturbing the redox balance and leading to

oxidative stress, some scientists have engineered materials that better

reflect an understanding of the complicated nature of redox biology.
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One promising approach is to use drug delivery strategies that directly

incorporate antioxidant enzymes such as catalase in biomaterials in

order to maintain the redox balance even in the presence of oxygen

(Gholipourmalekabadi et al., 2016; Luo, O'Reilly, Thorpe, Buckley, &

Kelly, 2016). In this case, an endogenous antioxidant enzyme present

in every living cell is added to the oxygen‐generating biomaterials to

scavenge the released H2O2 intermediate product and convert it to

water and oxygen. The challenge with this approach is that antioxi-

dants, like other drugs, have a narrow effective range. Indeed, too

much antioxidant can also be toxic or is associated with diseases

related to decreased proliferation or immunosuppression (Bast &

Haenen, 2013; Galadari, Rahman, Pallichankandy, & Thayyullathil,

2017; Schieber & Chandel, 2014). Nonetheless, with careful modula-

tion of the release profile, it should be possible for a biomaterial to

help maintain the redox balance.

A more elegant approach could be to supplement oxygen delivery

with the modulation of endogenous antioxidant systems by designing

a scaffold that is responsive to ROS levels (Martin et al., 2014; Tang

et al., 2015; Figure 3a). For example, this could be done by using

poly(thioketal) urethane or poly‐(1,4‐phenyleneacetone dimethylene

thioketal) in tissue engineered scaffolds or nanoparticles for drug

delivery in the presence of ROS. A biomaterial could be designed to

only release oxygen in hypoxic conditions or to release oxidants or

antioxidants in response to the local ROS levels.
FIGURE 3 (a) A superior strategy for redox modulation could be to
design a biomaterial that releases a drug in presence of excess
reactive oxygen species (ROS) or oxidative stress. (b) The molecular

targets are the redox sensor transcription factors Nrf2 and hypoxia
inducible factor (HIF). By modulating Nrf2, the regulation of
endogenous antioxidant systems (Sthijns et al., 2017) is induced,
resulting in restoration of the redox balance. HIF activation increases
anaerobic metabolism, stimulates angiogenesis, and increases
glutaminase‐mediated glutathione synthesis, thereby enhancing
endogenous antioxidant systems to recover the redox balance
(Stegen, van Gastel, et al., 2016; Thirlwell et al., 2011). (c) Introducing
Nrf2 and HIF enhancers in a biomaterial for pancreatic islets could
prevent damage from oxidative stress, induce alternative metabolic
pathways to ensure a sufficient energy supply, and enhance
angiogenesis
5 | MOLECULAR TARGETS FOR TISSUE
ENGINEERS

Because simply supplementing oxygen or introducing antioxidants into

a biomaterial can still interfere with the redox balance and lead to

undesirable outcomes, it is important for scientists in tissue engineer-

ing and regenerative medicine to have some knowledge about the

essential proteins in redox regulation, so they can monitor or even

modulate the cellular response. Redox sensor proteins are involved

in detecting the dynamic balance between oxidants and antioxidants

in the cell and driving the intracellular feedback mechanisms to

increase the synthesis of important endogenous antioxidant systems

or to regulate intracellular ROS signalling (Brigelius‐Flohe & Flohe,

2011). High‐throughput screening of cellular redox sensors using

modern redox proteomics revealed that redox‐related transcription

factors NRF2 and HIF are promising targets for modulation, especially

on the antioxidant side of the balance (Jiang, Wang, Nice, Zhang, &

Huang, 2015; Figure 3b).

For example, Nrf2 is a redox sensor protein that works to upreg-

ulate endogenous antioxidant systems, but it also takes into account

the local endogenous antioxidant levels and ROS. The mechanism

for upregulating endogenous antioxidant systems is through Keap1,

an Nrf2 inhibitor that normally directs Nrf2 for proteasomal degrada-

tion. Upon encountering ROS, however, newly synthesized Nrf2 is

directed to the nucleus and functions as a transcription factor to

upregulate the expression of antioxidant genes (e.g., GCLC, the rate‐

limiting enzyme for GSH synthesis, which is one of the major endoge-

nous antioxidants). This pathway is also an example of the precise bal-

ance between oxidants and antioxidants because Nrf2 has three
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mechanisms through which it can respond to endogenous antioxidant

levels. First, GCLC expression is not continuously upregulated. Nrf2

induces a negative feedback loop, thereby decreasing the expression

of GCLC and the formation of endogenous GSH (Kaspar & Jaiswal,

2010). Second, GSH depletion itself (when ROS is absent) also induces

Nrf2 activation (Chia et al., 2010). Finally, the formed protein GCL has

a catalytic subunit that only functions when GSH levels are low, mean-

ing that GSH synthesis by GCL is only increased when low levels of

GSH are present (Huang, Chang, Anderson, & Meister, 1993; Rahman,

Bel, Mulier, Donaldson, & MacNee, 1998; Rahman & MacNee, 1999;

Sthijns et al., 2016; Tian, Shi, & Forman, 1997). Therefore, the added

benefit form targeting the Nrf2 pathway for modulation is that it nat-

urally keeps the antioxidant and oxidant balance into account.

Another strategy is to target the oxidant side of the balance by

regulating the activity of the most important endogenous generator

of ROS, NADPH oxidase (Panday, Sahoo, Osorio, & Batra, 2015).

Importantly, NADPH oxidases also take into account the redox bal-

ance, because they contain a sensor for the amount of endogenous

H2O2 present and regulate their activity based on that (Nisimoto,

Ogawa, Kadokawa, & Qiao, 2018).

Interestingly for tissue engineering, these proteins are not just

central to redox signalling but are also potential targets for modulation

by a biomaterial or other strategies (Figure 3c). Indeed, many different

release strategies already exist, such as the entrapment and controlled

release of bioactive factors from engineered matrices, so modulation

of redox factors is a reasonable reality (van Blitterswijk et al., 2008).

And the evidence for the need of such a strategy is seen in the

involvement of HIF, Nrf2, and NADPH oxidase in the regeneration

of both highly oxygen‐demanding tissues (e.g., brain/neurons, heart,

and pancreas) and low oxygen tissues (e.g., bone and cartilage), which

is explored in the remainder of this section.
5.1 | HIF pathway

Apart from its role as an important redox sensor protein involved in

stimulating anaerobic metabolism, angiogenesis, and enhancing

endogenous antioxidant systems (Stegen, van Gastel, et al., 2016;

Thirlwell et al., 2011), HIF is also an important regulator in the regen-

eration of different tissues including neurons, heart, bone, cartilage,

and pancreas. In neurons, low oxygen tension induces ROS, which is

a signal for neurogenesis (Hameed et al., 2015; Zeng, Kamei, Wang,

& Tsai, 2016), and HIF1α signalling enhances axon regeneration (Alam

et al., 2016; Cho et al., 2015), which is also linked to ROS levels

(Quinta et al., 2016). In the heart, Hif1α is essential for

cardiomyogenesis (Kudova et al., 2016), and the hypoxia experienced

after myocardial infarction is known to enhance the systolic function

of the left ventricle and prevent fibrosis in mice (Nakada et al.,

2017). On the other hand, high oxygen levels induce cardiomyocyte

cell cycle arrest but enhance cardiomyocyte function (Carrier et al.,

2002; Puente et al., 2014). During bone fracture repair, Hif upregula-

tion is seen in rats (Komatsu & Hadjiargyrou, 2004), and HIF1α is

known to be essential in both bone and cartilage repair (Jiang et al.,

2016; Kanichai, Ferguson, Prendergast, & Campbell, 2008; Stegen,

Deprez, et al., 2016; Stegen, van Gastel, et al., 2016; Wan et al.,

2008; Zou et al., 2012).
Taken together, it is clear that HIF is not only important but also

an essential player in the regeneration of various damaged tissues,

which underlines the promise of an approach using HIF inducers in

biomaterials. For example, the addition of deferoxamine, a HIF

inducer, into a 3D‐bioresorbable bone graft substitute increased bone

formation (Cahill, Choudhury, & Riley, 2017; Drager et al., 2017). Fur-

thermore, deferoxamine also has been shown to improve the success

of human islet transplantation, a therapy used in regenerative medi-

cine to replace the damaged beta cells in the pancreas, thereby

motivating its application in other tissues (Stokes et al., 2013).
5.2 | NADPH oxidase

Another important redox modulator that has not yet been a major tar-

get in tissue engineering is NADPH oxidase. NADPH oxidase induces

ROS formation (superoxide), which is necessary for redox signalling. In

terms of applications in tissue regeneration, NADPH oxidase also

plays an important role in the regeneration of damaged tissues. For

example, NADPH oxidase‐dependent ROS formation stimulates the

differentiation of murine pancreatic progenitor cells into endocrine

cells and thereby enhances pancreatic beta cell regeneration (Liang

et al., 2016) while inhibiting proliferation (Wang & Wang, 2017). In

addition, NADPH oxidase‐induced ROS formation also contributes to

the differentiation of cardiomyocytes from embryonic stem cells

(Buggisch et al., 2007). The NAPDH oxidase inhibitors apocynin and

diphenyleneiodonium (Altenhofer, Radermacher, Kleikers, Wingler, &

Schmidt, 2015; Drummond, Selemidis, Griendling, & Sobey, 2011),

small molecule pharmacological inhibitors of the enzyme, could be

easily incorporated in a redox regulating biomaterial to further lever-

age their positive effects for tissue engineering and regenerative

medicine.
5.3 | Nrf2 pathway

Nrf2 has likewise not yet been a major target in tissue engineering

approaches. Nrf2 enhances the expression of endogenous antioxidant

systems, and multiple studies underline its essential role in regulating

the regeneration of pancreatic, cardiac, and bone tissue. Specifically,

deletion of the transcription factor Nrf2 in diabetic mice exacerbates

hyperglycaemia (Aleksunes, Reisman, Yeager, Goedken, & Klaassen,

2010), whereas enhancing Nrf2 improves diabetic wound healing

(Soares et al., 2016). The loss of Nrf2‐downstream target NAD(P)H:

quinone oxidoreductase 1 induced beta cell destruction and confirms

the essential modulating role of Nrf2 in beta cell function (Yeo et al.,

2013). In the heart, Nrf2 prevents pathological hypertension‐induced

cardiac remodelling and concomitant heart failure (Zhou, Sun, Zhang,

& Zheng, 2014) and is essential for cardiac repair after injury (Tao

et al., 2016). Finally, Nrf2 upregulation is detected during bone frac-

ture repair in rats (Komatsu & Hadjiargyrou, 2004), and inhibition of

thioredoxin, one of the essential endogenous antioxidant systems

mediated by Nrf2, reduced fracture healing (Muinos‐Lopez et al.,

2016). All in all, targeting Nrf2 is a promising strategy to enhance

the regenerative capacity of numerous tissues. One approach could

be to supplement existing biomaterials with Nrf2 small molecular

modulators such as auranofin, sulforaphane, or tert‐
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butylhydroquinone (Ma, 2013) to enhance endogenous antioxidant

systems, restore the redox balance, and improve the survival and func-

tion of the engineered tissue.
6 | PERSPECTIVE ON NEW STRATEGIES

Compared with current approaches for oxygen delivery, the advantage

of modulating endogenous antioxidant systems is that the problems

with oxygen toxicity are avoided. The endogenous redox balance must

be considered, as it is the redox‐regulating systems themselves that

are modulated in cells and not the antioxidant systems or ROS levels

alone. Furthermore, because the mechanisms related to the redox bal-

ance are present in all tissues, their modulation is widely applicable,

unlike, for example, tissue‐specific growth factors. Finally, scientists

can benefit from the fact that redox modulation is essential for both

regeneration and angiogenesis, which suggests great promise for over-

coming many of the challenges in tissue engineering and regenerative

medicine.
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