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We describe a novel approach for evaluating SNP genotypes of a genome-wide association scan to identify
“ethnic outlier” subjects whose ethnicity is different or admixed compared to most other subjects in the
genotyped sample set. Each ethnic outlier is detected by counting a genomic excess of “rare” heterozygotes
and/or homozygotes whose frequencies are low (<1%) within genotypes of the sample set being evaluated.
This method also enables simple and striking visualization of non-Caucasian chromosomal DNA segments
interspersed within the chromosomes of ethnically admixed individuals. We show that this visualization of
the mosaic structure of admixed human chromosomes gives results similar to another visualization
method (SABER) but with much less computational time and burden. We also show that other methods for
detecting ethnic outliers are enhanced by evaluating only genomic regions of visualized admixture rather
than diluting outlier ancestry by evaluating the entire genome considered in aggregate. We have validated
our method in the Wellcome Trust Case Control Consortium (WTCCC) study of 17,000 subjects as well as
in HapMap subjects and simulated outliers of known ethnicity and admixture. The method’s ability to
precisely delineate chromosomal segments of non-Caucasian ethnicity has enabled us to demonstrate pre-
viously unreported non-Caucasian admixture in two HapMap Caucasian parents and in a number of WTCCC
subjects. Its sensitive detection of ethnic outliers and simple visual discrimination of discrete chromosomal
segments of different ethnicity implies that this method of rare heterozygotes and homozygotes (RHH) is
likely to have diverse and important applications in humans and other species.

INTRODUCTION

Genome-wide association (GWA) scans typically genotype at
least 1000 subjects at hundreds of thousands of SNPs densely
covering the human genome (1,2). Similar genome-wide SNP
genotyping is also providing densely genotyped reference sub-
jects (e.g. in HapMap) which are useful for investigating
diverse genomic features (CNVs, gene expression, linkage dis-
equilibrium, ethnic and forensic identification, population
history, etc.) that can be specific to a chromosomal region or
evaluated more globally (3–9). Whether used for GWA, refer-
ence, or other purposes, the ethnic ancestry of genotyped sub-
jects is often pivotal since GWA scans can yield statistically
inflated or false-positive results if cases and controls are

ethnically mismatched or admixed (10); and conclusions
from reference samples can be undermined by unknown
ethnic differences or enhanced by accurate ethnic characteriz-
ation (11). Since a subject’s ethnic admixture or difference is
often confined to a fraction of the genome, tools are now
needed that use GWA genotypes to identify the chromosomal
location(s) of admixed DNA and to detect subjects whose
admixture may be relatively minor genome-wide while
being substantial within specific chromosomal regions.

To avoid results confounded by ethnic differences or admix-
ture, studies with GWA or reference samples often aim to
include only subjects of a single ethnicity and to exclude
“ethnic outliers” whose ancestry is admixed or different
from the majority of genotyped subjects (10). One current
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approach for identifying ethnic outliers from their GWA geno-
types uses principle components-multidimensional scaling
(PC-MDS) to plot each subject along principle axes of genoty-
pic variation, thereby mapping subjects into visually tight,
ethnic clusters that identify outliers who fail to cluster with
other subjects in the dataset (12). A second approach evaluates
allele sharing between pairs of genotyped subjects at all GWA
SNPs and identifies ethnic outliers by very low allele sharing
with most other subjects as quantified by a Z-score statistic
implemented in PLINK (13). As customarily applied, these
approaches provide a global assessment of outlier status that
contains no information about the chromosomal location of
ethnic outlier DNA which may be confined to a fraction of
the genome in ethnically admixed individuals. Furthermore,
these approaches also customarily evaluate genotypes from
the entire genome considered in aggregate which can dilute
the fraction of a subject’s genome that contains outlier DNA,
resulting in failure to detect more modest ethnic admixture.

Here we describe a novel strategy for evaluating GWA gen-
otypes that detects subjects whose ethnicity is different or
admixed compared to most other subjects in the genotyped
sample set. Furthermore, we demonstrate that this approach
enables simple and striking visualization of non-Caucasian
DNA segments interspersed within ethnically admixed
chromosomes, thereby delineating a clearly defined chromoso-
mal mosaicism analogous to the chromosomal mosaicism pro-
duced by intercrossing different strains of inbred mice (14,15).
We demonstrate visualization of admixed chromosome mosai-
cism and detection of ethnic outliers by applying our method
to self-reported European Caucasian subjects in 7 disease and
2 control sample sets genotyped for GWA scans by the Well-
come Trust Case Control Consortium (WTCCC) (see www.
wtccc.org.uk). We also further validated the method in
HapMap subjects and in simulated outliers of known ethnicity
and admixture. Our method is shown to detect ethnic outliers
not identified by WTCCC application of PC-MDS (12) or by
the PLINK allele-sharing Z-score (13); and we also show
that our visualization of mosaicism in ethnically admixed
chromosomes gives results similar to those of a fundamentally
different visualization method (SABER) but with much less
computational time and burden.

Our method combines two techniques for detecting ethnic
outliers that provide complementary information. One tech-
nique is based on evaluating homozygote genotypes of low
frequency (which we call “rare homs”) while the other evalu-
ates low-frequency heterozygotes (referred to as “rare hets”).
We call the combined technique the method of rare heterozy-
gotes and homozygotes or “RHH”. Software for performing
RHH analyses will be made available at the time of publi-
cation via the internet (http://sourceforge.net/projects/rhh/ or
http://www.sanger.ac.uk/resources/software/rhh/).

Although the RHH method evolved from initial investi-
gations of genotype quality and detection of ethnic outliers,
the method is enhanced by its subsequently discovered
ability to visualize and precisely map ethnic outlier DNA to
discrete chromosomal segments and to also delineate the
portion of an outlier’s genome which is not ethnically
admixed (Fig. 1, 2). This simple visual discrimination of dis-
crete chromosomal segments of different ethnicity provides a
visual mosaic “fingerprint” of an admixed subject’s genome

which is likely to have a number of important applications.
One such application is to greatly enhance detection of
genomes containing ethnic admixture even when the amount
of admixture is small. For example, to the best of our knowl-
edge, we report for the first time that while most HapMap Cau-
casian (CEU) parents show no evidence of non-Caucasian
admixture, two CEU parents (NA12872, NA11993) each
carry a single large chromosomal segment of non-Caucasian
DNA of probable African origin. These segments are 19 and
29 megabases (Mb) long making this outlier DNA too dilute
to be detected by alternative outlier methods that evaluate gen-
otypes from the entire human genome (�3000 Mb) considered
in aggregate. But RHH was able to visualize the location of
each non-Caucasian segment and we then evaluated only gen-
otypes from the region spanned by the segment using a
PC-MDS algorithm that clearly demonstrated each segment’s
ethnic similarity to HapMap Africans (see DISCUSSION).

The RHH method was developed in several stages which is
reflected in the RESULTS section. The first two sections
describe observations that led to the discovery that ethnic out-
liers carry excess numbers of rare homs and/or rare hets. We
also demonstrate the use of genotype quality scores to elimin-
ate samples with excess rare hets or rare homs due to genotyp-
ing error rather than ethnicity. Then we describe our discovery
that many ethnic outliers exhibit a chromosomal mosaicism in
which discrete segments of “non-Caucasian” DNA are visual-
ized by the presence of dense rare hets surrounded by seg-
ments of “Caucasian” DNA that lack rare hets. We also
compare RHH with two other, fundamentally different algor-
ithms for detecting ethnic outliers (PC-MDS, PLINK
Z-score) in order to: (a) show the validity and sensitivity of
the RHH method, and (b) illustrate how RHH visualization
of chromosomal outlier segments can markedly increase
detection of outlier DNA by other algorithms when these
algorithms consider only the fraction of the genome marked
by dense rare hets.

RESULTS

Discovery of the “Rare Homs” Method

The WTCCC conducted GWA scans of 7 disease and 2
control sample sets, each containing between one and two
thousand subjects, the vast majority of whom self-reported
as being of European Caucasian ancestry (12). In evaluating
genotypes of the Affymetrix 500K SNP array (Affy500K)
for departure from Hardy-Weinberg equilibrium (HWE) in
individual WTCCC sample sets, we noticed a few SNPs
with zero counts for the heterozygote and only one or a
few counts for the rarer homozygote. We labeled these
SNPs and their rare homozygotes as “rare homs” and initially
attributed the heterozygote deficit at these SNPs to genotyp-
ing error since genotype-calling algorithms sometimes prefer-
entially “drop” heterozygotes (16). However, a marked deficit
of heterozygotes at a SNP can also arise if genotyped subjects
originate from two non-interbreeding populations, a phenom-
enon sometimes called the Wahlund effect (17). This stimu-
lated the idea that instances of rare-hom SNPs might be
due to the inclusion of a few non-Caucasian subjects in the
datasets being evaluated.
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To test this possibility, we counted instances of rare hom
genotypes found in individual subjects belonging to the
same WTCCC case or control set. We reasoned that if total
instances of rare homs in a sample set were approximately
equally distributed among the subjects, then rare homs
would be unlikely to be caused by non-Caucasian ethnicity
since most WTCCC samples were selected for being unad-
mixed Caucasians. By contrast, if most rare hom genotypes
were found to cluster in relatively few subjects, then these sub-
jects might be non-Caucasians or admixed Caucasians. When
we examined the distribution of rare-hom counts per subject
for individual WTCCC sample sets, we found that some sets
exhibited a small number of obvious outlier subjects carrying
many (50 to 300) rare-hom genotypes whereas almost all other
subjects carried only 0 or 1 rare homozygotes. As detailed
below, the ethnic outlier status of the subjects with excess
rare homs was subsequently confirmed by: (a) their excess
of non-Caucasian genotypes at HapMap SNPs which are
monomorphic in Caucasians and (b) statistical verification
by other ethnic outlier detection methods.

Discovery of the “Rare Hets” Method

Having identified ethnic outliers based on within-subject
clustering of rare homs, we examined WTCCC sample sets
to determine if low-frequency heterozygotes (“rare hets”)
might also cluster in ethnic outliers. We counted only hetero-
zygotes for SNPs that had zero counts for the rarer homozy-
gote and only a few counts for the heterozygote in the
WTCCC sample set being considered, ultimately settling on
0.5% as the upper bound on heterozygote frequency (see
METHODS for details). When we examined total rare-het
counts in each individual from specific WTCCC sample sets,
we found that the distribution for each set contained a
number of individuals with high rare-het counts separated
from the main body of the distribution. In these distributions,
subjects with the highest rare-het counts included all subjects
with high rare-hom counts; however, most individuals with
high rare-het counts had few or no rare-hom genotypes. We
subsequently inferred that excess rare homs occur only in
the subset of ethnic outliers who have inherited outlier ethni-
city from both their father and mother (see DISCUSSION). It
should also be noted that unlike rare-hom SNPs, genotypes at
rare-het SNPs do not depart from HWE and the RHH method
is therefore not equivalent to or logically dependent on depar-
ture from HWE.

In seeking to understand the clustering of rare hets and rare
homs within ethnic outliers, we hypothesized that these rare
genotypes derive from SNPs which are monomorphic (or
nearly so) in European Caucasians but which are polymorphic
in non-Caucasians. The “non-Caucasian” allele at such SNPs
would have very low frequency in large sample sets containing
few non-Caucasians. We further hypothesized that the reason
rare alleles at these SNPs cluster in an ethnic outlier is because
they are very common in the outlier’s native population and
hence many such “non-Caucasian” alleles are carried by an
individual outlier even though these alleles appear rare if
their frequencies are calculated in a large dataset consisting
mainly of Caucasians.

The next section of RESULTS shows the extreme tail of the
rare-het and rare-hom count distributions of two WTCCC
sample sets to illustrate typical results for the WTCCC data.
Our analyses used all WTCCC Affy500K genotypes called
by the Affymetrix BRLMM algorithm which excludes geno-
types with BRLMM confidence scores above 0.5 (see
METHODS). We also applied the WTCCC filter of excluding
DNA samples with genotype call rates below 97% in order to
remove poor quality DNA samples and genotype calls (12). In
addition to describing formal analyses of the WTCCC geno-
type data (see METHODS for details), the next section
clearly demonstrates that subjects with excess rare hets and/
or rare homs are ethnic outliers.

However, before proceeding to the next section, we briefly
highlight some other sections of the paper and other infor-
mation that also confirm the validity and usefulness of the
RHH method:

(1) In the DISCUSSION (Table 3), RHH is applied to a simu-
lated dataset and is shown to detect known outliers of non-
Caucasian ethnicity (HapMap subjects, and simulated sub-
jects with varying degrees of non-Caucasian admixture).

(2) RHH analysis of excess counts of rare hets detected 151 of
the 153 subjects which the WTCCC excluded from their
case-control analyses for being of “non-Caucasian ances-
try” (12) and RHH also detected many other ethnic out-
liers not identified by the WTCCC (e.g. the six
RHH-detected outliers in the top rows of Table 2).

(3) In the final section of RESULTS, ethnically admixed sub-
jects are shown to exhibit a chromosomal mosaicism in
which discrete segments of non-Caucasian and Caucasian
DNA are visualized by the presence or absence of dense
rare hets mapped to their chromosomal locations. This
ability to visualize the genomic location of non-Caucasian
DNA can markedly increase statistical detection of ethnic
outliers by methods other than RHH (see Table 2; also see
DISCUSSION for detection of non-Caucasian admixture
in two HapMap CEU parents).

Extreme “tails” of rare-het and rare-hom distributions for
two typical sample sets

All 9 WTCCC sample sets contain many ethnic outliers
detectable by excess rare het counts; but only about half of
the sets contain one or more outliers with very high rare
hom counts. Table 1 shows subjects with the highest
rare-het and hom counts in two typical sample sets (set
A¼UKBS controls, set B¼58BC controls), one of which
contains several outliers with high rare-hom counts (set A)
and one of which does not (set B). The table shows per-
subject rare-het and rare-hom counts totalled for all SNPs
contributing to that subject (columns 2–3) and alternatively
totalled only for SNPs contributing to that subject which
are at least 1 Mb apart (columns 4–5). Spacing of 1 Mb is
somewhat arbitrary but was chosen since pairwise linkage
disequilibrium (LD) would usually be negligible for SNPs
this far apart (5,18) and hence the “thinned” counts from
these SNPs can be considered independent. Each table’s
rows (subjects) are ordered from highest-to-lowest rare-het
counts for “All SNPs” (column 2). SubjectID (column 1)
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Table 1. Subjects in the extreme “tail” of the rare-het and rare-hom count distributions of two typical sample sets

SubjectIDa RHH Counts and p-valuesb Genotype Confidencec “Ethnic”
Het Countsd

Other Ethnic Outlier methods

All SNPs 1 Mb apart All 500K Rare Hets YRI CHB WTCCC PC-MDSe PLINK Z-scoref

Hets Homs Hets Homs

Sample set A (UKBS controls)
A1-1-1-1 9063 386 2003 229 0.06 0.04 356 19 YES 221.4
A2-6-2-5 3040 6 787 6 0.04 0.04 164 14 YES 25.5
A3-9-6-7 2090 1 617 1 0.04 0.04 111 5 YES 23.2
A4-3-3-3 1528 48 678 32 0.04 0.04 40 66 YES 214.5
A5-4-4-2 1315 46 659 38 0.03 0.03 50 64 YES 213.4
A6-2-5-2 1314 51 634 38 0.03 0.02 50 65 YES 213.8
A7-5-8-4 949 7 329 7 0.04 0.04 62 12 YES 22.7
A8-9-13-7 810 1 223 1 0.03 0.03 30 6 21.2
A9-10-9-8 704 0 257 0 0.03 0.04 40 6 YES 22.0
A10-10-7-8 569 0 438 0 0.06 0.20 23 6 21.4
A11-9-10-7 524 1 248 1 0.05 0.04 35 22 YES 23.7
A12-8-12-6 446 2 236 2 0.03 0.02 33 17 YES 27.2
A13-7-11-6 406 3 244 2 0.05 0.05 38 16 YES 26.1
A14-10-25-8 394 0 117 0 0.04 0.04 26 3 20.9
A15-9-15-7 361 1 175 1 0.03 0.04 21 19 YES 24.2
A16-10-15-8 337 0 175 0 0.03 0.03 27 18 YES 25.7
A17-9-18-7 311 1 154 1 0.04 0.06 30 4 21.9
A18-10-20-8 306 0 151 0 0.05 0.04 25 8 22.0
A19-9-30-7 276 1 85 1 0.04 0.05 23 0 20.4
A20-9-24-7 262 1 118 1 0.04 0.05 16 2 21.6
A20-10-26-8 262 0 111 0 0.03 0.04 26 1 21.1
A21-10-22-8 259 0 120 0 0.04 0.05 21 3 22.2
A22-10-21-8 258 0 138 0 0.04 0.06 22 7 YES 24.7
A23-9-28-7 251 1 107 1 0.05 0.07 21 7 20.6
A24-10-26-8 243 0 111 0 0.03 0.02 22 6 21.0
Sample set B (58BC controls)
B1-3-1-1 2802 4 814 4 0.04 0.03 114 33 YES 26.0
B2-5-2-3 2221 2 556 2 0.03 0.03 102 9 YES 24.2
B3-4-4-2 1525 3 404 3 0.03 0.03 72 5 YES 22.4
B4-6-5-4 1068 1 317 1 0.06 0.05 49 3 YES 22.5
B5-4-12-2 600 3 180 3 0.04 0.05 33 2 21.4
B6-7-3-5 507 0 411 0 0.07 0.22 24 7 22.1
B7-7-18-5 488 0 137 0 0.03 0.03 35 1 21.1
B8-6-16-4 451 1 141 1 0.04 0.04 25 2 20.9
B9-7-11-5 442 0 185 0 0.07 0.07 22 9 21.5
B10-5-8-3 432 2 224 2 0.06 0.06 39 17 YES 22.5
B11-2-17-2 413 7 139 3 0.02 0.04 34 2 24.1
B12-7-15-5 384 0 151 0 0.06 0.07 24 3 20.5
B13-7-13-5 383 0 161 0 0.06 0.08 25 1 21.1
B14-7-22-5 352 0 108 0 0.03 0.03 22 1 20.8
B15-7-17-5 318 0 139 0 0.05 0.08 19 3 21.4
B16-1-18-1 313 8 122 4 0.03 0.03 28 5 23.7
B17-7-15-5 298 0 151 0 0.03 0.03 20 5 22.7
B18-6-24-4 294 1 98 1 0.03 0.04 14 6 20.3
B19-7-14-5 282 0 157 0 0.05 0.06 24 8 22.3
B20-7-7-5 269 0 233 0 0.07 0.19 14 7 20.7
B21-7-19-5 257 0 121 0 0.03 0.03 25 3 22.1
B22-7-25-5 255 0 96 0 0.03 0.03 23 2 21.2
B23-7-6-5 252 0 234 0 0.05 0.19 14 4 21.2
B24-7-20-5 248 0 118 0 0.03 0.03 19 5 22.3
B24-7-26-5 248 0 88 0 0.04 0.04 15 5 YES 21.8

aSubjects are sorted from highest to lowest rare-het counts for “All SNPs” (column 2); subjectID is sample set followed by count rank in columns 2, 3, 4 and 5.
bCounts from all Affy500K SNPs or “thinned” to derive only from SNPs at least 1 Mb apart. Counts exceeding permutation-derived threshold are bold and
underlined (signifying p,0.001) or only underlined (signifying p,0.05).
cMean BRLMM confidence for subject genotypes at all Affy500K SNPs and at all rare hets. Mean rare-het confidence above 0.1 is in bold italics to indicate
doubtful genotype accuracy and likely false-positive ethnic outlier.
dCounts of heterozygotes at “ethnic” SNPs at least 1 Mb apart. Statistically excess counts (p,0.001 or p,0.05) denoted by bold and underline as in footnote b.
eSubject identified by WTCCC as having “non-Caucasian ancestry” based on PC-MDS analysis (12).
fLowest PLINK Z-score from 1st thorough 10th nearest-neighbor distributions. Z-scores are bold and underlined if statistically significant (Z,24.0).
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also gives subject rank in the four het and hom count distri-
butions by concatenating set name (A or B) with the subject’s
count rank in columns 2, 3, 4 and 5, respectively. Both
sample sets show statistical evidence of containing many
ethnic outliers as indicated by high het or hom counts in
bold and underlined (signifying p,0.001) or only underlined
(signifying p,0.05) when counts exceed permutation-derived
thresholds specifically calculated for hets or homs of each
sample set (see SUPPLEMENTARY METHODS). Note
that these p-values do not require a multiple-test or multiple-
subject correction since the p-value is the entire sample set’s
probability of containing one or more non-outliers who, by
chance, exceed the het or hom count threshold calculated
for that sample set.

To further examine outlier status, the penultimate and final
columns of Table 1 show the results of applying two other
ethnic outlier detection methods that are fundamentally differ-
ent from RHH. The penultimate column denotes whether a
subject was detected as an ethnic outlier by the PC-MDS
method used by the WTCCC to identify and exclude 153
WTCCC subjects with non-Caucasian ancestry (12). When
applied to the 9 WTCCC sample sets, RHH detected 151 of
these 153 WTCCC-detected outliers including all 14 subjects
in sample set A and all 6 subjects in set B (see Table 1).

The second outlier method we compared with RHH is
implemented by PLINK software (13) and generates a Z-
statistic which is shown in the final column of Table 1.
This method calculates genome-wide identity-by-state (IBS)
allele sharing between each subject and its “nearest neigh-
bor” in the data set (the subject with whom it shares the
highest proportion of alleles); and this enables derivation of
a Z-score distribution in which outliers are identified by an
extremely negative Z-score produced by low allele sharing
with their nearest neighbor. The final column of Table 1
therefore shows each subject’s lowest Z-score from the 1st
through 10th nearest-neighbor distributions with all
Z-scores below -4.0 being underlined and in bold to indicate
subjects who are ethnic outliers according to the threshold
recommended by PLINK documentation. This bold high-
lighting indicates that PLINK-detected outliers are mainly
subjects with the highest rare het counts in each data set;
but many other subjects identified as outliers by RHH have
minimum PLINK Z-scores well above the -4.0 threshold,
suggesting that RHH is more sensitive in detecting some out-
liers. This difference in sensitivity is illustrated by six
RHH-detected outliers in Table 1 (A8-9-13-7, A19-9-30-7,
A14-10-25-8, B5-4-12-2, B7-7-18-5, B14-7-22-5) which
were not detected by PLINK and are not among the 153
ethnic outliers excluded by the WTCCC, yet are confirmed
as genuine ethnic outliers by additional evidence presented
in the next section (see Table 2).

To further evaluate the ethnicity of RHH outliers, we
counted their heterozygous Affy500K genotypes at HapMap
SNPs spaced at least 1 Mb apart which are monomorphic in
HapMap Caucasians (CEU) but have minor allele frequency
(MAF) of at least 0.4 in Yorubans (YRI) or in Chinese
(CHB) [see “Ethnic Het Counts” in columns 8–9 of
Table 1, and “Ethnic SNPs . . .” in SUPPLEMENTARY
METHODS]. These “YRI SNPs” or “CHB SNPs” would
rarely be heterozygous in a non-admixed Caucasian, but we

chose their near-maximal MAF (≥0.4) in YRI and/or CHB
since the SNPs would be among those most likely to be hetero-
zygous in DNA of non-Caucasian ancestry. The 1 Mb spacing
of the SNPs implies that within-subject het counts can be con-
sidered independent (explained above) and evaluated by per-
mutation to determine if a subject carries a statistically
significant excess of counts from YRI or CHB SNPs (see SUP-
PLEMENTARY METHODS). Het counts in Table 1 that
exceeded a permutation-derived threshold for YRI or CHB
SNPs are shown in bold and underlined (signifying
p,0.001) or only underlined (signifying p,0.05), providing
confirmation of non-Caucasian ancestry for many RHH out-
liers. Note that outliers often exhibit far more het counts at
YRI than CHB SNPs which might be expected since the
YRI panel (838 SNPs) is much larger than the CHB (139
SNPs). However some outliers have relatively high ratios of
CHB:YRI het counts (e.g. A4-3-3-3, B10-5-8-3) indicating
that the source of non-Caucasian admixture in such subjects
is Asian rather than African.

To avoid erroneously inferring non-Caucasian outlier status
based on genotyping errors, we also examined each subject’s
mean BRLMM confidence score at all SNPs contributing to
that subject’s rare-het counts (column 7). A BRLMM geno-
type call becomes less certain as its confidence score increases
and the Affymetrix BRLMM protocol drops genotypes with
confidence scores of 0.5 or higher (http://www.affymetrix.
com/support/technical/whitepapers/brlmm_whitepaper.pdf). We
regard heterozygous genotypes as being of doubtful accuracy
if the mean confidence for rare hets is considerably higher
than the mean BRLMM confidence for all genotypes called
in the same subject (under “All 500K”, column 6). In this con-
nection, when mean BRLMM confidence is above 0.1 for rare
hets, we usually observe much better confidence scores for all
500K SNPs genotyped in the same subject and often find that
such subjects are not confirmed as ethnic outliers by exhibiting
a statistically significant excess of YRI and/or CHB hets.
Mean confidence scores above 0.1 are therefore highlighted
in bold italics in Table 1, and subjects exhibiting such low
quality het genotypes are considered to be likely false-positive
outliers if detected by RHH.

Admixed Chromosome Mosaicism

We noticed that het counts at SNPs “1 Mb apart” decreased
from het counts at “All SNPs” more precipitously in some sub-
jects (e.g. A8-9-13-7) than in others (e.g. A10-10-7-8)
suggesting that some subjects’ rare hets and homs might be
concentrated in particular chromosomal regions rather than
being evenly distributed across the genome. Therefore we gen-
erated chromosomal maps to visualize rare-het positions in
individual outliers compared to all possible genomic positions
of rare hets as determined by pooling rare hets from all sub-
jects in the outlier’s sample set (Fig. 1). In each set examined,
pooled hets densely cover most of each chromosome (apart
from centromeric and a few other small regions that lack
Affy500K SNPs). However, as illustrated in Figure 1, many
individual outliers exhibit an obvious mosaicism in which
their rare hets are densely packed within discrete chromosomal
segments surrounded by long tracts showing near-complete
absence of rare hets in that outlier. Indeed, in many outliers,
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rare hets were found only within a few discrete segments
located on a small number of chromosomes (Fig. 1B, 2A,
2B and Supplementary Fig. S1–S3, S7–S9). Other outliers
exhibited discrete rare-het segments on a majority of their
chromosomes while also exhibiting long chromosomal tracts
lacking rare hets (Fig. 1A, 2C, 2D and Supplementary

Fig. S4–S6). The large subset of outliers who exhibit visually
obvious mosaicism generally have low ratios of CHB:YRI het
counts indicating that they may be of African or non-Asian
origin (discussed above). In these outliers, non-Caucasian
admixture appears to be largely confined to the fraction of
the genome which is delimited by rare-het segments.

Figure 1. Admixed chromosome mosaicism in subjects A1-1-1-1 and B5-4-12-2. The mosaicism is shown by the chromosomal positions of each subject’s rare
hets (red dashes beside chromosomes in whole genome view; red crosses above chromosome in fine-scale view). The positions of the red dashes and red crosses
should be compared to all possible genomic locations of rare hets derived empirically by mapping all rare-het positions observed in the sample set (A or B) of the
subject (gray crosses immediately above fine-scale chromosome; gray shading inside whole-genome chromosomes). (A) Subject A1-1-1-1 is the most extreme
ethnic outlier in set A as judged by both RHH and PLINK but lacks rare hets in a number of chromosomal regions (see fine-scale view and Table 2) implying that
these are regions of unadmixed Caucasian ancestry. (B) Mosaicism in subject B5-4-12-2 is more typical of outliers and is visually obvious with rare-hets densely
packed into a few discrete segments that mark the chromosomal locations of non-Caucasian DNA. Tiny triangles in whole-genome and fine-scale views denote
the positions of “ethnic” SNPs which are monomorphic in HapMap CEU subjects but have MAF ≥0.4 in HapMap YRI subjects (“YRI SNPs”) or in CHB sub-
jects (“CHB SNPs”). Triangles are enlarged if the subject carries the “non-Caucasian” allele as a heterozygote or homozygote at a YRI SNP (purple triangle) or
CHB SNP (green triangle) whereas homozygotes for the “Caucasian” allele are unenlarged gray triangles. The rarity of non-Caucasian alleles (purple/green
triangles) outside rare-het segments and their far higher frequency inside the segments confirms the non-Caucasian origin of segments with dense rare hets
and Caucasian ethnicity of regions in which rare hets are largely absent.
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To further assess the ethnicity of rare-het segments, our
chromosomal maps also show tiny triangles denoting the pos-
itions of all SNPs genotyped on the Affy500K chip which
were monomorphic in HapMap CEU but had MAF≥0.4 in
YRI (“YRI SNPs”) or in CHB (“CHB SNPs”). The triangles
are enlarged if a subject is heterozygous or homozygous for
the “non-Caucasian” allele at a YRI SNP (purple triangle) or
CHB SNP (green triangle) whereas homozygotes for the “Cau-
casian” allele are unenlarged gray triangles (Fig. 1, 2). The
non-Caucasian allele at YRI or CHB SNPs should be rela-
tively rare in a non-admixed Caucasian but might occasionally
be observed due to genotyping error or genuine alleles with
very low frequency in Caucasians. Consistent with this expec-
tation, homozygotes for the Caucasian allele (gray triangles)
were observed at almost all YRI or CHB SNPs located

outside rare-het segments. However inside rare-het segments,
the non-Caucasian allele was frequently observed at YRI or
CHB SNPs (purple or green triangles, respectively) as is
shown in Figures 1 and 2. This rarity of the non-Caucasian
allele outside rare-het segments and its far higher frequency
inside the segments confirms the non-Caucasian origin of seg-
ments with dense rare hets and Caucasian ethnicity of regions
in which rare hets are largely absent. We therefore sometimes
refer to rare-het segments as “outlier” or “non-Caucasian”
segments.

To further illustrate the ability of RHH to distinguish chro-
mosomal regions of Caucasian and non-Caucasian origin in
subjects with RHH mosaicism, we recalculated PLINK
Z-scores for specific RHH outliers by considering only geno-
types from chromosomal regions that (a) contained dense rare

Figure 1. Continued.
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Figure 2. Rare-het chromosomal mosaicism in four RHH-detected outliers, two of whom were also detected by PLINK. Subjects A8-9-13-7 (A) and B7-7-18-5
(B) exhibit dense rare hets on only a few chromosomes. They are not detected as outliers by PLINK when genotypes are evaluated for the whole genome but are
strongly detected when PLINK considers only genotypes from the subject’s longest rare-het segment (see Table 2). Subjects A2-6-2-5 (C) and B2-5-2-3 (D)
exhibit dense rare hets on most chromosomes and are strongly detected as ethnic outliers when PLINK evaluates the whole genome; but PLINK provides
no evidence that the two subjects are outliers when genotypes are only included from regions that lack rare hets (Table 2). These results imply that outlier
DNA is largely confined to segments marked by dense rare hets. (See Fig. 1 for definitions of figure annotations.).
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hets or (b) lacked rare hets. For example, Table 2 lists six sub-
jects (A8-9-13-7, A19-9-30-7, A14-10-25-8, B5-4-12-2,
B7-7-18-5, and B14-7-22-5) who each show obvious RHH
mosaicism (Fig. 1B, 2A, 2B and Supplementary Fig. S1, S2,
S3) and give highly significant RHH p-values.These subjects
are not among the 153 WTCCC-detected ethnic outliers and
each gives a non-significant PLINK Z-score close to zero
when PLINK evaluates the whole genome. Yet when we exe-
cuted a PLINK run for each subject that only evaluated geno-
types from that subject’s largest rare-het segment, the
recalculated PLINK distributions gave highly significant
Z-scores (Z,24.0) for all 6 subjects, clearly demonstrating
the presence of ethnic outlier DNA within the subject’s
rare-het segment (Table 2). Conversely, we also recalculated
PLINK Z-scores only for regions that lacked rare hets in the
two most extreme outliers from Table 1 for set A (A1-1-1-1,
A2-6-2-5) and set B (B1-3-1-1, B2-5-2-3). These four subjects
were identified as ethnic outliers by WTCCC and by PLINK
which gave highly significant Z-scores (221.4 to 24.2)
when genotypes were evaluated from the whole genome.
But the PLINK Z-scores became non-significant and close to
zero when we reran PLINK for each outlier considering only
genotypes from all major chromosomal regions that lacked
rare hets in that outlier (Table 2). Taken together, these recal-
culated PLINK analyses again imply that admixed non-
Caucasian DNA is largely marked by and confined to
rare-het segments. Note that the agreement of PLINK and
RHH in this regard is based on evaluating completely separate
sets of SNPs since RHH only considers SNPs whose MAF in

the data is below 0.01 while PLINK omits such SNPs at its
default MAF setting (http://pngu.mgh.harvard.edu/purcell/
plink/). The PLINK and RHH analyses are therefore indepen-
dent being based on different SNPs from the same chromoso-
mal segment(s).

DISCUSSION

We have shown that the RHH method can sensitively detect
ethnic outliers among samples mainly derived from a single
ethnic group and have also shown the method’s ability to visu-
alize chromosomal mosaicism in many ethnically admixed
individuals. A fundamental feature of RHH is that all outliers
it detected among WTCCC samples exhibited a statistical
excess of rare heterozygotes (rare hets), but only a small
subset of RHH outliers exhibited an excess of rare homozy-
gotes (rare homs). We believe that the presence of excess
rare homs and of admixed chromosome mosaicism depends
on the type of outlier – as can be inferred hypothetically or
demonstrated empirically by applying RHH analysis to simu-
lated admixed or unadmixed outliers of different types (see
Table 3).

For example, one basic type of ethnic outlier shown in
Table 3 is an unadmixed member of a non-Caucasian popu-
lation such as HapMap YRI or CHB. Based on observed
HapMap genotype frequencies (5,6), such individuals would
be homozygous and heterozygous at many SNPs for “non-
Caucasian” (nC) alleles frequently found in YRI and/or

Table 2. Recalculated ethnic-outlier Z-scores for chromosomal region(s) with or without dense rare-hets in subjects exhibiting rare-het mosaicisma

Subject IDb PLINK Z-scorec Characteristics of Partial Genome

Whole
Genome

Partial
Genome

Chromosome Region(s) Includedd Putative Ethnicity of
Included Region(s)

Viewable
genomic
rare-hets

A8-9-13-7 21.2 24.6 1(40–115 Mb) Non-Caucasian Figure 2A
A19-9-30-7 20.4 25.2 2(145–200 Mb) Non-Caucasian Figure S1
A14-10-25-8 20.9 24.1 1(180–230 Mb) Non-Caucasian Figure S2
B5-4-12-2 21.4 25.2 2(65–140 Mb) Non-Caucasian Figure 1B
B7-7-18-5 21.1 25.0 11(0–75 Mb) Non-Caucasian Figure 2B
B14-7-22-5 20.8 25.3 6(120–165 Mb) Non-Caucasian Figure S3
A1-1-1-1 221.4 20.7 2(0–6 Mb); 5(150–165 Mb); 6(0–10 Mb); 7(35–55 Mb); 8(60–70

Mb); 14(70–80 Mb)
Caucasian Figure 1A

A2-6-2-5 25.5 21.2 2(0–140 Mb); 5(55–100 Mb); 7(50–70 Mb); 8(0–100 Mb); 9(25–70
Mb); 10(20–50 Mb); 11(0–95 Mb); 12(15–95 Mb); 13(0–65 Mb);
15(70–90 Mb); 18(0–50 Mb); 19(0–50 Mb); 20(10–50 Mb);
22(0–45 Mb)

Caucasian Figure 2C

B1-3-1-1 26.0 22.6 1(60–175 Mb); 2(10–40, 140–150, 180–190 Mb); 6(105–120 Mb);
7(105–145 Mb); 8(65–85 Mb); 10(55–115 Mb); 11(25–70 Mb);
13(30–65 Mb); 14(30–55 Mb); 17(55–80 Mb)

Caucasian Figure S4

B2-5-2-3 24.2 21.0 1(15–30 Mb); 2(40–220 Mb); 3(0–40,70–125,145–185 Mb); 4(0–
20,115–165 Mb); 5(15–70,125–135,165–185 Mb); 7(0–140
Mb); 8(20–115 Mb); 10(75–115 Mb); 11(90–115 Mb); 12(75–
135 Mb); 14(65–105 Mb); 15(65–90 Mb); 17(0–50 Mb); 18(15–
80 Mb); 19(20–80 Mb); 21(30–50 Mb)

Caucasian Figure 2D

aPLINK Z-scores are based on all Affy500K SNPs in the “Whole Genome” or in a “Partial Genome” marked in subjects 1–6 by their largest rare-het segment and
defined in subjects 7–10 by pooling all major regions not marked by dense rare-hets. Each subject shows a dramatic change in Z-score statistical significance for
“Whole” versus “Partial” Genome, thus showing that non-Caucasian and Caucasian DNA are respectively marked by presence or absence of dense rare hets.
bSame SubjectID as in Table 1
cLowest PLINK Z-score from 1st thorough 10th nearest-neighbor distributions. Z-scores are bold and underlined if statistically significant (Z,24.0).
dChromosome number and boundaries of included region(s).
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CHB subjects but never or rarely found in Caucasians such as
CEU. These nC alleles and the SNPs from which they derive
(“nC SNPs”) would, if genotyped, generate both rare homs
and rare hets in an unadmixed YRI or CHB subject included
in a large sample of Caucasians. Indeed, we empirically con-
firmed the presence of excess rare homs and hets in a typical
pair of unadmixed YRI and CHB subjects by including their
HapMap genotypes with those of WTCCC sample set B to
form a test dataset for which RHH evaluated all HapMap
SNPs genotyped on the Affy500K chip (see “Unadmixed”
YRI and CHB subject in Table 3). For both subjects, RHH
p-values for homs and hets are highly significant (p,0.001),
but consistent with a recurring pattern in Table 3 for HapMap-
derived outliers of the same type, excess counts are much
higher in the YRI-derived outlier (homs¼426, hets¼9167)
than in the CHB (homs¼27, hets¼1378).

Interspersed among subjects of WTCCC sample set B,
Table 3 also shows RHH and PLINK results for admixed out-
liers of different types produced by different simulated
matings between HapMap CEU and non-CEU (YRI or

CHB) subjects or their simulated offspring (see SUP-
PLEMENTARY METHODS). These simulated outliers are
named in Table 3 according to their parent’s simulated
mating (denoted by “×”) and we refer to matings involving
HapMap populations (CEU, YRI, CHB) as if they were
crosses between different mouse strains (for detailed terminol-
ogy see Supplementary Material, Table S1 and www.
informatics.jax.org/silverbook/ (19)). Inspection of Table 3
indicates several trends: Rare hom counts are near zero in
F1 offspring from the two outcrosses (YRI×CEU,
CHB×CEU) or in offspring from any subsequent CEU back-
cross [e.g. (YRI×CEU)×CEU×CEU]. This dramatic drop
from the high hom counts observed in unadmixed YRI or
CHB subjects is almost certainly due to CEU outcross off-
spring having only one non-CEU chromosome in each hom-
ologous chromosome pair, thus eliminating the possibility of
being homozygous for nC alleles at nC SNPs. By contrast,
rare het counts are very high in F1 offspring of both outcrosses
(YRI×CEU, CHB×CEU) and, despite being steadily
decreased by each successive CEU backcross, the statistical

Table 3. Extreme “tail” of RHH count distribution containing outliers from sample set B, HapMap, and simulated matings of HapMap individualsa

Type of HapMap-derived outlier, or subject ID
from sample set Bb

RHH Counts per samplec PLINK
Z-scored

Mosaicism
Affy500k?e

Mosaicism Augment
Affy500k?f

Viewable Genomic
Rare HetsAll SNPs 1 Mb apart

Hets Homs Hets Homs

unadmixed_YRI 9167 426 2105 244 224.3 No Figure S10
(YRI×CEU)×(YRI×CEU) 6094 131 1492 82 213.4 Yes Figure S11
(YRI×CEU) 5454 1 1593 1 28.8 No Figure S12
(YRI×CEU)×CEU [1 backcross] 4121 0 1185 0 27.3 Yes Figure S13
B1-3-1-1 1957 3 665 3 25.5 Yes Figure S4
B2-5-2-3 1563 2 466 2 23.0 Yes Figure 2D
unadmixed_CHB 1378 27 681 25 215.4 Sparse hets Figure S14
(YRI×CEU) ×CEU [2 backcrosses] 1342 0 402 0 22.4 Yes Figure S15
B3-4-4-2 1080 0 334 0 22.0 Yes Figure S5
B4-6-5-4 805 1 271 1 22.0 Yes Figure S6
(CHB×CEU) 766 0 424 0 24.6 Sparse hets Figure S16
(YRI×CEU) ×CEU [3 backcrosses] 668 0 200 0 21.1 Yes Figure S17
(CHB×CEU) × (CHB×CEU) 603 6 324 6 25.7 Sparse hets Figure S18
B5-4-12-2 446 1 159 1 21.3 Yes Figure 1B
B7-7-18-5 338 0 114 0 21.1 Yes Figure 2B
B8-6-16-4 316 0 116 0 21.1 Yes Figure S7
B13-7-13-5 269 0 124 0 21.0 Yes Figure S8
(CHB×CEU) × CEU [1 backcross] 260 0 152 0 21.8 Sparse hets Yes Figure S19
B14-7-22-5 254 0 97 0 20.4 Yes Figure S3
(YRI×CEU) ×CEU [4 backcrosses] 236 1 81 1 21.0 Yes Figure S20
B18-6-24-4 215 1 82 1 20.5 Yes Figure S9
(CHB×CEU)×CEU [2 backcrosses] 164 0 95 0 21.2 Sparse hets Yes Figure S21
(CHB×CEU) ×CEU [3 backcrosses] 113 0 59 0 20.6 Sparse hets Yes Figure S22
(CHB×CEU) × CEU [4 backcrosses] 41 0 27 0 20.6 Sparse hets Yes Figure S23

aRHH analysis of simulated HapMap ethnic outliers combined with sample set B; subjects are sorted from highest to lowest rare-het counts under “All SNPs”
(column 2) with some set B subjects omitted to show all HapMap-derived outliers. “CEU”, “CHB”, “YRI” denote HapMap subjects of Caucasian, Chinese, and
African Yoruban ancestry respectively.
bEach “unadmixed” outlier is a HapMap YRI or CHB subject; other HapMap-derived outliers are progeny of simulated matings denoted by “×”; for example,
“(YRI×CEU)×CEU [2 backcrosses]” denotes offspring from mating of a HapMap YRI and CEU subject followed by mating (“backcross”) in next two
generations with a CEU subject; set B subjects have same ID used in Table 1
cUnthinned counts under “All SNPs” and thinned counts under “1 Mb apart” are from 401,430 HapMap SNPs genotyped on Affy500K and having resolvable
strand for HapMap versus Affy. Counts exceeding permutation-derived threshold are bold and underlined (signifying p,0.001) or only underlined (signifying
p,0.05).
dLowest PLINK Z-score from 1st thorough 10th nearest-neighbor distributions. Z-scores are bold and underlined if statistically significant (Z,24.0).
eMosaicism using Affy500K chip: “Yes” if rare-het mosaicism is visually obvious; “No” if dense rare hets cover entire genome; “Sparse hets” if rare het density is
too sparse to clearly discern mosaicism (as in simulated subjects of CHB ancestry).
f“Yes” if subject shows obvious rare-het mosaicism when Affy500K chip is augmented with �40,400 HapMap SNPs monomorphic in HapMap CEU but with
minor allele frequency above 0.1 in CHB.
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excess of rare hets persists in YRI-admixed offspring of the
4th CEU backcross and in CHB-admixes of the 3rd backcross
(RHH p-values of 0.001 for rare hets “1 Mb apart”).

The final type of simulated outlier in Table 3 are the off-
spring of F1 hybrid intercrosses [(YRI×CEU)×(YRI×CEU)
or (CHB×CEU)×(CHB×CEU)]. Though F1 hybrid parents
lack rare homs, each carries nC alleles at many rare hets and
hence Table 3 shows the reappearance of excess rare homs
in F1 intercross offspring (RHH p,0.001 to 0.01), apparently
because nC alleles are inherited from both parents at many of
the same SNPs. Based on HapMap-derived outliers of various
types, we therefore conclude that excess rare homs imply that
the carrier is (a) an unadmixed member of an outlier popu-
lation or (b) an admixed individual who has inherited ethnic
outlier DNA from both father and mother. Outliers with
excess rare hets but few or no rare homs may be individuals
with admixture from only one parent or, alternatively, might
have admixture from both parents which has been sufficiently
diluted in prior generations that nC alleles are almost never
inherited at the same SNP. A simplified overview and
summary of conclusions from Table 3 is provided in Sup-
plementary Material, Table S1.

Mosaicism is visually obvious for African admixture and
can be made obvious for Asian admixture

Table 3 also denotes whether admixed chromosome mosai-
cism is observed in each subject and lists a figure where the
subject’s genomic distribution of rare hets can be viewed.
The unadmixed YRI and CHB outliers as well as F1 hybrid
offspring of each outcross (YRI×CEU, CHB×CEU) have
very high numbers of rare hets which are approximately
evenly distributed across the genome and hence do not
exhibit a mosaic pattern. By contrast, mosaicism is visually
obvious in offspring from YRI×CEU F1 hybrids that are (a)
intercrossed to each other or (b) backcrossed to CEU for 1
to 4 generations (Supplementary Fig. S11, S13, S15, S17,
S20). Though mosaicism is not evident in the counterpart off-
spring of CHB×CEU F1 hybrids, we discovered that it can be
made visually obvious by augmenting the 500,000 SNPs on
the Affy500K chip with �40,400 additional HapMap SNPs
that are monomorphic in HapMap CEU subjects but have
MAF above 0.1 in HapMap CHB. The visual enhancement
of including the 40,400 HapMap SNPs is shown in each
CHB picture where a short red dash next to a chromosome
denotes a rare het position for a SNP on the Affy500K chip
whereas a blue dash in the adjacent gray track denotes a
rare het at one of the additional 40,400 SNPs (Supplementary
Fig. S19, S21–S23). These figures demonstrate that, in prin-
ciple, rare-het mosaicism can be clearly visualized in subjects
whose admixed Caucasian ancestry is CHB-like as well as
YRI-like.

Admixed chromosome mosaicism demonstrates
non-Caucasian admixture in two HapMap CEU parents

The WTCCC previously used the PC-MDS method to identify
153 outliers of “non-Caucasian” ancestry by their failure to
visually cluster with HapMap Caucasians (CEU) in principle
component (PC) plots of genotype distances between subjects

produced by multi-dimensional scaling (MDS) (12). We now
illustrate a similar method in which only a fraction of the
genome is evaluated by PC-MDS to demonstrate non-
Caucasian admixture in two HapMap CEU parents who each
carry a single large rare-het segment visualized by RHH analy-
sis as shown in Supplementary Figures S24 and S25
(NA11993: chrm. 6 from 65443059 to 94743101 Mb;
NA12872: chrm. 3 from 172300870 to 191048899 Mb).
Using MDS of pairwise IBS genotype distances provided by
PLINK (13), we plotted the first two principle components
of distance for all HapMap subjects (CEU, YRI, CHB/JPT)
by including only genotypes from the rare-het segment
observed in NA11993 or, for a separate analysis, only from
the segment in NA12872. For the specific analysis correspond-
ing to its rare-het segment, NA11993 and NA12872 were
observed halfway between the CEU and YRI clusters (Sup-
plementary Material, Fig. S26) whereas all other HapMap sub-
jects tightly clustered within their own ethnic group. By
contrast, when PC-MDS analysis was performed for all other
genomic windows of the same size, NA11993 and NA12872
clustered within the CEU ethnic group, implying that none
of the other genomic windows contained appreciable non-
Caucasian DNA in NA11993 or NA12872. Taken together,
these results are strong evidence that the single, large
rare-het segment in each CEU parent is of probable African
origin and illustrates a type of PC-MDS analysis that could
be routinely performed on individual rare-het segments. It
should be noted that NA11993 and NA12872 fell halfway
between the CEU and YRI clusters in the PC-MDS analysis
of their rare-het segments because the YRI-like DNA in
each rare-het segment is carried on only one of the two hom-
ologous chromosomes.

RHH visualization compared to SABER and extended to
the Illumina 550K array

To further characterize the applicability of RHH for visualiz-
ing the mosaicism of admixed chromosomes, we now briefly
discuss: (a) comparing RHH with SABER, an alternate visual-
ization method (20), and (b) RHH visualization based on the
Illumina 550K array (abbreviated “Illm550K”). Visualizations
from RHH based on Illm550K genotypes and from SABER
using either the Affy500K or Illm550K chip are shown in Sup-
plementary Figures S27–S29 for individual subjects whose
mosaicism is also shown for RHH-Affy500K in Figures 1B,
2B, and 2D, respectively. Although minor differences exist
for some tiny regions of admixture (see SUPPLEMENTARY
DISCUSSION), the main conclusion from comparing these
visualizations is that SABER and RHH based on either the
Affy500K or Illm550K array show an almost identical
pattern of genome mosaicism for each subject. In executing
SABER and RHH software, we found that RHH analysis of
1500 58BC subjects required �1 hour on a 2.4 GHz UNIX
processor with 8 GB of RAM or �110 minutes on a 1.4
GHz Windows laptop with 512 Mb of RAM (in order to
produce RHH counts as in Table 1 and 1500 RHH genome
visualizations as in Figs 1 and 2). By contrast, a SABER run
required at least 20 minutes on the UNIX processor to
analyze a single subject (by comparing to known ethnicities
of 60 CEU and 60 YRI HapMap parents) and hence SABER
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analysis of 1500 subjects would require �21 days for one
UNIX processor or more than 100 parallel UNIX processors
to achieve the same speed as RHH.

Mathematical Model of RHH performance

The RHH method was derived from a series of empirical
observations rather than from an a priori statistical or popu-
lation genetic model and thus we have not presented a popu-
lation genetic model from which the method was inferred.
However in this section we provide a mathematical model
which explores the method’s performance under variation in
key parameters; but we also emphasize that the RHH
method is not based on or circumscribed by the presented
model or its assumptions. Like the field of GWA scans
which grew out of empirical observation (i.e. that association
tests possess greater power than linkage tests [e.g. see Table 7
in (21)]) followed by subsequent mathematical modeling that
provided important additional insight (22), it may be that
further modeling of the empirical results of the RHH approach
will also prove valuable.

Results from the model we present are summarized in Sup-
plementary Figures S30–S33 and Supplementary Tables S2–
S5 which examine RHH detection of ethnic outliers as a func-
tion of several key parameters including: (a) percentage of the
outlier’s genome which is admixed, (b) continental origin
(African or Asian) of the admixed non-Caucasian DNA, (c)
genotype frequency cutpoint (Chet) chosen to define rare hets
and (d) GWA genotyping array (Affy500K or Illm550K).
Since most WTCCC ethnic outliers exhibited excessive rare
hets but very few rare homs, our mathematical model
assumes a hypothetical data set in which all outliers have
inherited non-Caucasian DNA from only one parent, and
thus admixed outliers would carry excess rare hets but few
rare homs (see Table 3 and related discussion above). Under
the further assumption that all admixture derives from a
single non-Caucasian population, the expected genotype fre-
quency (Fhet) of heterozygotes at any SNP is shown in
METHODS to be:

Fhet = (1 − Y)[2p(1 − p)] + Y[ p(1 − q) + q(1 − p)] (1)

where Y is the proportion of dataset subjects which are
admixed at the SNP’s genomic position, p is the MAF of the
SNP in the Caucasian population, and q is the frequency of
the same allele in the non-Caucasian outlier population.

As explained in METHODS, eqn. (1) enables adjudication
of whether each GWA SNP qualifies as a rare-het SNP
(because Fhet≤Chet based on substituting HapMap and
58BC allele frequencies into eqn. (1) for q and p). Counts
contributed by each rare-het SNP can then be calculated as
well as total counts expected in an individual with a specific
percentage of genome admixture. To accurately model our
data, we assumed a hypothetical sample size of 1500 subjects
and used RHH (see METHODS) to estimate the mean value
of Y for each WTCCC data set which we found to vary
from Y×100¼0.11% and 0.16% (Hypertension cases and
58BBC controls) to Y×100¼0.67% (Crohn’s cases). Thus,
a series of curves corresponding to Y values of 0.1%–1.0%
summarize the performance of RHH under various parameter

combinations of the mathematical model as shown in Sup-
plementary Figures S30–S33 and Supplementary Tables S2–S5.

Each figure and table corresponds to one combination of
commercial SNP array (Affy500K or Illm550K) with outlier
ethnicity (African or Asian) and is based on “1 Mb apart”
RHH results like those in Tables 1 and 3 in which rare-het
counts are “thinned” for each subject so that the SNPs contri-
buting counts to that subject are at least 1 Mb apart and unli-
kely to be in LD. Figures show the smallest percent of genome
admixture detectable in an outlier for different values of Y and
Chet while each table shows total rare-het counts at selected
Y-Chet combinations.

Several patterns emerge from examining these figures and
tables: (1) The Affy500K and Illm550K arrays perform simi-
larly at each parameter combination, but when the admixture
is African, the Affy chip detects slightly lower percentages
of genome admixture. (2) For both arrays, African DNA gen-
erates �2 to 5 times more rare-het counts than Asian DNA at
the same parameter combination, and thus RHH can detect
much lower amounts of African admixture (�1%–3% of
genome) than minimum detectable Asian admixture (�4%–
7% of genome). (3) Higher mean Y-values (i.e. data sets
with a higher proportion of subjects with admixture at each
genome position) steadily decrease RHH sensitivity as
shown by higher minimum detectable genome admixture;
for example, when Y¼0.1%, minimum detectable African
admixture is �1% of the genome, but this increases to �3%
when Y¼1.0% (see Supplementary Material, Figs S30 and
S32). (4) In each figure, the curves for Y≤0.3% are relatively
flat and show detection of the smallest admixture percents over
a wide range of rare-het frequency cutpoints (Chet¼0.1%–
1.0%); but as Y increases above 0.3%, the curves are progress-
ively more “U-shaped” with the smallest admixture consist-
ently detected for Chet¼0.45%–1.0%. This supports our
observationally derived use of Chet¼0.5% as a generally appli-
cable rare-het frequency cutpoint for statistical detection of
ethnic outliers. Furthermore, Supplementary Figures S34 and
S35 also provide complementary evidence that Chet¼0.5%
provides near-optimal visualization of mosaicism in admixed
chromosomes by illustrating the type of less optimal visualiza-
tion that occurs at Chet values above and below 0.5%.

In concluding this section, we point the reader to the SUP-
PLEMENTARY DISCUSSION for detailed treatment of
additional important results related to the mathematical
model including: (1) We show that RHH can perform very
effectively using small datasets of only 50-200 subjects (see
also Supplementary Figs S36–S39). (2) We discuss math-
ematical model results for unthinned rare-het counts (see
Supplementary Figs S40–S43) and show that 1 Mb-thinning
of counts does not substantially increase the minimum admix-
ture detectable by RHH. (3) We discuss applying RHH to a
single “test” subject added to a large panel of unadmixed indi-
viduals and show that this strategy enhances RHH sensitivity,
enabling detection of African admixture covering as little as
0.25% of the genome (or approximately 7 Mb). (4) We
explore the important question of how much disease associ-
ation statistics (i.e. p-values) are altered by failure to
exclude cases or controls with modest admixture detected by
RHH but not by less sensitive outlier methods like PC-MDS
or PLINK nearest neighbor Z-score.
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Conclusion

We have shown that RHH can survey 1500–2000 GWA subjects
in 1–2 hours on a single PC or UNIX processor to visualize
genome mosaicism in admixed Caucasians and statistically
detect small amounts of genome admixture (�1%–3%
African, �4%–7% Asian). RHH is convenient to execute (e.g.
in not requiring phased chromosomes or allele frequencies
from ethnic panels) and RHH numerical and visual output is
also easily understood by the non-specialist since it is transparent
(i.e. counts and chromosomal locations of rare genotypes whose
highest dataset frequencies are user-specified). In Table 3, we
illustrated targeted RHH analysis of 14 simulated ethnic outliers
merged with the 58BC dataset, and our mathematical model also
showed enhanced RHH sensitivity in detecting and visualizing
small percentages of genome admixture when one or a few tar-
geted subjects are added to a large, unadmixed reference panel
(see SUPPLEMENTARY DISCUSSION).

Thus, in addition to scanning GWA or other large datasets, tar-
geted RHH analysis could be applied to preselected subjects for a
variety purposes. For example, when accurate results depend on
the ethnicity of analyzed DNA such as in studies of gene
expression (11) or sequencing projects aimed at discovering
rare alleles (23), RHH could identify subjects with undetected
segments of admixture and thereby avoid confounded or false-
positive results. RHH visualization of the number and chromoso-
mal lengths of outlier DNA segments in a population sample
could also be used to estimate population genetic parameters
like migration rate or time (generations) since an original admix-
ture event (24). Furthermore, RHH mosaic visualizations might
also complement or enhance admixture mapping studies of
disease (25,26) and forensic analyses (27,28).

In conclusion, we expect that RHH will provide an excel-
lent, practical tool for screening small or large numbers of
DNA samples to detect ethnic outliers and visualize the chro-
mosomal locations of outlier DNA. The technique’s simplicity
and speed in revealing fine-structure mosaicism of admixed
human chromosomes implies that the RHH method is likely
to have diverse and important applications in humans and in
other species.

MATERIALS AND METHODS

Samples

Our data were genotypes from 7 disease and 2 control sample
sets, each of which totalled �1500–2000 subjects and were
genotyped for GWA scans by the WTCCC (12). The vast
majority of subjects in each sample set were self-reported as
of European Caucasian ancestry (12). Results in the two
control sample sets were similar to the disease sets and
provide the primary data presented in the tables and figures.
We refer to the control set from the UK Blood Service
(UKBS) as “sample set A” and to controls from the 1958
British Birth Cohort (58BC) as “sample set B”.

Genotyping and Sample QC

We used genotypes from the Affymetrix GeneChip 500K
array (Affy500K) available through the WTCCC (12) and its

website. To show RHH performance and mosaic visualization
with the Illumina HumanHap550 array (Illm550K), we also
used Illm550K genotypes assayed by the Sanger Institute on
the 58BC controls (sample set B). Further details on genotyp-
ing and sample QC can be found in SUPPLEMENTARY
METHODS.

Tabulation of rare-het and rare-hom counts

Our method identifies ethnic outliers as subjects with a high
total number of rare heterozygote and/or rare homozygote gen-
otypes compared to other subjects in the same dataset.
Rare-het counts included all heterozygous genotypes for any
SNP that: (a) had zero counts for the rarer homozygote and
(b) a heterozygote genotype frequency in the data set of
0.005 or below. The cutpoint or “Chet” of 0.5% specifying
the highest allowable frequency of rare-hets was settled
upon through empirical observation and is supported by Sup-
plementary Figures S30–S35 (see DISCUSSION and SUP-
PLEMENTARY METHODS for more details).

In initially conceiving and applying the method, rarer
homozygote genotypes of a SNP were included among the
“rare hom” counts only if no subjects in the dataset were het-
erozygous at that SNP (i.e. the SNP had zero heterozygote
counts and non-zero but typically very few counts for the
rarer homozygote). However, for analyses described here,
we relaxed the initial criterion so that rare-hom counts were
included for any SNP if: (a) the genotype frequency of its
rarer homozygote exceeded the genotype frequency of its het-
erozygote, and (b) the heterozygote genotype frequency in the
dataset was 0.002 or lower. If two SNPs are in LD, rare-het or
rare-hom counts may not be independent. Therefore, to better
assess statistical significance, we tabulated rare-het and –hom
counts which were individually “thinned” for each subject to
include only counts from SNPs at least “1 Mb apart” as well
as tabulating unthinned counts from “All SNPs”. SUP-
PLEMENTARY METHODS gives more details explaining:
(a) genotype frequency cutpoints chosen to define rare hets
and rare homs, and (b) the rationale for “thinning” rare-het
or rare-hom counts. RHH software is flexible in allowing
users to specify other rare-het and -hom frequency definitions
as well as a thinning distance other than 1 Mb.

Mathematical Model of RHH Performance

Hypothetical dataset and proportion of genome admixture in
individual subjects (Fi) and in the entire dataset (Y). RHH per-
formance was modeled in a hypothetical dataset of 1500 unre-
lated subjects conceived as consisting mainly of unadmixed
Caucasians assumed to derive from the same random mating
population. All ethnic outlier subjects were assumed to have
one unadmixed Caucasian parent and one parent with non-
Caucasian ancestry from the same outlier population (in Asia
or Africa). Thus, at any genomic base-pair position, an ethnic
outlier could carry non-Caucasian DNA on only one of the
two homologous chromosomes and this “single-stranded” non-
Caucasian DNA would cover a specific fraction (Fi) of the ith
subject’s genome. Fi is also the probability that a random
SNP falls in the admixed portion of the ith subject’s genome,
and if Y is the fraction of dataset subjects who carry
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non-Caucasian DNA at the SNP’s genomic position then the
expected value of Y would equal the mean Fi of all 1500 sub-
jects [i.e.E(Y ) = (

∑
Fi)/1500]. Note that in this calculation, Fi

would be 0 in unadmixed Caucasians and would equal 1 in out-
liers with an unadmixed African or Asian parent, and also note
that when 0,Fi,1, the pattern of mosaicism in different sub-
jects is assumed to be independent as would usually be true
in unrelated individuals. For modeling purposes, we estimated
E(Y) for each WTCCC data set by estimating each subject’s
Fi value (based on clustering of rare hets) and found E(Y)
varied from lows of Y×100¼0.11% and 0.16% (in Hyperten-
sion cases and 58BBC controls) to highs of Y×100¼0.52%
and 0.67% (in Arthritis and Crohn’s cases). Thus Supplemen-
tary Figures S30–S33 and Tables S2–S5 show values of Y
that vary from Y×100¼0.1%–1.0%.

Derivation of eqn. (1) for expected SNP heterozygote fre-
quency (Fhet) in the dataset. Equation (1) in the DISCUSSION
shows any SNP’s heterozygote genotype frequency (Fhet)
expected in the hypothetical dataset. To derive eqn. (1), let
the minor allele of the SNP have frequency p in Caucasians,
and let q be the frequency of the same allele in the non-
Caucasian outlier population. In the fraction Y of subjects
with non-Caucasian DNA at the genomic location of the
SNP, note that heterozygotes could be formed in two ways:
the Caucasian minor allele is randomly inherited with prob-
ability p from the Caucasian population and the Caucasian
major allele is randomly inherited with probability (1 2 q)
from the non-Caucasian population yielding a heterozygote
genotype probability of p(1 2 q); or alternatively, the two
alleles are inherited from the opposite populations yielding a
heterozygote probability of q(1 2 p). Adding these two prob-
abilities [i.e. p(1 2 q) + q(1 2 p)] gives the conditional prob-
ability of a heterozygote within the Y fraction of dataset
subjects; and within the (1 2 Y) subjects who are unadmixed
Caucasian at the SNP’s genomic location, the conditional het-
erozygote probability would simply be the Hardy-Weinberg
proportion 2p(1 2 p). Weighting each conditional probability
by Y or (1 2 Y) gives eqn. (1) for the expected frequency
of heterozygotes (Fhet) at the SNP:

Fhet = (1 − Y)[2p(1 − p)] + Y[ p(1 − q) + q(1 − p)] (1)

RHH performance for the Affymetrix500K and Illumina550K
SNP arrays. Given specific values of Y, p and q, eqn. (1)
can determine if a SNP’s Fhet value falls at or below the
rare-het frequency cutpoint (Chet) which qualifies the SNP to
contribute rare-het counts to individual subjects and the
entire dataset. By thus identifying rare-het SNPs among the
larger pool on a commercial SNP array, RHH performance
can be modeled under various combinations of Y, Chet,
outlier ethnicity and Affymetrix or Illumina array since each
of these parameters determines the SNP subset which qualifies
as rare-het SNPs. For more details, see Hodges and Lehmann
(29), and the expanded version of this section in SUP-
PLEMENTARY METHODS which describes the empirically
derived allele frequencies and calculations used to model RHH
performance as presented in Supplementary Figures S30–S33
and S40–S43 and Supplementary Tables S2–S9.

RHH Software

Downloadable at: http://sourceforge.net/projects/rhh/ or http://
www.sanger.ac.uk/resources/software/rhh/
Email enquiries: rhh.software@gmail.com
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