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Co-existing feedback loops generate tissue-specific
circadian rhythms
J Patrick Pett1 , Matthew Kondoff3, Grigory Bordyugov3, Achim Kramer2 , Hanspeter Herzel3

Gene regulatory feedback loops generate autonomous circadian
rhythms in mammalian tissues. The well-studied core clock net-
work contains many negative and positive regulations. Multiple
feedback loops have been discussed as primary rhythm generators
but the design principles of the core clock and differences between
tissues are still under debate. Here we use global optimization
techniques to fit mathematicalmodels to circadian gene expression
profiles for different mammalian tissues. It turns out that for every
investigated tissue multiple model parameter sets reproduce the
experimental data. We extract for all model versions the most
essential feedback loops and find auto-inhibitions of period and
cryptochrome genes, Bmal1–Rev-erb-α loops, and repressilator
motifs as possible rhythm generators. Interestingly, the essential
feedback loops differ between tissues, pointing to specific design
principles within the hierarchy of mammalian tissue clocks. Self-
inhibitions of Per and Cry genes are characteristic for models of
suprachiasmatic nucleus clocks, whereas in liver models many
loops act in synergy and are connected by a repressilator motif.
Tissue-specific use of a network of co-existing synergistic feedback
loops could account for functional differences between organs.
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Introduction

Many organisms have evolved a circadian (~24 h) clock to adapt to
the 24-h period of the day/night cycle (1). In mammals, physiological
and behavioral processes show circadian regulation including
sleep–wake cycles, cardiac function, renal function, digestion, and
detoxification (2). In most tissues, about 10% of genes have circadian
patterns of expression (3, 4). Surprisingly, the rhythmicity of clock-
controlled genes is highly tissue specific (4, 5, 6).

Circadian rhythms are generated in a cell-autonomous manner
by transcriptional/translational feedback loops (7) and can be
monitored even in individual neurons (8) or fibroblasts (9).

Ukai and Ueda (10) depict themammalian core clock as a network
of 20 transcriptional regulators (10 activators and 10 inhibitors)

acting via enhancer elements in their promoters such as E-boxes,
D-boxes, and retinoic acid receptor-related orphan receptor elements
(RREs). Because many of these regulators have similar phases of
expression and DNA binding (11, 12), the complex gene regulatory
network has been reduced by Korenčič et al (6) to just five regu-
lators representing groups of genes: the activators Bmal1 and Dbp
and the inhibitors Per2, Cry1, and Rev-Erba (Fig 1A and B).

Even this condensed network contains 17 regulations consti-
tuting multiple negative and positive feedback loops (13). To
generate self-sustained oscillations, negative feedback loops are
essential (14, 15). Originally, the self-inhibitions of the period and
cryptochrome genes have been considered as the primary negative
feedback loops (16). Later, computational modeling (17) and
double-knockout experiments suggested that the Rev-Erb genes
also play a dominant role in rhythm generation (18). Recently, it has
also been shown that a combination of three inhibitors forming
a repressilator (19) can reproduce expression patterns in the liver,
adrenal gland, and kidney (13).

Despite many experimental and theoretical studies, major
questions remain open: What are the most essential feedback
loops in the core clock network? Do dominant loop structures vary
across tissues?

Here, we use global optimization techniques to fit our five-gene
model to expression profiles in different mammalian tissues (adrenal
gland, kidney, liver, heart, skeletal muscle, lung, brown adipose, white
adipose, suprachiasmatic nucleus (SCN), and cerebellum) (3). We find
that for any given tissue, multiple parameter sets reproduce the data
within the experimental uncertainties. By clamping genes and reg-
ulations at non-oscillatory levels (13), we unravel the underlying
essential feedback loops in all thesemodels. We find auto-inhibitions
of the period and cryptochrome genes, Bmal1–Rev-erb-α loops, and
repressor motifs as rhythm generators. The role of these loops varies
between organs. For example, in the liver, repressilators dominate,
whereas Bmal1–Rev-erb-α loops are found in the heart. Clustering of
the model parameter sets reveals tissue-specific loop structures. For
example, we rarely find the repressilator motif in the brain, heart, and
muscle tissues because of the earlier phases and small amplitudes of
Cry1. We discuss that the co-existence of functional feedback loops
increases robustness and flexibility of the circadian core clock.
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Results

A five-gene regulatory network represents most essential loops

Here, we derive a gene regulatory network that can be fitted
successfully to available transcriptome, proteome, and ChIP-seq
data. We will use the model to explore tissue-specific regulations.

Many circadian gene expression profiles for mouse tissues are
available (5, 20, 21). Here, we focus on data sets from tissues
spanning 48 h with a 2-h sampling (3). These comprehensive ex-
pression profiles are particularly well suited to study tissue dif-
ferences. For mouse liver also, proteome (22) and ChIP-seq data
(11, 23, 24) are available with lower resolution.

Using global parameter optimization, we fit tissue-specificmodel
parameters directly to the gene expression profiles of Zhang et al
(3). Proteome and ChIP-seq data are primarily used to specify
reasonable ranges of the delays between transcription and the
action of activators and repressors. The ranges of degradation rates
have been adapted to large-scale studies measuring half-lifes of
mRNAs (25, 26) and proteins (27).

Quantitative details of activation and inhibition kinetics are not
known because of the high complexity of transcriptional regulation.
The transcriptional regulators are parts of MDa complexes (28) in-
cluding histone acetyltransferases and histone deacetylases (29).
Details of DNA binding, recruitment of co-regulators, and histone
modifications are not available (30). Thus, we use heuristic ex-
pressions from biophysics (31) to model activation and inhibition
kinetics. Exponents represent the number of experimentally verified
binding sites (32) (Supplementary Information 1), and the parameters
were assumed to be in the range of the working points of regulation.

To justify the topology of our reduced gene regulatory network,
we analyze the amplitudes and activation phases of all the 20
regulators described in Ukai and Ueda (10) (Fig 2). Repressor phases
were inverted by 12 h to reflect the maximal activity and allowing
direct comparison with activators.

Fig 2 shows that the five genes binding to RREs and the four
genes binding to D-boxes cluster at specific phases. Consequently,
we represent these regulators by selected genes with large am-
plitudes: Rev-erb-α and Dbp. Because the other RRE and D-box
regulators peak at similar or directly opposed phases, their ad-
ditional regulation can be taken into account by the fitting of
activation and inhibition parameters.

The regulation via E-boxes is quite complex (11, 30, 33, 34). In
addition to the activators Bmal1 and Bmal2, we have their di-
merization partners Clock and Npas2 and their competitors Dec1 and
Dec2. Furthermore, there are the early E-box targets Per1, Per2, Per3,
and Cry2 and the late gene Cry1. We model this complicated mod-
ulation by three representative genes: Bmal1 as the main activator
and Per2 and Cry1 as the early and late E-box target, respectively.

In summary, the reduced gene regulatory network consists of five
genes and 17 regulations (Fig 1). All regulations and the number of
binding sites have been confirmed by several experimental studies
discussed in detail in (32). Interestingly, liver proteomics (22) and
ChIP-seq data are consistent with morning activation via Bmal1,
evening activation by Dbp, and sequential inhibition by Rev-erb-α,
Per2, and Cry1. Recent detailed biochemical experiments support
the notion that there are distinct inhibitionmechanisms associated
with Per2 and Cry1 (30). The essential role of the late Cry1 inhibition
has been stressed also by Ukai-Tadenuma et al (35) and Edwards
et al (36).

As discussed above, ourmodel isfitteddirectly tomRNA time series
collected for different tissues at 2-h intervals for a total duration of
2 d. The transcriptional/translational loops are closed by delayed
activation or repression realized by the corresponding proteins.
Because most quantitative details of posttranscriptional modi-
fications, complex formations, nuclear import, and epigenetic
regulations are not known, we simplify all these intermediate
processes by using explicit delays. Thus, we describe the core
clock network by five delay-differential equations with 34 kinetic
parameters (see Supplementary Information 1 for the complete
set of equations).

The model constitutes a strongly reduced network that ap-
proximates the highly complex protein dynamics by delays. In-
hibition strengths are represented by a single parameter, whereas
modeling of activation requires two parameters: maximum acti-
vation and threshold levels. While keeping in mind the proposed
simplifications, the resulting tissue-specific models can still be
regarded as a biologically plausible regression of the underlying
biological dynamics.

In Fig 3A, we show examples of simulations fitted to the cor-
responding gene expression patterns. After successful parameter
optimization as described below, the differences between data and
models are comparable with experimental uncertainties quantified
by comparing different studies (3, 21, 37) and by studying the

Figure 1. Network of the core clock model.
(A) The graph comprises 7 activations and
10 inhibitions forming several negative feedback loops.
Four loops that are mainly discussed in the literature
and were most often found by our analysis are marked
in different colors. Note that for Per2 and Cry1 auto-
inhibitions also, extensions via the gene Dbp are
counted. (B) Table of genes represented by each
variable of the model.
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differences between the first and second day of the expression
profiles by Zhang et al (3) (Supplementary Information 3).

Vector field optimization (VFO) improves model fitting

To investigate whether our reduced gene regulatory network can
reproduce tissue-specific data, (3) we developed a pipeline for
global parameter optimization and analysis (scheme in Fig 3B). We

applied the pipelinemultiple times to each tissue-specific expression
profile, allowing us to compare optimizedmodel parameters between
tissues. Table 1 lists the number of optimization runs for 10 analyzed
tissues. Four tissues (liver, SCN, adrenal gland, and kidney) are dis-
cussed in more detail in the following sections, whereas results for
others can be found in Supplementary Information 2 and 5.

The agreement of model simulations and experimental mRNA
time courses (3) were measured by a scoring function. In this

Figure 3. (A) Example time series for data and
simulation. One fit in liver (left) and one fit in the SCN
(right) are shown. Expression levels are normalized to
the mean values. The liver fit has a score of 0.01 and
involves the Bmal1–Rev-erb-α, repressilator, and Cry1
loops, whereas the SCN fit scores 3.36 and involves the
Bmal1–Rev-erb-α, Per2, and Cry1 loops. Note the
smaller amplitudes and the early Cry1 phase in the
SCN. (B) Workflow of the analysis. Multiple optimized
parameter sets are obtained from each tissue-specific
data set. Then essential loops are identified in the
respective models.

Figure 2. Circular plots of 20 regulators reveal redundancies and serial inhibition (10, 12).
They represent peak phases of mRNA expression in multiple tissues (3). Note that repressor phases were inverted by 12 h to allow direct comparison with
activators. (A) Histogram of the phase distribution over all tissues. (B) List of genes represented in circular plots and their corresponding target motifs. Repressors are
marked in bold. (C) Phases of core clock genes in selected tissues. Colored lines correspond to the circular mean of the respective groups. Amplitudes are linearly
scaled. The differences between SCN and other tissues are particularly notable (e.g., the earlier Cry1 peak). Antagonistic regulations of Rev-erb and Ror in the SCN
can be modeled by reduced inhibition strength of Rev-erb-α.
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function period, relative phases and fold changes of measured
gene transcripts are taken into account. The complete scoring
function is given in Supplementary Information 3.

Model parameters are chosen by global optimization, such that
the score obtained by our scoring function is minimal. The op-
timization method approaches a local minimum in a high di-
mensional parameter space, and thus, final scores of each run
depend on the starting conditions. We only used model fits
with scores lower than a chosen threshold of 10 for further an-
alyses. A cutoff of 10 reflects deviations that are within the ex-
perimental uncertainties according to our tolerance values
(Supplementary Information 3). Interestingly, the fractions of
optimization runs with scores lower than 10 vary across tissues.
Whereas the largest number of successful runs is found for liver
data (about 90%), for the kidney and adrenal gland about 2/3
and for SCN only 1/3 of the runs yield good scores below the chosen
threshold.

Allowed ranges for parameters were defined to restrict the
search space. Although delays and degradation rates are optimized
within biologically plausible ranges around experimentally mea-
sured values, for activation and inhibition strengths no such mea-
surements are available. Therefore, we define ranges based on
oscillation mean levels and corresponding to the working points of
regulations, that is, ranges in parameter space in which regulation
strengths vary most.

Global optimization is performed with particle swarm optimi-
zation (PSO) (38). A number of particles—each representing one
parameter combination—are initialized randomly using Latin hy-
percube sampling (39) and moved around in the parameter space
with velocities changing according to both their individual and their
neighbor’s known best location. The movements are conducted for
a number of iterations while velocities decrease and particles
converge to an optimum.

We improve global optimization by identifying good starting
conditions. To this end, we devise a strategy which we here
call “vector field optimization.” Our algorithm makes use of
experimentally-derived time courses for model variables and their
mathematical description in terms of differential equations. From
the data, we can approximate the time derivatives together with the
right-hand sides of our model equations (Fig 4A and Supple-
mentary Information 4). By minimizing the differences, we obtain
initial values of model parameters. This step does not require
simulation, but already yields parameter combinations that ac-
count for much of the differences between time courses. For ex-
ample, the known antiphase oscillations of Bmal1 and Rev-erb-α
can be generated with a Bmal1 delay of about 6 h. Even though the
overall search space of this parameter is the interval from 0 to 6 h,

VFO leads to initial delay values close to 6 h (see Supplementary
Information 4 for details).

VFO is performed using a bounded gradient method to ensure
that solutions lie within the parameter limits. Starting points for the
gradient method are chosen randomly. We tested whether VFO
improves the scores of model fits. Indeed, we are able to find
significantly more good fits for the liver and SCN than with PSO
alone (Fig 4B). Notably, in the SCN, it was difficult to reach scores
lower than 10 without previous application of VFO.

Clamping reveals essential loops

Using global optimization, we found for all 10 tissue-specific ex-
pression profile (3) parameter sets that reproduce the data within
experimental uncertainties (Supplementary Information 2 and 3).

Table 1. Number of optimization runs per tissue and average score.

Adrenal gland Kidney Liver Heart Skeletal muscle Lung Brown adipose White adipose SCN Cerebellum

Number of runs 100 93 57 57 58 31 62 45 153 58

Runs with score < 10 66 59 52 44 35 21 36 22 46 39

Mean score 3.84 4.48 1.58 3.74 5.17 3.04 4.00 3.24 7.21 3.99

Figure 2, 5, 6, 7, 8 2, 5, 6, 7, 8 2–8 8, S2, S5 8, S2, S5 8, S2, S5 8, S2, S5 8, S2, S5 2–8 S2, S5

Four tissues (adrenal gland, kidney, liver, and SCN) are mainly discussed in the main text and others are described in supplements as indicated in the last row.

Figure 4. Improved fitting with VFO.
(A) Flow diagram showing how VFO is integrated into the fitting procedure. The
resulting parameter set is used to initialize one particle and to pre-emphasize
kinetic parameters. (B) Score for fits to circadian transcription data from mouse
liver and SCN with and without VFO. Each point represents a fitted model. VFO
leads to significantly lower score values (Wilcoxon rank–sum test, P-value liver:
4.29 × 10−7, P-value SCN: 4.819 × 10−6).
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There was not just a single optima of global optimization, but for all
investigated tissues, multiple parameter configurations fitted the
data.

To determine essential feedback loops for eachmodel fit, we use
our clamping protocol published in 2016 (13). Clamping of genes is
carried out by setting the expression level of genes to their mean
value (constant) and corresponds to constitutive expression ex-
periments in the wet laboratory (36, 40, 41, 42). It allows comparison
of the effect of rhythmic versus basal regulation.

In addition to gene clamping, we also clamp specific regulations
via gene products. In silico, this is carried out by setting the cor-
responding terms in the differential equations of the model con-
stant. Regulations/terms are shown as network links in Fig 1. We can
examine the relevance of feedback loops associated with such links
by clamping regulations systematically.

To reduce computational effort, we use a targeted clamping
strategy, testing specifically which feedback loops are essential. We
regard a negative feedback loop as essential for oscillations if
clamping of each link that is part of the loop disrupts rhythmicity
(only one link at a time is clamped). Details are provided in Sup-
plementary Information 5.

In addition, we test the synergy of loops by clamping combi-
nations of regulations. We are able to distinguish two different
modes of synergistic function: (i) two loops work independent of
each other andmutually compensate for perturbations, and (ii) two
dependent loops share the required feedback for oscillations, such
that rhythms only occur when both loops are active.

For example, in the liver, we found many model fits in which the
Bmal1–Rev-erb-α and repressilator loops function synergistically.
Both loops constitute a negative feedback from Rev-erb-α onto

itself and are timed accordingly, such that they mutually support
rhythmicity.

We apply this clamping analysis to every generated model
fit (420 in total; Table 1) to identify feedback loops responsible
for rhythmicity. The most commonly found loops are marked
in Fig 1.

Loop and parameter composition reflects variation of clock gene
expression

For every tissue-specific data set, we have obtained multiple model
fits. Along the lines of the previous studies (43, 44), we exploit the
ensembles of tissue-specific data sets to extract characteristic
model properties for each organ. After assigning essential loops to
every model fit, we are able to compare variations in loop com-
position between different tissues.

Therefore, we define four core loops that were identified by our
analysis and discussed in the literature. Fig 5 shows how the
composition of these four loops varies between tissues. Interest-
ingly, there are marked differences.

In liver, Bmal1–Rev-erb-α, Per2, Cry1 loops, and repressilators all
occur with comparable frequencies and, thus, appear to fit the data
equally well. In contrast, the SCN repressilators only occur in a few
cases. This is also consistent with the early peak time of Cry1
mentioned earlier because the repressilator mechanism is based
on distinct inhibitions at different phases (13). Fits to the adrenal
gland and kidney data have similar proportions of essential loops,
and in contrast to the liver, they have more Bmal1–Rev-erb-α loops
and less repressilators. The profiles of additional tissues are shown
in Supplementary Information 5.

Figure 5. Proportions of essential feedback loops
across tissues.
For each tissue-specific transcriptome data set
multiple model fits were generated. In each model fit,
essential feedback loops were then identified using
clamping analysis. Frequencies are shown for a set of
four core loops that were most prominent in the
analysis and are discussed in the literature.
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To find out whether tissue differences are reflected in the model
parameters, we examine their distributions in the 34-dimensional
parameter space. To this end, we perform dimensionality reduction
by principal component analysis and visualize tissue differences
using linear discriminant analysis (45).

Fig 6A illustrates that the parameters sets fitted to SCN are
clearly different from those fitted to other tissues. The differences
can be assigned to selected parameters as indicated by the red
arrows.

In Fig 6B, we project the model parameters to the first two
principal components and color the points according to the es-
sential loops. It turns out that Per2 loops (blue), Cry1 loops (green),
and Bmal1–Rev-erb-α loops (orange) are associated with distinct
parameter sets. We observe, for example, an association of Cry1
loops with high Cry1 delay.

The differences in loop distributions (Fig 5) and parameter
constellations (Fig 6) suggest that differences between expression
profiles (Fig 2) imply tissue-specific mechanisms to generate self-
sustained oscillations. For example, in brain tissues, small ampli-
tudes and early Cry1 phases promote self-inhibitions of Per2 and
Cry1, whereas a large Rev-erb-α amplitude in liver leads to many
solutions with Bmal1–Rev-erb-α loops and repressilators.

Synergies of feedback loops

So far, we discussed tissue-specific frequencies of single loops.
Interestingly, most parameter sets cannot be assigned to unique
loops but to combinations of different essential feedback loops.
Now, we use a targeted clamping strategy (Supplementary In-
formation 5) to explore possible synergies of feedback loops.

Our clamping strategy allows us to find loops that are necessary
(or essential) for rhythm generation. If we clamp regulations that are

part of these loops, rhythms vanish. Furthermore, by clamping many
regulations at the same time, we can also identify sets of loops that
are sufficient for oscillation generation. In simulations, rhythms
persist if these loops are active while all others are clamped. We term
such synergistic sets of loops “rhythm-generating oscillators.”

Analyzing 420 parameter sets, we find more than 70% that exhibit
synergies of different feedback loops. Fig 7A illustrates that most
models constitute combinations of loops. Venn diagrams in Fig 7B
show that in liver, Bmal1–Rev-erb-α loops together with repressilators
form the largest group of oscillators, whereas in the SCN, Bmal1–Rev-
erb-α loops are typically associated with Per2 and Cry1 loops.

Interestingly, the synergy of multiple loops leads typically to low
scores. There is a significant difference in the number of loops
between parameter sets greater than and lower than the median
score (Wilcoxon rank-sum test, P-value < 0.0001) and most model
fits involving all four loops lead to excellent scores lower than 2.5.

Moreover, repressilators exhibit quite good scores, in particular,
for the liver, kidney, and adrenal gland. For these tissues, fits with
repressilator have an average score of 1.24, whereas fits without
repressilator have a mean score of 4.41. This is consistent with our
finding that better scores involve more loops. The repressilator
motif connects inhibitions of Per2, Cry1, and Rev-erb-α and links
the loops synergistically.

Discussion

Circadian rhythms in mammals are generated by a cell-
autonomous gene regulatory network (46). About 20 regulators
drive core clock genes via E-boxes, D-boxes, and RREs (10). Based on
clustered gene expression phases (compare Fig 2), we reduced
the system to a network of five genes connected by 7 positive and

Figure 6. Tissue-specific models separated in parameter space.
(A) Linear discriminant analysis. Fits (points) are projected to a plane while trying to maximize the variance between tissues. The projected parameter vectors are
visualized as arrows in this plane, showing how parameters differ between tissues. Only the four largest arrows are shown for simplicity. (B) Loops in parameter space.
Shown are the first two principal components and points corresponding to parameter sets for the adrenal gland. Directions of the parameter axes are given as red arrows.
Relations between parameter values and loops are visible, for example essential Cry1 loops (green) occur, when Cry1 delays are large. Only the three largest arrows are
shown, which are markedly larger than the others.
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10 negative regulations (Fig 1). This reduced model still contains
multiple positive and negative feedback loops.

Our aim was to identify the most essential feedback loops and to
quantify tissue differences. Our network model was fitted to
comprehensive expression profiles of 10 mammalian tissues (3).
Furthermore, we use proteomics data (22), ChIP-seq data (11, 23),
and decay-rate data (25) to constrain the ranges of unknown pa-
rameters. Since quantitative data on protein dynamics are sparse,
we simplified the model by using explicit delays between tran-
scription and regulation.

We optimized parameters by a combination of a novel approach
termed VFO and PSO (38). After combining these global optimi-
zation techniques, our simulations could reproduce the data within
experimental uncertainties.

To our surprise, we found for every studied tissue multiple ex-
cellent fits with quite different parameter constellations. To ex-
tract the responsible feedback loops we performed a systematic
clamping analysis. Individual regulatory terms (edges in the net-
work) were systematically clamped to constant values. These
clamping methods revealed the essential feedback loops in each of
the networks derived from tissue-specific expression profiles.

We found an astonishing diversity of essential feedback loops
in models that were able to reproduce the experimental data.
Among the essential loop structures we found Per and Cry self-
inhibitions. These loops have been considered as the primary
negative feedacks because the double knockouts of Cry genes (47)

and the triple knockouts of Per genes (48) were arrhythmic. Later,
additional feedback loops via nuclear receptors have been found
(49). As predicted by modeling (17) and confirmed by Rev-erb
double knockouts (18), the Bmal1/Rev-erb loops constitute an-
other possible rhythm generator. Indeed, in all tissues, we de-
tected parameter constellations that use this negative feedback
loop.

Recently, the repressilator, a chain of serial inhibitions, was
suggested as a possible mechanism to generate oscillations in the
liver and adrenal gland (13). This loop structure is associated with
dual modes of E-box inhibitions (30) based late Cry1 expression (35)
and late CRY1 binding to E-boxes (11). Because the expression phase
of Cry1 is tissue-dependent, it is plausible that the detection of
repressilators also might differ between different organs.

Indeed, repressilators are less frequently detected as essential
in models based on brain data–derived parameter sets as shown in
Fig 5. In general, the model parameters in the SCN are clearly
different from the parameters in peripheral tissues (Fig 6). Thus,
modeling can point to different design principles in specific organs.
The large amplitudes and late Cry1 phases in tissues such as liver
suggest that the repressilator is a relevant mechanism in these
tissues, whereas small amplitudes and early Cry1 phase in brain
tissues favor Cry and Per self-inhibitions.

Major differences between tissues have been reported also
regarding amplitudes and phases of clock-controlled genes (3, 4, 5, 6).
Such differences are presumably induced by tissue-specific

Figure 7. Proportions of minimal oscillators across tissues.
(A) Frequencies of oscillators in models of different tissues. An oscillator comprises one or more loops (connected with a “+” in the legend). Per2, Cry1 loops, and their
extensions via Dbp (Fig 1) are counted separately here. (B) Venn diagrams of oscillator composition for liver and SCN. Bold numbers highlight the most frequent subsets.
In liver, most oscillators comprise many loops including Bmal1–Rev-erb-α loop, repressilator, Per2, and Cry1 loops. In the SCN most oscillators are a combination
of Bmal1–Rev-erb-α with Cry1 and Per2.
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transcription factors (34, 50, 51). Moreover, different organs re-
ceive different metabolic and neuroendocrine inputs leading to
quite different rhythmic transcriptomes. These systemic tissue
differences can also modify the core clock dynamics. In particular,
nuclear receptor rhythms differ drastically between organs (52) and
can induce tissue specificities of the core clocks (53, 54).

Interestingly, the best scoring models involve several essential
feedback loops. This observation indicates that the synergy of
different feedback mechanisms improves oscillator quality.
Furthermore, co-existing loops imply redundancy, and thus, the
core clock is buffered with respect to non-optimal gene ex-
pression, hormonal rhythms, seasonal variations, and environ-
mental fluctuations.

Co-occuring feedback regulations might also explain reports
where different circadian outputs displayed slightly different pe-
riods. For example, in SCN slices, different reporter signals indi-
cated distinct periods (55, 56), and also in crickets, two independent
negative feedback loops were reported (57). In some of our high-
scoring networks, we indeed find two independent frequencies
leading to slight modulations of the circadian waveforms (Sup-
plementary Information 6).

Tissue-specific core clock mechanisms are presumably related
to functional differences of SCN and peripheral organs. Per gene
regulations are particularly important in the SCN because light
inputs and coupling via vasoactive intestinal peptide induce Per
genes via cAMP response element-binding protein (16, 58). Relatively

small core clock amplitudes in the SCN allow efficient entrainment
and synchronization (59, 60). Moreover, small amplitudes might
facilitate adaptation to long and short photoperiods by varying
coupling mechanisms (61, 62). The dominant role of Per and Cry
self-inhibitions is also reflected by the arrhythmic activities of Per
and Cry double knockouts (47, 48).

Peripheral organs such as the liver, kidney, and adrenal gland
govern the daily hormonal and metabolic rhythms. Conse-
quently, large amplitudes and pronounced rhythms of nuclear
receptors are observed (52, 63). Interestingly, we find that feed-
back loops involving RREs are more prominent in these tissues
(compare Fig 8).

We now address the question of how the choice of our simplified
model might affect the results. As shown in Table 1, we use many
different parameter sets that can reproduce the data within ex-
perimental uncertainties. Such a probabilistic interpretation makes
our conclusions more robust regarding the choice of parameters.
Furthermore, a fit to different qPCR data sets (6) also detected the
repressilator motif as a core element in the liver and adrenal gland.
Themodel structure was chosen to be generic and, in particular, not
depending on specific molecular mechanisms. It was created in an
unbiased way using general assumptions and experimental evi-
dence on interactions. Interestingly, the co-existence of Per/Cry
and Bmal1/Rev-erb-α loops has been found also in a different
larger model (17). Thus, we assume that the main results of our
study do not depend much on the model choices made.

Figure 8. Differences between gene expression in mouse tissues and associated feedback loops found in model fits.
Shown are three representative feedback loops for tissues as characteristic examples.
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To test our predictions, we suggest tissue-specific modifications
of the core clock genes. In particular, constitutive or out-of-phase
expression of clock genes can be used. It has been shown already
that constitutive expression of Per and Cry genes impairs rhythms
(36, 40, 41). Also, specific regulations can be manipulated experi-
mentally to resemble clamping of regulatory edges. For example,
the removal of intronic RREs of the Cry1 gene leads to vanishing
amplitudes in single cells (35). Moreover, available REV-ERB ago-
nists (63) could be applied to study the role of the corresponding
loops. Therefore, our model predictions can be tested by specific
perturbations resembling our numerical interventions.

In summary, our study suggests that there is not necessarily
a single dominant feedback loop in the mammalian core clock.
Instead, multiple mechanisms including Per/Cry self-inhibitions,
Bmal1/Rev-erb loops, and repressilators are capable to generate
circadian rhythms. The co-existence of feedback loops provides
redundancy and can thus enhance robustness and flexibility of the
intertwined circadian regulatory system.

Materials and Methods

Methods can be found in the Supplementary Information.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800078.
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