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Abstract: In recent years, our knowledge of coastal environments has been enriched by remotely
sensed data. In this research, we co-analyse two sensor systems: Terrestrial Laser Scanning (TLS)
and satellite-based Synthetic Aperture Radar (SAR). To successfully extract information from a
combination of different sensors systems, it should be understood how these interact with the
common environment. TLS provides high-spatiotemporal-resolution information, but it has high
economic costs and limited field of view. SAR systems, despite their lower resolution, provide
complete, repeated, and frequent coverage. Moreover, Sentinel-1 SAR images are freely available.
In the present work, Permanent terrestrial Laser Scanning (PLS) data, collected in Noordwijk (The
Netherlands), are compared with simultaneous Sentinel-1 SAR images to investigate their combined
use on coastal environments: knowing the relationship between SAR and PLS data, the SAR dataset
could be correlated to beach characteristics. Meteorological and surface roughness have also been
taken into consideration in the evaluation of the correlation between PLS and SAR data. A generally
positive linear correlation factor up to 0.5 exists between PLS and SAR data. This correlation occurs
for low- or moderate-wind-speed conditions, whilst no particular correlation has been highlighted
for high wind intensity. Furthermore, a dependence of the linear correlation on the wind direction
has been detected.

Keywords: terrestrial laser scanner; SAR; coastal environment; weather effect; surface roughness

1. Introduction

During recent years, Terrestrial Laser Scanning (TLS) has been successfully exploited in
many applications thanks to its ability to capture both geometric information and to register
backscattered laser intensity of the scanned objects. Among its applications, forestry [1–3],
river systems [4,5] and geomorphology [6,7] have been investigated. In recent years, our
knowledge on coastal environments has been enriched by information provided by TLS sys-
tems, which show significant potential for examining coastal processes [8–10]. Among the
coastal applications, TLS has been used in order to generate Digital Elevation Models (DEM)
and to evaluate accurate volumetric changes on beaches, dunes and cliffs, Ref. [11]: thanks
to the high density of the point clouds with high accuracy/precision, TLSs are suitable for
the detailed DEM mapping of features on hundreds of meters of beach–dune systems [12].
Several studies have also demonstrated the potential for estimating other beach features,
such as the surface moisture, using both short and long-range TLS [10,13–16].

TLS has the advantage over other surveying techniques in that it can provide accurate
and dense information in a rapid and non-invasive manner [17]. Moreover, it can scan a
beach repeatedly without correction for changes in illumination because it works as an
active sensor [13–15,18]. On the other hand, TLS has some disadvantages when used in
large environments such as coastal areas, such as a limited field of view, high economic
cost, heavy material (difficulties for portability), longer measurement time, problems with
small misalignments requiring calibration of reference points, and sight shadowing [19].
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Space-born remote sensing provides a unique ability to monitor and map coastal areas
with complete, repeated, and frequent coverage of the Earth’s surface [20]. In particular,
active microwave remote sensing systems, despite their lower resolution, can penetrate
through clouds and provide continuous and all-weather monitoring. This allows for
more reliable and consistent sand monitoring. Synthetic Aperture Radar (SAR) is the
most common active remote sensing system for Earth observation [21]. In recent years,
many studies have demonstrated the advantage of using SAR for the estimation of soil
surface characteristics, such as surface roughness and soil moisture [22,23]. Different sensor
configurations, in terms of wavelength, polarization, and incidence angle, allow for the
discrimination of various soil parameters, such as surface roughness, soil dielectric constant,
and vegetation cover [24,25].

The combined use of TLS and SAR systems has been poorly investigated, and liter-
ature is mostly limited to forest fire [26,27] and vegetation [28] estimation. In this work,
we present new results from a Permanent terrestrial Laser Scanner (PLS) [29]-based in-
vestigation on beach environments. Both geometric information and backscatter laser
intensity have been collected from a permanently installed laser scanning device, a Riegl
VZ-2000 [30]. The PLS results are compared with simultaneous Sentinel-1 Synthetic Aper-
ture Radar (SAR) images [31] in order to investigate, for the first time, the synchronous use
of PLS and radar in beach environments. The purpose of this comparison is the showing of
a possible relation between PLS and SAR data: knowing this relation, SAR data could be
correlated to beach characteristics assessabled by PLS.

Several studies have shown that remote sensing data on coastal environments are
affected by variables such as wind condition and surface roughness. This has been shown
independently for both PLS [10,15,16] and SAR data, where the backscattering behaviour
depends on the roughness in relation to the wavelength [32,33] and is affected by wind
speed and direction [34]. Therefore, notably, meteorological conditions in terms of wind
speed and direction, rain, and surface roughness, will be taken into consideration in the
evaluation of the correlation between PLS and SAR data.

In terms of the contribution of surface roughness to the correlation between SAR
and TLS systems, the focus of this paper is to evaluate the effect of the roughness at a
decimeter-scale resolution on the PLS system and, for the first time, its contribution to the
relationship between PLS and SAR data.

In [35], Lane states that roughness, as a component of topography, must be dealt
with implicitly at the scale of inquiry; depending on the specific range of scales, there is a
diversity in characterising and defining the surface roughness. Higher-order roughness
representing elevation variations in the field ([36]) has been considered in this work.

One of the most common parameters applied for surface roughness quantification is
the standard deviation in a vertical direction from a single mean value (Root-Mean Squared
Height, RMSH).

Variations in height at different scales affect this index, therefore RMSH values are
commonly derived on a previously detrended surface in order to remove the effect of
larger-scale roughness patterns such as slope or curvature and to separate multi-scale
effects [37,38].

TLS has been investigated as a technique for two-dimensional sampling of soil heights
able to detect elevation differences at the mm range with relatively small effort, despite
the high equipment costs [39–41]. Assessment of surface roughness is one of the most
challenging applications of TLSs [42].

In the present study, roughness patterns at different scales were analysed by RMSH,
evaluated using PLS data, using sliding windows. The purpose of this analysis is to
verify whether the RMSH index, describing in this study roughness characteristics in the
decimetre scale, has an influence in the correlation between TLS and SAR, and how this
influence changes with weather condition.

The paper is structured as follows: in Section 2, the study area, the weather data and the
PLS and SAR datasets are presented; in Section 3, the data processing and the roughness
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evaluation are presented and the methodology used to compare PLS and SAR data is
shown; in Section 4, the correlation between SAR and PLS on the study area is presented,
followed by the evaluation of influence of weather and roughness. Sections 5 and 6 show
the discussion and conclusion of the present work.

2. Materials

In this section, the study area and the used weather dataset are described, followed by
the presentation of the TLS and SAR dataset.

2.1. Study Area

The study site consists of a typical urban beach on the Dutch coast in Noordwijk,
The Netherlands. It is subject to tidal differences up to 2 m and varies in width between
80 m and 140 m under normal weather conditions. Behind the beach lies a row of dunes.
A hotel (Grand Hotel Huis ter Duin) borders the dunes at about 150 m distance from the
sandy beach. On the balcony of the top floor of the hotel, at 55 m above sea level, a Riegl
VZ-2000—shown in Figure 1—laser scanner was installed to acquire point clouds of the
sandy beach and neighbouring dunes every hour for the duration of two years. SAR and
PLS data on the study area from the same period ranging 19 August 2019 to 22 April 2021
have been identified. Fistly, SAR pixels covering the study area have been selected as
shown in Figure 2.

Figure 1. Location of the study site in Noordwijk, The Netherlands (A) with view of the Riegl VZ-2000
laser scanner mounted on the balcony of Grand Hotel Huis ter Duin (B) and point cloud colored with
reflection (C) and indication of location of the laser scanner and study site.

Figure 2. Sentinel-1 image (sigma naught values, VV polarization) from orbit DSC37: the study area
is highlighted in yellow and its location is represented with respect to the city, the sea and the PLS
position. Top right: the number of the SAR pixels covering the study area.
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2.2. Weather Dataset

Several meteorological stations monitor the Dutch coast, continuously providing
detailed variables. Professional weather station data guarantee controlled information
but there are no data available close to the study area; therefore in the present study, as a
compromise, amateur weather station data have been used. These are less controlled
compared to professional weather station data, but are available in the area of interest.
For the present study, information regarding wind speed and direction and precipitation
at the time of the satellite pass were collected. All the weather data used in this study
are local information collected at the moment of the satellite pass. Instantaneous values
for both wind speed and direction have been used, whilst for the rain the precipitation
accumulation, which is the sum of precipitation over a certain period of time, has been
used. In particular, the precipitation accumulation over the 1 h before the satellite pass has
been considered. Three amateur weather stations were selected, since they provide the
type of data and the temporal sampling required. The meteorological stations are located
in Noordwijk (52.25° N, 4.43° E), Katwijk (52.19° N, 4.41° E) and Scheveningen (52.11° N,
4.29° E), all close to beach areas and close to the area of interest (respectively 1 km, 5 km
and 15 km). The weather stations in Noordwijk and Scheveningen have high correlation
coefficients with each other concerning the wind and rain variables. The wind dataset
of station Noordwijk during the two years is not as complete as station Scheveningen,
therefore it has been discarded. The dataset of station Katwijk has been discarded since the
anemometers—devices used for measuring wind speed and direction—are located next
to a building or a wall, therefore their correlation with the two other stations was poor.
The values of station Scheveningen have been therefore selected for the present analysis
(https://wow.knmi.nl/#919666001s, accessed on 15 November 2021).

Figure 3 shows the scatter of the collected wind speed relative to the wind direction at
the moment of the satellite passing for the selected days of the stack. In the figure, each red
dot represents the instantaneous wind value (speed and direction) acquired simultaneously
to the Sentinel-1 passing over the study area for the entire stack. Considering the orientation
of the coastline, onshore wind occurs for directions ranging between −30° and 150°.

Figure 3. Scatter plot of the local wind direction (0° = North; 90° = East) and wind speed (m/s;
represented on the radius) collected during the days of the stack at the moment of the satellite passing.
The PLS location is highlighted in red. Background image: QGIS.

2.3. Pls Dataset

The selected data consist of point clouds covering an area of approximately 36 m × 80 m
on the dry part of the beach, which is not covered by tides under normal conditions. The data
are acquired on the same days and at the same time as when the Sentinel-1 passes over
the study area. The laser scanner is scanning with 0.03° angular resolution (referred to as

https://wow.knmi.nl/#919666001s
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low resolution—LR—in the following) and at a wavelength of 1550 nm. The study area is
at about a 250 m range distance and the range accuracy (at 150 m range) equals 0.008 m,
according to the specifications [43]. With a slight surface slope of 1° towards the sea and
away from the laser scanner, the incidence angle is about 77° on average. The area contains
just under 30,000 points, resulting in a point density of about 10 points per m2. Because of the
relatively large incidence angle and range, the footprint in this area is about 0.066 m2, with
an ellipse shape of 0.3 m diameter on the long side. In the present work, the intensity value
is considered for the analysis. The intensity value is normalised with respect to a reference
level for each single point, therefore the intensity data are dimensionless [44]. The output has
been calibrated to allow the scan data to be range-independent [43].

2.4. Sar Dataset

Sentinel-1 is a constellation of two sun-synchronous dawn/dusk orbiting (orbit height:
693 km, platform velocity: about 7.6 km/s) satellites [45], Sentinel-1A and Sentinel-1B,
which carry a C-band (operating at a wavelength of about 5 cm wavelength) SAR sensor.
The repeat cycle of the Sentinel-1 constellation is 12 days for the single satellites and six
days for the two satellites together. Images at different polarisation and resolution are
collected and freely accessible from the Copernicus data hub [46].

For the present study, Sentinel-1 data collected from Google Earth Engine have been
used after further processing steps. A single orbit (DSC37, parallel to the Dutch coastline)
has been selected. All the available Sentinel-1 images from the orbit DSC37 acquired
from 19 August 2019 to 22 April 2021 at the same time (05:50 UTC) were downloaded
(88 images). For Sentinel-1 images, it is possible to select the polarisation of the received
signal: VH (vertical transmit, horizontal receive) and VV (vertical transmit, vertical receive)
polarisation are available. In Figure 4, the averaged images in both VV and VH polarisation
during the period of interest are shown. Regarding the polarisation effect, it is well-known
that HH (horizontal transmit, horizontal receive) is more sensitive to surface scattering and
VH to volume scattering, and VV a combination of the two. VH backscatter is therefore
often used for the retrieval of crop parameters, and HH for ground parameters [47]. It has
been shown that HH data are optimal for mapping surface water features when little to no
roughness is present across the water surface. Alternatively, HV demonstrates superior
results for water surfaces with increased roughness because of high winds [48].

The Sentinel-1 mission only provides data in VV and VH polarisation.

Figure 4. Sentinel-1 images (Left: VV polarisation; Right: VH polarisation): sigma nought values
averaged over the period of interest (19 August 2019 to 22 April 2021) from the orbit DSC37 showing
the city of Noordwijk and its coast line with the study area highlighted in the black box.

Sentinel-1 imagery in Earth Engine consists of Level-1 Ground Range Detected (GRD).
GRD are focused SAR data that have been detected, multi-looked and projected to ground
range using an Earth ellipsoid model. The SAR images used in the current study are Interfero-
metric Wide (IW) acquisition mode with 20 × 12 m spatial resolution (range × azimuth), dual
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polarisation (VV + VH) and GRD product type. Within this collection, all products have
been already pre-processed using the European Space Agency’s (ESA) Sentinel-1 Toolbox
(S1TBX), available on the European Space Agency Sentinel-1 Toolbox website [49], with the
following steps:

• Step 1: Apply orbit file;
• Step 2: GRD border noise removal;
• Step 3: Thermal noise removal;
• Step 4: Radiometric calibration (calculation of sigma nought values);
• Step 5: Terrain correction (ortho-rectification).

Once the stack of images for the area and period of interest are created, three further
steps have been performed:

• Step 6: Normalisation of the backscatter coefficients, performed by using a dedicated
algorithm. The backscatter of a specific area with a small incidence angle returns
higher backscatter values than the data of the same area acquired with a higher
incidence angle [50];

• Step 7: Cosine correction. This is the most widely used incidence angle-correction
technique [33];

• Step 8: Noise correction. The images of the Sentinel-1 stack have been cropped, in-
cluding not only the study site, but a bigger area including part of a city, in order
to perform noise correction. The pixels with the lowest variability have been eval-
uated and selected and all the SAR images have been calibrated relative to the low
variability area.

3. Methods

In the present section, the processing applied to the PLS data in terms of detrending
is shown and the methodology to evaluate the roughness index (RMSH) is presented.
RMSH is the most common parameter applied in recent studies for quantifying surface
roughness [51]. The index is calculated for a regular raster dataset of n ×m pixel values.

3.1. Pls Data Processing

After data collection with the Riegl VZ-2000 laser scanner, the individual point clouds
are transformed into 3D point clouds in compressed laz format in a local coordinate
system with the projected location of the laser scanner to elevation zero (NAP, Normaal
Amsterdams Peil) as origin. This step is performed in order to obtain positive elevation
(NAP) instead of negative values, with respect to the location of the laser scanner at 55 m
height. The point clouds are recorded from a fixed location and are therefore already
coarsely co-registered (in the order of several centimetres). Fine alignment or geo-location
was not deemed necessary for the further analysis for this study. The selected areas of
interest are cut out using their x- and y-coordinates and filtered for outliers, i.e., points
which are outside of the expected elevation range (mean elevation of the area with a
margin of a few decimetres) for the respective areas. Then a plane is fit through the points
representing the selected area using principal component analysis (PCA). With the help
of the fitted plane, the slope is calculated and removed from the elevation values of the
respective areas in order to enable the determination of surface roughness, [37].

3.2. Rmsh Evaluation

Surface roughness is reflected by the spatial heterogeneity of elevation values at a
pre-defined scale and its quantification depends on the dimensionality and resolution of
the data, as well as on the desired expressiveness of the index [51]. Considering that the
PLS provides about 10 cm point spacing at the study area, the roughness scale considered
in the present work is of the order of magnitude of few decimetres. This scale is the same
order of magnitude of the wavelength of the Sentinel-1 C band images used. RMSH is
evaluated from a previously detrended surface [37] in order to separate multi-scale effects,
with the remaining random roughness representing spatial variations [42,51].
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Considering that beach topography is highly heterogeneous in space, a local adapta-
tion of the RMSH, the locRMSH (local RMSH) index, has been applied in the present work.
A sliding window calculates the local variations in random roughness. The choice of an
appropriate window size is crucial for capturing different surface patterns [51]. The local
RMSH is obtained by the following equation [52]:

locRMSH =

√√√√ 1
N

N

∑
n=1
| zn |2 (1)

with:

• locRMSH, local root-mean squared height;
• N the number of points in each cell;
• zn, the z-value at the n-th points in the window;

In the analysis of the present work, the local adaptation of the RMSH will be used. It
will be referred to as RMSH.

Choice of Window Size: Comparison between High-Resolution and
Low-Resolution Dataset

The selected area was scanned with the above specifications continuously for two
years. To investigate the effect of the relatively low resolution (LR) of this dataset on
the RMSH evaluation, the same area was scanned with higher resolution (HR) and these
data have been compared to the LR data acquired one hour later in order to define the
window cell size for the locRMSH estimation. The same laser scanner with 0.015° angular
spacing was used on two occasions to acquire a scan of the same area, resulting in a point
density of about 43 points/m2 and the same footprint size (see Table 1). This leads to more
overlapping footprints.

Table 1. Properties of the dataset from permanent laser scanning used in this study. LR and HR data
only differ in angular resolution, point density and number of files. Incidence angle, point density
and footprint size are averaged over the study area. In the present study, HR data (two files) collected
during two different days have been only used for a comparison with LR data in order to investigate
the effect of the resolution on the RMSH evaluation.

Dataset LR HR

Wavelength [nm] 1550 1550
Range accuracy at 150 m [m] 0.008 0.008

Angular resolution [°] 0.03 0.015
Incidence angle [°] 77 77

Point density [pt/m2] 10 42
Footprint size [m2] 0.066 0.066

When considering LR point clouds, the disadvantage of using a window size smaller
than 1 m is the low number of points per pixel (less than 11) and that the mean ratio
between HR and LR is high, especially when considering a 0.5 m cell. Figures 5 and 6 show,
for one of the two considered days of analysis, the value of the local RMSH [m] evaluated
in each window cell, measuring 1 m and 5 m, respectively, to give an indication of the order
of magnitude of RMSH on the sandy area considered. Figure 7 shows the RMSH median
relative difference between HR and LR images when considering different window sizes,
for window size moving from 0.5 m to 12 m. This parameter has been computed as follows:
for each pixel the relative difference between the locRMSH computed by using the HR
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image (locRMSHHR) and the one computed with LR image (locRMSHLR), indicated by the
symbol εRMSH, has been evaluated with the equation:

εRMSH =
| locRMSHHR − locRMSHLR |

locRMSHHR
. (2)

Then, the median value of εRMSH has been computed. So, Figure 7 shows the median
value of εRMSH as a function of the window size for two point clouds, acquired in August
2019. Whilst a significant difference (35%) exists for small window size (0.5 m), this dif-
ference is almost halved for 1 m cells and converges for window cells ≥4 m, where the
difference is about 2%. Therefore, the dimension of the SAR pixels (12 m × 20 m) has been
used as an RMSH window cell size in the present study, with reduced influence of the laser
scanner resolution.
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Figure 5. RMSH values evaluated for each pixel with 1 m window size; comparison between HR and
LR. The diagonal feature in the middle is a result of tire tracks from bulldozers crossing the study site.
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Figure 6. RMSH values evaluated for each pixel with 5 m window size; comparison between HR
and LR.
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Figure 7. RMSH median relative difference between HR and LR images for the two analysed days
when considering different window size, for window size moving from 0.5 m to 12 m.

3.3. Pls and Sar Comparison

A total of 12 SAR pixels covers the study area, as shown in Figure 2. All the presented
analyses have been conducted for these 12 pixels, which have homogeneous coverage (dry
sand). Since SAR images are geo-coded, for each pixel the coordinates of the perimeter and
of the pixel centre are known. For each PLS scan, all the PLS points included within each
SAR pixels’ perimeter have been selected. Their median value has been considered as the
PLS intensity of each pixel.

A correlation factor—in the sense of Pearson’s linear correlation coefficient—has been
evaluated for each pixel of the study area between SAR backscatter and PLS intensity,
averaged over time. Pearson correlation coefficient is a measure of linear correlation
between two sets of data (SAR backscatter and PLS intensity in our case) and is the ratio
between the covariance of the two variables and the product of their standard deviations.

Similar correlation factors have been retrieved when considering SAR VV and VH
polarization in all the performed analyses. Therefore, it has been decided to show in the
rest of the present study only the results obtained with VV polarisation.

In order to further investigate the correlation between SAR backscatter and PLS
intensity, other variables which might affect the signal (both PLS and SAR) have been
taken into consideration. For this purpose, we consider wind speed and direction at the
moment of the satellite passing and of the PLS scan of the beach. The wind speed has been
considered separately for a first analysis: all the wind speed values have been divided
into three categories: low wind (<4 m/s), medium wind (4.1–8 m/s), and high wind
(>8 m/s). The correlation factor between PLS intensity and SAR backscatter dataset has
been evaluated for each pixel in the three cases of low, medium and high wind speed.

4. Results

In this section, we present the results of the present work in terms of correlation
between SAR backscatter and PLS intensity, see Section 4.1. The influence of weather
phenomena in terms of wind conditions and of the surface roughness on the PLS intensity
and on the correlation between PLS intensity and SAR backscatter is further analysed in
Sections 4.2 and 4.3, respectively.

4.1. Pls and Sar Correlation

The correlation factor between PLS intensity and SAR backscatter (VV polarisation)
evaluated for each pixel of the study area is shown in Figure 8: a generally positive but
low correlation between the two variables in each pixel exists. Wind speed and direction at
the moment of the satellite passing and of the PLS scan of the beach have been considered
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to further investigate the correlation between SAR and PLS signals. The correlation factor
between PLS intensity and SAR backscatter (VV polarisation) data has been evaluated
for each pixel in the three cases of low, medium and high wind speed (see Figure 9).
Compared to the previous analysis, the correlation between SAR and PLS data in the
separate categories is now always higher and positive for each pixel when considering low
or medium wind (up to 0.5 correlation factor). For high wind speed, the correlation becomes
lower and irregular, and both positive and negative depending on the considered pixel.
To further define the correlation values, the wind directions have also been considered.
The correlation factor has been evaluated for different sectors corresponding to different
wind directions: each sector ranges by 90° (see Figure 10). In Figure 10, each sector
represents a 90° wind-direction section and each of the 12 rings represent a row of pixels
starting from pixel 1, which is located on the sea-side (inner ring), and moving towards
pixel 12 (external ring), which is located on the city-side of the study area. It is noticed that
the correlation has an interesting dependence on the wind direction and different directions
show different correlations. In particular, when the wind direction ranges between 90–270°,
several pixels show a positive correlation of up to 0.6. For offshore wind (direction ranging
between 210° and 360°), most of the pixels have negative correlation up to 0.4. Most of the
sectors have similar range of colours, meaning that the 12 pixels of the study area present
similar correlations in equal wind direction conditions. The obtained results are shown
in Table 2.

VV vs Laser

1 2 3 4 5 6 7 8 9 10 11 12

j-th pixel

0

0.05

0.1

0.15

0.2

0.25
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e

la
ti
o

n

Correlation

Figure 8. Correlation factor between SAR (VV polarisation) backscatter and PLS intensity evaluated
for each pixel of the study area.
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Figure 9. Correlation factor between PLS intensity and SAR (VV polarisation) backscatter evaluated
for low-, medium- and high-wind-speed conditions.
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Figure 10. Correlation factor (colour bar) between PLS intensity and SAR backscatter evaluated for
different overlapping sectors ranging in 90° wind directions. In the figure, each sector represents a
90° wind-direction section and each of the 12 rings represent a row of pixels starting from pixel 1,
which is located on the sea-side (inner ring), and moving towards pixel 12 (external ring), which is
located on the city-side of the study area. The dotted black line represents the orientation of the shore
line in Noordwijk.

Table 2. Linear correlation coefficients (maximum, minimum and median values within the consid-
ered 12 pixels) between the indicated variables for the three considered wind-speed conditions: low
(<4 m/s), medium (4.1 m/s–8 m/s) and high (>8 m/s) wind speed.

Variables/Correlation Low Wind Medium Wind High Wind
Min Median Max Min Median Max Min Median Max

Laser vs. SAR(VV) 0.17 0.35 0.49 −0.05 0.23 0.38 −0.17 −0.04 0.20
Laser vs. Wind −0.32 −0.18 −0.09 −0.45 −0.39 −0.14 0.60 0.70 0.78
RMS vs. Wind −0.71 −0.42 0.15 −0.23 −0.03 0.17 −0.16 0.20 0.59
Laser vs. RMS 0.08 0.36 0.56 −0.09 0.29 0.57 −0.13 0.00 0.58

SAR(VV) vs. RMS −0.23 0.08 0.44 −0.29 0.20 0.37 −0.31 0.05 0.61

4.2. Weather Data Effect

A separate analysis has been conducted on the PLS data in order to evaluate to what
extent the weather phenomena affect the intensity. In the present study, the same stack of
data used in the previous analysis collected over 88 days (acquired between 19 August
2019 and 22 April 2021) has been analysed. During this period, only six days presented
an accumulation precipitation bigger than 0 mm/h. These days were considered not
sufficient for the statistical analysis. Therefore, only analyses on the influence of wind have
been performed.

First, wind speed has been considered. Figure 11 shows the correlation factor between
PLS intensity and wind speed for low-, medium- and high-wind-speed condition, compared
to Section 3.3. For low and medium wind, each pixel shows that the PLS intensity decreases
with increasing wind. For high wind speeds, the correlation turns positive and ranges for
each pixel between 0.6 and 0.8. This change of sign in the correlation factor between PLS
signal and high-wind-speed condition could explain the lack of correlation between PLS
and SAR data, as shown in Figure 9. The wind direction has also been considered and
the correlation factor between PLS intensity and SAR backscatter has been evaluated for
each pixel and for each wind-direction section (See Figure 12). As in the previous section,
the correlation factor has been evaluated for different overlapping sectors ranging in 90°
wind directions. In the figure, each sector represents a 90° wind-direction section and
each of the 12 rings represent a row of pixels starting from pixel 1, which is located on
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the sea-side (inner ring), and moving towards pixel 12 (external ring), which is located
on the city-side of the study area. Again, certain directions show different correlation: in
particular, the correlation factor between PLS and wind speed is negative for almost all
pixels (up to 0.5) for wind directions ranging between 90° and 300° (mostly onshore wind),
whilst a positive correlation exists (up to 0.5) for mostly offshore wind (directions ranging
between 210° and 360°). The obtained results are shown in Table 2.

Laser vs Wind (with wind intensity range)
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Figure 11. Correlation factor between PLS intensity and wind speed evaluated for low-, medium-
and high-wind-speed conditions.
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Figure 12. Correlation factor (colour bar) between PLS intensity and wind direction evaluated for
different overlapping sectors ranging in 90° wind directions. In the figure, each sector represents a
90° wind-direction section and each of the 12 rings represent a row of pixels starting from pixel 1,
which is located on the sea-side (inner ring), and moving towards pixel 12 (external ring), which is
located on the city-side of the study area. The dotted black line represents the orientation of the shore
line in Noordwijk.

4.3. Roughness Influence

The roughness variable and to what extent it affects both PLS intensity and SAR
signal have been analysed by comparing RMSH index with the TLS and SAR dataset.
As mentioned in Section 3.2, the RMSH index has been used as an indication of the
roughness of the soil. The index has been locally evaluated for each pixel. As a first step,
the correlation between the roughness and the wind has been evaluated (See Figure 13).
As explained in Section 3.3, the correlation factor has been evaluated separately for low,
medium and high wind speed. For the low-wind-speed condition, the correlation with
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RMSH is negative for almost all the pixels (up to 0.8); with increasing wind, the RMSH
diminishes (lower roughness). For high wind speed, most of the pixels show positive
correlation with RMSH (higher roughness).

RMS vs Wind (with wind intensity range)
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Figure 13. Correlation factor between RMSH and wind speed evaluated for low-, medium- and
high-wind-speed conditions.

When considering the wind direction, see Figure 14, no significant correlation seems to
exist between wind speed and RMSH, except for a slightly more regular positive correlation
in the sectors ranging 90–270°, where there also seems to be a more homogeneous behaviour
for the 12 pixels of the area when considering specific wind direction. For other directions,
the correlation value is very variable for each considered pixel.
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Figure 14. Correlation factor (colour bar) between RMSH and wind speed evaluated for different
overlapping sectors ranging in 90° wind directions. In the figure, each sector represents a 90° wind-
direction section and each of the 12 rings represent a row of pixels starting from pixel 1, which is
located on the sea-side (inner ring), and moving towards pixel 12 (external ring), which is located
on the city-side of the study area. The dotted black line represents the orientation of the shore line
in Noordwijk.

The RMSH values have been compared with PLS intensity and their correlation has
been evaluated for low, medium and high wind speed (See Figure 15). Excluding a few
cases of high wind conditions for certain pixels, in particular pixels located on the city-side
of the study area, an interesting positive correlation exists between PLS intensity and
RMSH for each wind speed in all the pixels. In particular, for low wind condition, the
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correlation is always positive; the cases of negative correlation are limited to a few pixels
and to medium–high wind conditions.

Laser vs RMS (with wind intensity range)
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Figure 15. Correlation factor between PLS intensity and RMSH evaluated for low-, medium- and
high-wind-speed conditions.

The following analysis shows the comparison between SAR signal (VV polarisation)
and RMSH index for each pixel (See Figure 16). In this analysis, no particular trend can be
highlighted in the correlation between SAR and RMSH, which is in general low and very
variable considering different pixels. The obtained results are shown in Table 2.

VV vs RMS (with wind intensity range)
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Figure 16. Correlation factor between SAR (VV polarisation) and RMSH evaluated for low-, medium-
and high-wind-speed conditions.

5. Discussion

As presented in Section 4, when environmental variables are not considered, SAR and
PLS data seem to have a low correlation (see Figure 8). When considering wind speed in the
evaluation of SAR backscatter and PLS intensity correlation, a positive correlation is noticed
only for low- and medium-wind-speed conditions; for stronger wind, no correlation can
be noticed (see Figure 9). The PLS has a negative correlation with low and medium wind
speed; for high wind speed, the correlation is high and always positive for each pixel (see
Figure 11). This phenomenon could be explained with the following hypothesis:

1. High wind speed could dry the sand and, as a consequence, the PLS intensity is higher
(since low sand moisture values correspond to higher PLS intensity [10,15]);

2. There is a relationship between the activation of aeolian transport—above a certain
wind speed—and the sand particles moving on the beach surface, which could affect
the PLS intensity. In fact, the activation of aeolian transport requires wind speeds
above certain values [53].
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The low correlation between SAR backscatter and PLS intensity for high wind speed
can be ascribed to the correlation trend between PLS intensity and wind: when PLS has
a negative correlation with wind speed (low and medium conditions), the behaviour
of its intensity is similar to the SAR backscatter; for high wind speed, PLS intensity be-
haviour is reversed and it can no longer be compared to the SAR backscatter (compare
Figures 9 and 11).

RMSH seems to have negative correlation with wind speed only for low wind condi-
tions: in this case, the effect of the wind is a reduction in the RMSH. For higher wind values,
in particular for 4–8 m/s, no correlation can be noticed, see Figure 13. The hypothesis is
that this phenomenon happens because wind speed in that range could produce a smoother
profile on the sand surface.

Even if each pixel has a different correlation value, a positive correlation exists between
RMSH and PLS intensity, in particular for low/medium wind speed (see Figure 15), whilst
the correlation between SAR backscatter and RMSH is low but generally positive (see
Figure 16). The hypothesis in this case is that this can be related to the order of magnitude
of the RMSH values evaluated in the present work, which might not significantly affect
the SAR wavelength. For future studies, direction/orientation of the roughness could
be considered for determining correlations with SAR data, as well as SAR systems with
higher resolution with respect to Sentinel-1, which can be used and correlated with RMSH
evaluated on different window sizes. Roughness indices can be also evaluated on a lower
order of magnitude to identify more specific correlations.

The correlation between PLS intensity and SAR backscatter shows specific wind
directions where the correlation is particularly relevant. The same occurs for the correlation
between PLS intensity and wind speed. The correlation between PLS intensity and wind
speed, for low and medium wind speed, is negative; correlation between SAR backscatter
and PLS intensity exists only when the correlation between PLS intensity and wind speed
is negative. The wind direction where the correlation between PLS and wind speed is
minimum (south) is the same than the direction where the correlation between SAR and
PLS is maximum. South is also the direction where low and medium winds generally come
from (compare Figures 3, 10 and 12).

6. Conclusions

In an investigation into the correlation between permanently installed TLS and SAR
systems has been conducted on the beach of Noordwijk, TLS data have been compared
with simultaneously acquired Sentinel-1 SAR images. The correlation between TLS and
SAR systems on sandy environments and the effect of environmental variables on their
correlation have been analysed for the first time. This study showed that the correlation
between the two considered systems when not considering external variables is positive
but low (up to 0.25). When considering wind speed, a higher correlation between TLS and
SAR (up to 0.5) exists in the case of low and medium wind speed, whilst no particular
correlation could be highlighted for high-wind-speed conditions. In the present study, only
linear correlation between the analysed variables has been evaluated. Further analysis can
highlight whether different correlations exist (e.g., for higher wind-speed conditions).

The wind direction has also been considered: for directions ranging 90–270°, the entire
area is homogeneous and there is a positive correlation between TLS and SAR up to
0.6, whilst for directions ranging 210–360°, the correlation is negative up to 0.4. The
correlation between TLS and wind has been separately considered with the following
results: for low and medium wind, PLS and wind speed have a negative correlation,
whilst for high wind speed, the correlation turns positive and ranges between 0.6 and
0.8. The correlation between TLS and wind speed also depends on the wind direction:
for directions ranging 90–300° a negative correlation is shown and for directions 210–360°
there is a positive correlation.

The influence of the surface roughness—evaluated in terms of RMSH—has also been
considered in terms of correlation between RMSH and wind. For low-wind-speed con-
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ditions, the correlation between RMSH and wind is negative up to 0.8; the correlation
becomes positive (higher roughness) with the increase in the wind speed. No interesting
correlation has been highlighted when considering the wind directions. The analysis of the
correlation between PLS and RMSH showed a positive correlation for each wind speed.
In the analysis of the correlation between SAR and RMSH instead, no particular trend
has been highlighted. In the roughness analysis, one of the main limits is that the RMSH
index has been evaluated using PLS data, with decimetre-scale resolution, which might
not significantly affect the SAR wavelength. This aspect can be further investigated in
future studies.

In conclusion, this preliminary study allowed for the individuation of a first range of
conditions where TLS and SAR data present a good correlation. A better knowledge of the
scenarios where the correlation between TLS and SAR is applicable, and of the extent of
the existing correlation, could allow for the exploitation of the combined use of TLS and
SAR advantages, moving from the small scale (TLS) to a world-wide scale (SAR).
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