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Abstract: Sleep Apnea is a breathing disorder occurring during sleep. Older people suffer most from
this disease. In-time diagnosis of apnea is needed which can be observed by the application of a
proper health monitoring system. In this work, we focus on Obstructive Sleep Apnea (OSA) detection
from the Electrocardiogram (ECG) signals obtained through the body sensors. Our work mainly
consists of an experimental study of different ensemble techniques applied on three deep learning
models—two Convolutional Neural Network (CNN) based models, and a combination of CNN and
Long Short-Term Memory (LSTM) models, which were previously proposed in the OSA detection
domain. We have chosen four ensemble techniques—majority voting, sum rule and Choquet integral
based fuzzy fusion and trainable ensemble using Multi-Layer Perceptron (MLP) for our case study.
All the experiments are conducted on the benchmark PhysioNet Apnea-ECG Database. Finally, we
have achieved highest OSA detection accuracy of 85.58% using the MLP based ensemble approach.
Our best result is also able to surpass many of state-of-the-art methods.

Keywords: sleep apnea; ECG signal; ensemble; deep learning; health monitoring

1. Introduction

In this modern era, the role of health monitoring systems is increasing in our daily
life. Older people are the most benefited ones from the merits of monitoring their health.
Smart sensors, under any healthcare system attached to various body parts, can sense and
record the required features of the human body. These kinds of sensors can be placed in
any smart-watch or smartphone. The introduction of the Internet of Things (IoT) in the
healthcare domain has further upgraded the facilities [1]. Health-based alarms, personal
smart medical recommendations, etc. have decreased the life-risks caused by sudden
health problems.

One such problem under the domain of health monitoring is sleep apnea detection.
Sleep Apnea HypoApnea Syndrome (SAHS) or simply apnea is a common sleep disorder
related to interruption in breathing during sleep. In most cases, older people are affected
by this syndrome [2]. OSA is a category of apnea that causes partial or complete blockage
of the airway in our body. OSA may further cause sleepiness, fatigue, morning headache,
etc. [3]. Statistics say that almost 9% of the men and 4% of women among the middle-aged
people suffer from the mentioned sleep disorder. The sleep loss caused by OSA may lead to
some long-term diseases like cardiovascular diseases [4]. Thus, a smart health monitoring
system is beneficial for the diagnosis of apnea so that early measures can be taken.

The most common method for apnea diagnosis is ECG [5]. ECG records the electronic
signals generated from the human heart. It serves the purpose to detect whether our
heart is abnormally working or not. In this work, we have divided the whole time-
series ECG data into time-intervals of equal length. Then we have used CNN [6] based

Sensors 2021, 21, 5425. https:/ /doi.org/10.3390/s21165425

https:/ /www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6013-1067
https://orcid.org/0000-0003-4846-3410
https://orcid.org/0000-0001-5118-0812
https://orcid.org/0000-0001-8813-4086
https://doi.org/10.3390/s21165425
https://doi.org/10.3390/s21165425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165425
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165425?type=check_update&version=1

Sensors 2021, 21, 5425

20f 17

deep learning models along with ensemble learning to detect apnea in the given time-
span. We have chosen three previously proposed CNN models as base models: (i) CNN
architecture proposed by Wang et al. [7], (i) CNN model proposed by Sharan et al. [8],
and (iii) combination of CNN and LSTM network [9] proposed by Almutairi et al. [10].
To aggregate the base models’ predictions and to yield better results, we have applied four
ensemble approaches: (i) Majority Voting, (ii) Sum rule, (iii) Choquet Integral based fuzzy
fusion and (iv) Trainable ensemble using MLP. Our work involves the experimental study
between these four ensemble techniques.

The main advantage of ensemble learning is that it considers and combines all the
decisions by different models rather than relying on a single classifier [11]. An ensemble
will be successful if its component classifiers have diversity while making the prediction.
Also, the ensemble formation will not serve any purpose if all the components generate too
many inaccurate predictions [11].

We have chosen the PhysioNet Apnea-ECG Database [12], a standard and publicly
available dataset, to conduct all the required experiments. To summarize, first, we form
segments from the raw ECG data from the benchmark database, perform necessary pre-
processing to derive important features and then train the three base models. Next, all three
deep learning models predict the test data and the final prediction is generated by applying
the ensemble technique of choice. Figure 1 pictorially represents the above-mentioned
process. The rest of the work consists of the four sections, namely, Related Work, Materials
and Methods, Results and Discussion, and Conclusions.
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Figure 1. Overall workflow of the ensemble based OSA detection model.

2. Related Work

Since OSA or any other kind of apnea detection is a classification problem of the
two classes—normal and apnea, machine learning classifiers like Support Vector Machine
(SVM) [13], k-Nearest Neighbours (kNN) [14], Random Forest (RF) [15] etc., and deep
learning classifiers like CNN etc., are very much applicable in this domain. Like any other
clinical diagnosis, detection of sleep apnea has become an important research topic in the
healthcare domain.

Ng et al. [16] have used thoracic and abdominal signals as input features for sleep
apnea indication and have achieved 70.29-86.25% sensitivity. Alvarez et al. [17] have
worked on the non-linear analysis of blood oxygen saturation (Sa) obtained from nocturnal
oximetry. From the experiments, they have discovered 111 out of 187 subjects as OSA
positive. Qin et al. [18] have studied the effect of OSA in Heart Rate Variability (HRV).
They have conducted the experiments on 426 normal and 826 OSA affected subjects and
have discovered that HRV tends to reduce with the severity of apnea disease.

Although there are many statistical body measures like ECG, acoustic speech signal,
Sa, Electroencephalogram (EEG) available for apnea diagnosis [5], we have solely focused
on ECG signal for our work. A lot of research works on apnea diagnosis from ECG signals
have already been performed. Almazaydeh et al. [5] have extracted the relevant statistical
features such as mean, standard deviation, median, inter-quartile range and some of their
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derivations for an RR interval (interval between two consecutive R peaks) of the raw ECG
signals of the PhysioNet Apnea-ECG database [12]. They have applied SVM on these
extracted features and have achieved a maximum of 96.5% accuracy. Cheng et al. [19]
also have conducted experiments on RR intervals of the ECG signal of the PhysioNet
Apnea-ECG database. By applying the Recurrent Neural Network (RNN) [20], they have
achieved 97.80% accurate results.

Nguyen et al. [21] have considered the Recurrence Quantification Analysis (RQA)
statistics of the HRV data of PhysioNet Apnea-ECG database as features. Initially, they
have performed the classification task by using both SVM and Artificial Neural Network
(ANN). They have used soft decision fusion to aggregate both the classifiers” scores and
have obtained 85.26% accurate results. Hassan et al. [22] have pre-processed the raw ECG
signal of the PhysioNet Apnea-ECG database by applying the Tunable-Q factor Wavelet
Transform (TQWT). They have used Adaptive Boosting (AdaBoost) [23], an ensemble
method applicable to the decision tree and achieved 87.33% accurate results.

Wang et al. [24] have considered the past time-windows for training the MLP ar-
chitecture. Such time-windows are restricted to have a time-span of a minute, whereas
each sample under the respective time-span has the six time-domain RR Interval (RRI)
features—MRR (mean of RRI), MHR (mean of heart rates), RMSSD (root mean square of
differences between adjacent RRIs), SDNN (standard deviation of RRIs), NN50 (number
of adjacent RRIs exceeding 50 milliseconds) and pNN50 (NN50 divided by the number
of RR intervals) and six frequency domain R-peak Amplitude features—Very Low Fre-
quency (VLF), Low Frequency (LF), High Frequency (HF), LF/(LF + HF), and HF/(LF +
HF). Finally they have achieved the best result with 87.3% accuracy. Shen et al. [25] have
proposed MultiScale Dilation Attention 1-D CNN (MSDA-1DCNN) for extracting features
from the RRI and have applied Weighted-Loss Time-Dependent (WLTD) classification
model for OSA detection and have achieved 89.4% accuracy on the PhysioNet Apnea-ECG
database [12].

Chang et al. [26] have proposed a novel 1-D CNN architecture for the purpose of
OSA detection. In their work, each one-minute segment of the raw ECG signal is initially
undergone through the band pass filtering followed by Z-score normalization before fitted
into the CNN model. Overall, they have achieved 87.9% accuracy on the PhysioNet
Apnea-ECG database [12] whereas, the performance has increased up to 97.1% in the case
of pre-recorded samples. Thompson et al. [27] have proposed a 1-D CNN architecture
including a convolution layer, a max pooling layer, a fully connected MLP and a softmax
output layer. In their work, they’ve applied a windowing strategy, with window sizes of
500, 1000, 1500, 2000 and 2500 for validation of their model, which achieved 93.77% accuracy
for window size of 500 on the PhysioNet Apnea-ECG database [12]. Mashrur et al. [28]
have proposed a novel Scalogram-based CNN to detect OSA using ECG signals. In their
work, they’ve obtained hybrid scalograms from the ECG signals using continuous wavelet
transform (CWT) and empirical mode decomposition (EMD). They train a CNN model on
these scalograms to extract deep features to detect OSA, achieving an accuracy of 94.30%
on the PhysioNet Apnea-ECG database [12].

The majority of the previous works have considered ECG, and this fact motivates us
to choose ECG signal data for conducting our work. PhysioNet Apnea-ECG database is
also a popular one for working on OSA detection. We have chosen deep learning models
for our work as they are very much applicable to the time-series data [6]. However, only
raw samples cannot produce outstanding results when fit into CNN models as discussed
in the Results and Discussion section, hence it requires some pre-processing. Since our
main concern is about the ensemble approaches in apnea detection domain, some of the
established works based on ensemble techniques are also discussed.

Faufier et al. [29] have applied Temporal Difference (TD) and Residual-Gradient (RG)
update methods on a given set of agents with their own nonlinear function approximator,
for instance, an MLP to adapt the weights to learn from joint decisions, such as Majority
Voting and Averaging of the state-values. Also, Glodek et al. [30] have worked on ensemble
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approaches for density estimation using Gaussian Mixture Models (GMMs) by combining
individual mixture models incorporating a high diversity to create a more stable and
accurate model. Chakraborty et al. [31] have performed ensemble of filter methods, such
as optimal subsets of features using filter methods Mutual Information (MI), Chi-square,
and Anova F-Test, and with the selected features building learning models using MLP
based classifier.

Kéchele et al. [32] have used an ensemble of RF, Radial Basis Function (RBF) networks
to determine the intensity of pain based on the video shown and body features such as
ECG, Electromyography (EMG). They have used MLP to train from the classification scores
obtained from individual base models for score level fusion. Dey et al. [33] have used a
weighted ensemble of three CNN based models: ADNet, IRCNN and DnCNN to remove
white Gaussian noise from an image. The aforementioned three models” outputs are
aggregated in the ratio 2:3:6 respectively. Bellmann et al. [34] have applied various fusion
approaches for the Multi-Classifier System (MCS) to effectively measure pain intensity
levels. Their case study includes one of the most popular fusion techniques—bagging
and boosting. Kundu et al. [35] have proposed a fuzzy-rank based classifier fusion based
approach which uses the Gompartz function for determining the fuzzy-ranks of the base
classifiers. They have conducted the experiments on the SARS-COV-2 [36] and Harvard
Dataverse [37] datasets for diagnosing COVID-19 from the CT-scans and have achieved
the best results with 98.93% and 98.80% accuracies respectively by using the ensemble of
the pre-trained models VGG-11, Wide ResNet-50-2 and Inception v3.

All these previously established works prove that the application of ensemble is
spread out through many research fields. The huge success and scope of research in
classifier fusion are the main reasons for its popularity. Still based on our knowledge, any
ensemble technique based work has not been conducted for apnea diagnosis till now.This
has motivated us to conduct experimental studies base on ensemble techniques on the
OSA detection domain. Additionally, we have chosen the three deep learning models
—(i) Wang et al.’s [7] proposed CNN model, (ii) Sharan et al.’s [8] proposed CNN model,
(iiif) Almutairi et al.’s [10] proposed CNN-LSTM model as base models. The reason for
such choice is these three models are all CNN based which are robust, excellent classifiers
in general. The fact that the chosen three models have previously been used for OSA
detection further encourages us to work with them. Thus, we have conducted our work by
applying an ensemble of CNN based architectures in the popular PhysioNet Apnea-ECG
database [12].

3. Materials and Methods
3.1. Datasets Used

We chose the PhysioNet Apnea-ECG database [12] for conducting all the experiments.
A total of 70 records sampled at 100 Hz frequency were present in the database out of
which 35 records were in the training set and the rest belonged to the testing set. People
belonging to the 27-30 year age group volunteered in the data collection process. The data
collection procedure lasted approximately 7-10 h per subject.

After the segmentation process, train data and test data had 15,961 and 15,938 pre-
processed noiseless 1-min samples respectively. The training set had 9832 samples of apnea
class and 6129 samples of normal class respectively, and the test set had 9838 samples of
apnea class and 6100 samples of normal class respectively.

3.2. Methodology
3.2.1. Pre-Processing

We performed the steps to convert the raw ECG signal data into 2-D matrices in
this stage by following the pre-processing approach according to the GitHub link (https:
//github.com/zzklove3344/ ApneaECGAnalysis, accessed on: 6 August 2021, accessed
from: Kolkata, India). So, the pre-processing consists of the following steps:


https://github.com/zzklove3344/ApneaECGAnalysis
https://github.com/zzklove3344/ApneaECGAnalysis

Sensors 2021, 21, 5425

50f17

First, the raw data were transformed into segments having a time-span of 1 min. Thus,
each segment had a size of 6000 x 1.

We further divided each 1 min sample by dividing it into 240 parts so that each
division contained 25 consecutive samples. Next, we extracted the features from
each sub-division.

We applied the Multilevel Teager Energy Operator (MTEO ) algorithm by using
the Matlab ToolBox BioSigKit to evaluate the R peaks, ECG Derived Respiration
signal (EDR) from the raw segments. MTEO algorithm was used for action potential
detection to locate the QRS complexes in Electromyography signals [38].

From the R peaks, we further derived (i) RRI—the interval between two consecutive
R peaks, (ii) R peak Amplitude (RAMP). Thus, three features were derived from each
segment. Based on RRI, Each ECG segment is classified as (i) noise, (ii) clear.

RRI and RAMP features went though the Smoothing and Spline interpolation pro-
cesses. We also downsampled the EDR signal values.

After all these processes, the clear segments were present as 2-D matrices having the
size of 240 x 3.

We normalized each feature by applying Z-score normalization. The formula of Z-

. 5 X— . .. 5.
score normalization was: X = %}?X) where, X is the original feature column, X is

the normalized feature column and px, ox are the mean and standard deviation of
the feature values in X.

To perform five-fold cross-validation, we combined the pre-processed training and

test data, accumulating to a total of 31,899 samples. Then, the combined dataset under-
went shuffling before splitting for the cross-validation. For the five-fold cross-validation,
the overall dataset was divided into five parts where five parts were used for training and
the remaining part is used for testing purposes, over all the combinations.

3.2.2. Models Used

In this work, we used three existing CNN based models—(i) Wang et al.’s [7] proposed

CNN architecture, (ii) Sharan et al.’s [8] proposed CNN model, (iii) Almutairi et al.’s [10]
proposed CNN-LSTM model for making the initial predictions. These models have previ-
ously been proposed in this very domain. However, we made some minor changes to the
original architecture.

1.

Wang et al.’s [7] CNN: We replaced all the 2-D layers of the original architecture with
1-D layers for the convenience of handling the time series ECG signal data. As we
considered only three features for each sample, 2-D CNN models were not applicable
on the pre-processed data. At first, we used two CNN blocks consisting of a 1-D
Convolution layer with a kernel size of 3, 64 filters, Rectified Linear Unit (ReLU) as
activation function followed by Batch-Normalization layer and a 1-D Max Pooling
layer of size 2. Next, a Flatten layer followed by two Dense layers with 100 and
10 neurons were applied to the output produced by the final CNN block. Finally,
the probability for each class was calculated using the Softmax layer. The architecture
of this model is shown in Figure 2a.

Sharan et al.’s [8] CNN: The model consisted of three CNN blocks having a 1-D
Convolution layer with kernel size 10 with ReLU as activation function followed by a
1-D Max Pooling layer with a pooling size of 2. Each of these three blocks differed in
the number of filters in the 1-D Convolution layer (64, 128 and 256). Next, two Dense
layers with 64 and 256 neurons were applied. Finally, the Softmax layer was used
for calculating the probabilities of each class. Figure 2b shows the whole structure of
this model.

Almutairi et al.’s [10] CNN-LSTM: The proposed model consisted of three 1D-
Convolution blocks each having a 1D-Convolution layer with kernel size 3 with
ReLU activation function followed by a Batch-Normalization layer, 1D-Max Pooling
layer of pooling size = 2 and a Dropout layer having a dropout rate of 0.2. These three
blocks differed only in the number of filters applied on the 1-D Convolution layer



Sensors 2021, 21, 5425

60of 17

(64,128 and 16). A Flattened layer followed by an LSTM layer having an output size of
64 was applied after the CNN blocks. Next, a Dense layer having 64 neurons was used.
To be applicable for the CNN-LSTM architecture, we initially divided each window
into four consecutive sub-windows and then have applied the CNN layers on each
of the sub-windows. The LSTM layer worked on all four sub-windows collectively.
The final output i.e., the probability for each class was given by the Softmax layer. We
provided Figure 3a to represent the whole architecture of the proposed CNN-LSTM
model whereas Figure 3b was provided to show the CNN-only part separately.

Input (ECG segmented window)

1D Convolution
filters = 64 Flatten
kemel size = 3

activation = RelU

v

Batch
Normalization

v

1D Max-Pooling
pooling size =2

v

Dropout
dropout rate = 0.5

l Dense layer

1D Convelution 10 neurons
filters =
kemel size = 3
activation = RelLU

v

Batch

Normalization
¢ Softmax layer

1D Max-Poaling

Dense layer
100 neurons

pooling size =2
Dropout .
dropout rate = 0.5 Predicted class
(@)
Input (ECG segmented window)
1D Convolution
ﬁl‘ers Ny 64
kernel size = 10
activation = RelLU
1D Max-Pooling Dense layer
pooling size =2 64 neurons
1D Convolution l
filters = 128 Dense layer
kernel size = 10 256 neurons
activation = RelLU
1D Max-Poo H_rlg Softmax layer
pooling size =2
1D Convolution
il = Predicted class
kernel size = 10
activation = RelLU
1D Max-Pooling
pooling size =2
(b)

Figure 2. Architectures of the CNN models originally proposed by (a) Wang et al. [7] and (b) Sha-
ran et al. [8] respectively.
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Figure 3. Almutairi et al.’s [10] proposed CNN-LSTM model: (a) overall architecture, (b) architecture

of the CNN part present in the overall structure.

3.3. Applied Ensemble Methods

For the later parts of the experiment, we used different ensembles approaches to
further increase the overall classification accuracy. Ensemble approach could be classified

into two categories,

1.
each model.

each model.

Score level fusion:

Decision level fusion: Here the predicted class i.e., only decision was considered for

Here the prediction score for each of the class was considered for

We applied one decision level ensemble— Majority Voting and three score level ensemble
procedures, namely Sum Rule, Choquet integral based fuzzy fusion and trainable MLP en-



Sensors 2021, 21, 5425

8of 17

semble. Let us assume there are a total of k classes ¢y, ¢y, . . . ¢ and [ classifiers mq, my, ... m;.
Model m; predicts for a sample x being in class c; with probability p;;. So, the prediction
class of that sample given by model m; will be ¢; = argmax;(p;;).

The aforementioned ensemble techniques could also be divided into the following

two categories based on whether training was performed for ensemble learning or not:

1.

Non-trainable ensemble: In this case, we applied some pre-defined rules to aggregate
the decisions/scores made by all the base models. majority voting, Sum rule and
Choquet integral based fuzzy fusion were all such ensemble approaches used in
this work.

Trainable ensemble: In this case, we used another classifier to perform the aggregation
of all base models’ scores. All class scores given by all the base models were flattened
into a single feature vector sample-wise. Next, we chose an appropriate classifier that
produced good results when train and test performed against the flattened train and
test data scores. In our work, we chose an MLP for the aggregation task. Figure 4
represents the working procedure of a trainable ensemble method.

Classification scores
Individual training/testing ~ Produced by each base model
of base models

All classification
scores as features

s
p.-u Pu
: P

—» modelm; ——————— 3
Pr1 H
Pi1
ot
Pz Pz

P2

P :
del >
Input data U : P —»{ classifier Final prediction

Pu
P P.2I
P

> modelmy ———-——> Dt

Figure 4. Basic architecture of a trainable ensemble model.

The following paragraphs contain a brief discussion about all of the ensemble ap-

proaches used in our work.

1.

Majority voting: In this kind of ensemble, the class predicted by maximum num-
ber of models is assigned as the final prediction. So, the final class would be
argmax,(freq(c;)),

where, freq(c;) is the number of the number of models predicted class c;.

Sum rule: The class with maximum sum of scores of all classifiers is the final predicted
class. So the final prediction class would be argmax;(}; pi)-

Choquet integral based fuzzy fusion: Fuzzy integrals are generally aggregation
operators which combine the information in this case, confidence values of all sources
and their all possible combinations. Each source i.e., classifier has been given initial
weights called fuzzy measures.

Fuzzy measure of set X is a function g : P(X) — [0,1] where P(X) is the power-set
of X which holds the following two conditions [39]:

(@)  Theboundary of g should follow: g(¢) = 0 and g(X) = 1.
(b)  Suppose A, B are two subsets of X and A C B then the g(A) < ¢(B) must
be satisfied.

In this case, the set X becomes the set of all classifiers i.e., X = {my,my,...m;}.

Like Pacheco et al.’s [40] work, we used entropy of each classifier’s probability vector
to evaluate the fuzzy measure. The formula of entropy of probability vector given by
classifier m;j, E; is given as:

Ej = Zpij -log(pij) 1)
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From the function in Equation (1), we understand that entropy becomes less when
the probability for one class is much larger than that of other classes. So, it would
be inverse to the goodness of a classifier. Hence, we used subtracted entropy value
from the maximum possible entropy value (1 in this case) to get the fuzzy measure
for each classifier. Finally, each of the fuzzy measure was divided by the sum of all
fuzzy measure values. Suppose g1, g2, . . . §; are the fuzzy-measures provided for the
classifiers my,mjy, ... m; respectively which means-

5 @)
§ T TO-E)
where, E; is the entropy of the probability vector provided by classifier m; evaluated
according to Equation (1).
Tahani et al. [41] have introduced the concept of Sugeno A-measure effective for fuzzy
measures. It holds the additional property: if AN B = ¢ then there exists that A > —1
such that:

g(AUB) =g(A)+g(B)—A-g(A) g(B) 3)

where, A and B are both subsets of X. Considering the additional property, A can be
evaluated as the solution for the equation:

A+1=T]A-g({m})+1) )

]

where, {m;} is the singleton set containing ;. So, after evaluating the fuzzy measures
for all singleton sets, we have evaluated the fuzzy measure for the combination of
classifiers using Sugeno A-measure.

The Choquet integral [42] is used for aggregating the scores based on all combination
of classifiers. Based on the fuzzy measures, this integral can even combine the
empirical strategies like addition, multiplication of scores produced by the classifiers.
Choquet integral for class ¢; can be evaluated according to the following formula:

Cg(X) = ZST[]’ ) [g<A7Tj) - g(ATqu)] ®)
]

where, sj = pl-]-Vj = 1,2,...] and the set of classifiers X is permuted such that
Sm = Smy > ... 2> Sm. [§(A;) — &(Aj_1)] depicts the relative importance of the
classifier m;.

So all the class-scores CS; are obtained from Equation (5) and class with the maximum
score will be the final predicted class which is argmax;(CS;).

Trainable ensemble using MLP: The main building blocks of a Neural Network
(NN) [43] are nodes. These nodes usually remain collectively as layers. Information
in NN passes from layer to layer. In the Feed-forward Neural Network (FNN) [44],
the flow of information is fixed in one direction, i.e., from the input layer to the
output layer.

Suppose there are n nodes in the previous layer where each node i forwards the value
x; to a particular node j in the current layer. Then, the output y of the node j will be-

y=¢() (wi-x)) (6)

1

where ¢ is the activation function present in the current layer and w; be the weight
assigned to the path from node i to node j. The main objective of FNNSs is to optimize
these w;s.

In any MLP [45] architecture, the FNN must have at least one hidden layer between
the input and the output layer. In our work, we considered a simple MLP architecture
with only one hidden layer having 16 features. The MLP accepted a total of k. score
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features as inputs and returned k score values for all classes so that the deep learning
network could be used as an aggregator for the ensemble model. Figure 5 provides
the architecture of the MLP used as an ensemble to our base models.

Input layer Hidden layer Output layer
k - 1 features 16 features clazsification scores for k classes

S

-

<

N

~/ N/

Figure 5. Architecture of MLP used for ensemble where k denotes total number of classes and !
denotes total number of base-classifiers.

4. Results and Discussion

In the present work, we used five classification measures—(i) accuracy, (ii) precision,
(iii) recall, (iv) Fl-score, (v) specificity to evaluate the performance of the base models
and their ensemble. Since our only concern was binary classification, we have depicted
all the measures as if there were two classes—(i) positive class, (ii) negative class present.
Naturally, any classifier would also give the prediction class as either of the two. When
the predicted class of a sample matched with its actual class then it was said to be True
otherwise False. Thus we defined the five chosen classification metrics based on the
terms True Positive (TP), True Negative (T N), False Positive (FP) and False Negative (FN)
as follows:

1. Accuracy: It is defined as the ratio of number of correctly classified samples to that of
total samples.

TP+TN
TP+ FP+TN+FN

2. Precision: Precision of a class is defined as the ratio of correctly classified samples to
total number of samples predicted as the given class.

Accuracy =

@)

TP

Precision = m

®)
3. Recall: Recall of a class is defined as the ratio of correctly classified samples to total
number of samples actually belonging to that class.

TP

Recall - m

©)
4. Fl-score: Sometimes, only Precision and Recall are not enough to measure the per-
formance of a classifier. So, F1-score is presented to combine the both aspects as it is
evaluated as the harmonic mean of the two.
2 - Precision - Recall

F1 — score = Precision + Recall (109
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5. Specificity: Specificity is used to measure the proportion of negatives that are correctly
identified. It is defined as the ratio of true negatives predicted to total number of
samples which belong to negative class.

TN

_—_— 11
TN+ FP ()

Specificity =

Since the current problem consists of only two classes, we used binary cross-entropy

as the loss function. We purposefully applied Adam optimizer to optimize the loss value

throughout 100 epochs. The training procedure was performed batches with each batch

having simultaneously 64 samples. We can observe the change in training accuracy and
loss with epochs for all three models in Figure 6a—c.

Training Accuracy and Loss vs Epoch

Training Accuracy and Loss vs Epoch

— Accuracy of training data
=== Loss of training data

Faining Accuracy and Lo
Faining Accuracy and Loss

— Accuracy of training data o - .
=== Loss of training data —

0o

- - - v , :
0 H 0 15 2 0 2 4 1 8 i} 1
Faining Epoch Faining Epoch

(@) (b)

Training Accuracy and Loss vs Epoch

Faining Accuracy and Loss

= Accuracy of training data
=== Loss of training data

o 1 2 3 4 5 & 1
Taining Epoch

(©

Figure 6. Graphical representation of training loss and accuracy vs epoch for: (a) Wang et al.’s [7]
proposed CNN model, (b) Sharan et al.’s [8] proposed CNN model, (¢) Almutairi et al.’s [10] proposed
CNN-LSTM model.

After training, all the four classification measures were evaluated based on the test
data and their prediction for each case in Table 1.

Table 1 suggests that the three chosen CNN based models were compatible for en-
semble as each ensemble technique successfully increased the maximum accuracy of all
three models by at least 1%. Majority voting gave least accurate results because it only
considered the prediction instead of the exact probabilistic values whereas, the other three
being score level fusion were able to produce somewhat better results. Trainable ensemble
technique performed a little better than the non-trainable ensemble techniques probably
due to the fact that weight assigning to the classification scores was performed with the
help of a classifier instead of applying a pre-defined weight allocation rule. Besides, MLP
itself worked as an excellent classifier because of its utilization of additional hidden fea-
tures [46]. Thus, it was able to identify the patterns of classification scores as well. Among
the non-trainable ensemble techniques, Choquet integral fusion worked better than sum
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rule because unlike sum rule, Choquet integral fusion did not assign equal weights to all
three. Giving equal importance to all base models” scores may not meet the expectations as
the poor performance of an individual performance may affect the overall result. On the
other hand, Choquet integral fusion assigned more weight to the model which gave more
confident predictions. Among individual models, CNN-LSTM performed better than the
rest two base models because LSTM considers the contexts (i.e., previous samples) along
with the present sample which was beneficial for any time-series data such as, ECG signals.

Table 1. Classification performances obtained by all the base models and their ensembles.

Model/Ensemble Technique Accuracy (%)  Precision (%) Recall (%)  F1-Score (%) Specificity (%)
Wang et al.’s CNN [7] 82.36 81.54 81.78 81.65 83.93
Sharan et al.’s CNN [8] 83.29 82.32 82.80 82.53 87.39
Almutairi et al.’s CNN-LSTM [10]  84.08 83.59 82.94 83.22 86.15
Ensemble—Majority Voting 85.18 84.59 84.40 84.48 87.56
Ensemble—Sum rule 85.34 84.61 84.45 84.52 87.63
Ensemble—Choquet Integral 85.41 84.63 84.48 84.53 87.89
Trainable ensemble using MLP 85.58 84.80 84.43 84.67 88.26

We also performed experiments on the raw 1-min signal windows by taking the
Table 1’s winner MLP based trainable ensemble for a performance-wise understanding
between the raw data and the feature extracted data. Table 2 contains the results for
raw ECG segments, which clearly shows that features extracted from the signal greatly
outperformed the raw data as the final prediction made by the ensemble with raw data was
only 70.77% accurate. The possible explanation for such an outcome was that classifiers
may understand the pattern more efficiently in case of certain features which summarized
the raw data.

Table 2. Classification performances obtained by considering the raw ECG segments of 1-min time-span.

Model/Ensemble Technique Accuracy (%)  Precision (%) Recall (%)  F1-Score (%) Specificity (%)
Wang et al.’s CNN [7] 65.00 63.52 63.99 63.64 66.34
Sharan et al.’s CNN [8] 66.95 65.50 66.01 65.64 68.03
Almutairi et al.’s CNN-LSTM [10]  70.54 68.71 68.38 68.47 71.87
Trainable ensemble using MLP 70.77 69.38 69.96 69.57 72.19

Since, with this amount of data there was a possibility that the distribution of train and
test sets may not be uniform, we applied two-fold cross-validation approach by swapping
the train set and test set, and taking the average of both the results. The results of the base
models and ensembles after this two-fold cross-validation are shown in Table 3.

We also performed five-fold cross-validation over the combined dataset of the train
and test sets. The performances of the base models and ensembles after five-fold cross-
validation are shown in Table 4.
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Table 3. Classification performances obtained by all the base models and their ensemble using two-fold cross-validation.

Model/Ensemble Technique Accuracy (%)  Precision (%) Recall (%)  F1-Score (%) Specificity (%)
Wang et al.’s CNN [7] 81.93 78.11 76.40 76.30 81.56
Sharan et al.’s CNN [8] 82.26 79.88 74.41 76.10 84.82
Almutairi et al.’s CNN-LSTM [10]  83.82 80.26 77.79 78.64 84.51
Trainable ensemble using MLP 84.60 82.65 76.88 79.26 86.19

Table 4. Classification performances obtained by all the base models and their ensemble using five-fold cross-validation.

Model/Ensemble Technique Accuracy (%)  Precision (%) Recall (%)  F1-Score (%) Specificity (%)
Wang et al.’s CNN [7] 85.07 80.26 82.33 80.74 85.98
Sharan et al.’s CNN [8] 86.31 84.26 81.82 81.99 87.44
Almutairi et al.’s CNN-LSTM [10]  86.88 82.60 83.69 83.00 88.12
Trainable ensemble using MLP 87.91 84.56 84.42 84.25 88.98

From Table 4, we observe that the models and the MLP based ensemble delivered
better results during five-fold cross-validation than without doing so, because in five-fold
cross validation, every sample from the dataset was there in both training data and test
sets at least once, and the amount of training data increased which also included some of
the test data used previously. This resulted in better identification of the test data.

Furthermore, we also used standard classifiers such as SVM, ANN with a hidden layer
with 100 features and Random Forest to compare how they performed with the trainable
ensemble using MLP. We flattened the features for these classifiers and after prediction,
reshaped the outputs for the two classes respectively before performing the ensemble on
them. The results obtained by the standard classifiers and the ensemble are shown in
Table 5.

Table 5. Classification performances obtained by standard classifiers and their ensemble.

Model/Ensemble Technique Accuracy (%)  Precision (%) Recall (%)  F1-Score (%) Specificity (%)
SVM 81.64 81.33 91.33 86.00 83.65
ANN 77.48 80.85 83.29 82.01 79.17
Random Forest 78.47 78.08 90.82 83.87 79.59
Trainable ensemble using MLP 81.83 81.70 67.90 74.08 83.09

Table 5 shows that the simple machine learning classifiers performed somewhat worse
than the deep learning based models. So, overall ensemble was also affected by the choice
of base models. Next, we compared the best performance achieved in our work for the
original train and test dataset with some of the previous methods’ performance in Table 6.

From Table 6, we observe that the MLP based ensemble delivered better results than
some of the previous works. Still Chang et al. [26] and Shen et al. [25] have obtained
better results in their respective works. Although the ensemble worked fine for the given
combination of models, their individual accuracy could not exceed 84%. So, this worked
as a limiting factor for obtaining the better performance by the overall architecture. Addi-
tionally, the class-imbalance may be the reason for achieving not so high accuracy. Still,
the current work held a good place among all the existing works experimented on the
dataset under consideration.
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Table 6. Performance comparison of the previous works with our work.

Method Features Used Accuracy (%) Recall (%) Specificity (%) Sample Window Size
Tripathi et al. [47]—Kernel Extreme EDR and HRV 76.37 78.02 74.64 -
Learning Machine (KELM)
Hassan et al. [22]—Statistical features TQWT extracted 83.77 81.99 90.72 -
with Extreme Learning Machine (ELM)  features from Raw
ECG Signal data
Feng et al. [48] —Feature Extraction RRI 84.7 68.8 94.5 6000 x 1
with Deep Learning Network, SVM
with Hidden Markov Model (HMM)
Chang et al. [26]—1-D CNN Raw ECG signal 87.9 81.1 92.0 6000 x 1
data
Shen et al. [25]—MSDA-1DCNN RRI then further 89.4 89.8 89.1 180 x 1
features from
MSDA-1DCNN
Current study—Trainable Ensemble RRI, RAMP 85.58 84.43 88.26 240 x 3
using MLP and EDR

5. Conclusions

Proper diagnosis of any severe disease such as OSA is very crucial which further
emphasises the application of Al based classification techniques on such kind of data.
Outcome of the competent classification models may be helpful even to the medical
professionals. For example, in our case, it can help differentiating an Apnetic patient from
a non-Apnetic one. In this paper, we have applied four ensemble techniques on deep
learning models to detect sleep apnea based on ECG signal data. Although, each ensemble
model can predict with at least 85% accurate results on PhysioNet Apnea-ECG database,
still some improvements can be applied further. Since our primary focus remains on the
ensemble approaches in the OSA detection domain, our experiments show that the deep
learning models are compatible to be aggregated as the final ensemble method is able
to surpass the best among three models. However, some modifications like considering
varied LSTM based structures, attention mechanism can be thought of to the increase the
base model’s performance. In future, we would consider more ensemble methods such that
we can logically assign weights to fuse the classifiers’ decisions. We can also use different
features from the raw data based on proper feature relevance techniques as well. From the
statistics of the database used here, it is evident that the number of samples is lower than
the required for any deep learning network. To overcome this problem, data augmentation
techniques can be applied to produce artificial data from the original dataset.
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Abbreviations

The following abbreviations are used in this manuscript:

OSA Obstructive Sleep Apnea

CNN Convolutional Neural Network
LSTM Long Short-Term Memory

IoT Internet of Things

SAHS Sleep Apnea HypoApnea Syndrome
ECG Electrocardiogram

SVM Support Vector Machine

kNN k-Nearest Neighbours

RF Random Forest

RNN Recurrent Neural Network

RQA Recurrence Quantification Analysis
HRV Heart Rate Variability

ANN Artificial Neural Network

TQWT Turnable-Q factor Wavelet Transform
AdaBoost  Adaptive Boosting
MTEO Multilevel Teager Energy Operator

MLP Multi-Layer Perceptron
EDR ECG Derived Respiration
RRI RR Interval

RAMP R peak Amplitude

ReLU Rectified Linear Unit

TP True Positive

TN True Negative

FP False Positive

FN False Negative

KELM Kernel Extreme Learning Machine
ELM Extreme Learning Machine
HMM Hidden Markov Model
NN Neural Network

FNN Feedforward Neural Network
TD Temporal Difference

RG Residual-Gradient

MI Mutual Information

GMM Gaussian Mixture Model
RBF Radial Basis Function
EMG Electromyography

MCS Multi-Classifier System
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