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Background: Increasing evidence suggests that retinal hyper-reflecting foci (HRF) might
be clusters of activated and proliferating microglia. Since microglia are widespread
activated in multiple sclerosis (MS) brain, its evaluation in retina may help to understand
and monitor MS-related pathology.

Aim: This study aims at investigating the association of HRF with cerebrospinal fluid (CSF)
cytokines and MRI parameters in relapsing–remitting MS (RRMS).

Methods: Nineteen RRMS at clinical onset and 15 non-inflammatory neurological
disorders (NIND) underwent brain 3T MRI and CSF examination. Optical coherence
tomography (OCT) analysis, including HRF count, was performed on RRMS patients.
Sixty-nine cytokines/chemokines were analyzed in the CSF by multiplex technology.

Results: In RRMS, HRF count in the ganglion cell layer (GCL) was associated with IL-1Ra,
IL-9, IL-15, IFN-g, and G-CSF. Moreover, in RRMS patients CSF concentrations of IL-1Ra
and G-CSF associated with global cortical thickness. The HRF count in the inner nuclear
layer (INL) correlated with IL-22, IL-34, IL-35, CXCL-2, CXCL-10, and CXCL-13,
and multivariate analysis confirmed a strong association (r2: 0.47) with both CXCL-2
(b: -0.965, p = 0.0052) and CXCL-13 (b: 0.241, p = 0.018). This latter cytokine increased
in RRMS with high HRF count compared with NIND and RRMS with low HRF count.
Finally, the CXCL-13/CXCL-2 ratio strongly associated with HRF count (r: 0.8, p < 0.005)
and cortical lesion volume (r: 0.5, p < 0.05).

Conclusions: The association of HRF with intrathecally produced monocyte/microglia-
derived cytokines confirms their microglial origin and indicates they are worth further
evaluating as markers of activated microglia.
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INTRODUCTION

Retinal hyper-reflecting foci (HRF) have been observed by optical
coherence tomography (OCT) in a wide range of neurological and
ophthalmological diseases (1–4). However, their origin is still
debated, and two main hypotheses have been advocated. The first
hypothesis suggests that they represent extravasated lipoproteins.
Indeed, in Fabry disease (5) HRF count was found to correlate with
both globotriaosylsphingosine serum concentration and vessel
tortuosity, supporting shared pathogenic mechanism(s). Since
both the retina and macula are highly vascularized, it has been
hypothesized that blood–retina barrier dysfunctionmight facilitate
concomitant endothelial glycosphingolipid deposition, resulting in
a pathological hyperreflectivity of the capillary plexus in the inner
retina. The second hypothesis suggests that HRF, characterized by
well-defined morphological features, are composed of clusters of
activated and proliferatingmicroglia. As a matter of fact, HRF have
been observed in pathologies not associated with retinal lipid
deposition. Moreover, in relapsing–remitting multiple sclerosis
(RRMS) HRF are increased compared to healthy controls (3) and
associated with MRI parameters of cortical inflammation (6).
Finally, the reported association between HRF and inflammatory
markers (i.e., IL-8, V-CAM-1) in aqueous humor in patients with
intractable macular edema also speaks in favor of the microglia-
origin hypothesis (7).

Interestingly, beside advanced neuroimaging methodologies
that have been tested for the in vivo evaluation of activated
microglia in the brain, OCT with a single linear scan through the
macula proved to identify and correlate the HRF with different
parameters of local inflammation and damage (3, 5, 7–10).
Moreover, a strong correlation of HRF with cortical lesion load
and clinical and radiological disease activity have been observed
in MS (3, 6).

To further explore the origin of HRF, we designed a cross-
sectional study in RRMS patients at clinical onset and untreated,
aiming at evaluating the possible correlation of HRF count with
cerebrospinal fluid (CSF) cytokines/chemokines and magnetic
resonance imaging (MRI) parameters of both gray and white
matter inflammation and degeneration.
MATERIALS AND METHODS

Study Design and Participants
SubjectswithadiagnosisofRRMSachieved at theMultipleSclerosis
Centre, University Hospital of Padua, between January 2014 and
June 2020were recruited in this cross-sectional, single-center study.
All subjects underwent neurological evaluation and Expanded
Disability Status Examination (EDSS), CSF analysis, OCT, and
brain and spinal cord MRI at the time of the diagnosis. Inclusion
criteriawere1)diagnosis ofRRMSachieved according to the revised
2017McDonald criteria (11); 2) interval between clinical onset and
diagnosis <18 months; and 3) age between 18 and 60 years.
Exclusion criteria were 1) systemic and ophthalmologic disorders
(i.d. diabetes); 2) diagnosis of progressive MS; 3) steroid therapy in
the month prior to OCT acquisition; 4) previous clinical history of
optic neuritis; 5) evidence of subclinical optic neuritis (inter-eye
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difference in peripapillary RNFL of >20% and optic nerve
hyperintensity in ≥2 slices at Brain MRI Double Inversion
Recovery Sequence); and 6) no steroid therapy in the previous 28
days and no history of immunomodulating or immunosuppressive
therapy before lumbar puncture. Disease duration was defined as
the interval between the first clinical symptom attributable to MS
and the date of the OCT evaluation coinciding with the diagnosis.
The 19 RRMS patients included were compared with a group of 15
patients with a final diagnosis of Non-Inflammatory Neurological
Disease (NIND). The NIND group was constituted by subjects
complaining tension headache, transient subjective sensory
symptoms, and psychosomatic disorders, as well as unspecific
white matter alterations who underwent a detailed diagnostic
workup including routine blood tests; B12 vitamin, folate, and
angiotensin-converting enzyme (ACE) concentration as well as
immunological screening (detecting ANA, ANCA, ENA, anti-
dsDNA, anti-b2-glycoprotein I, anti-cardiolipin, and LAC); CSF
examination; and brain and spinal cord MRI to exclude
neurological disorders, as previously described (12). Even if no
evidence of neurological or systemic diseases was achieved in these
subjects, these patients were classified as NIND rather than
healthy controls.

No difference in demographic and clinical variables was
observed between NIND and RRMS (Table 1). The study was
conducted in agreement with the Declaration of Helsinki and
approved by the local Ethic Committee (Comitato Etico per la
Sperimentazione Clinica dell’Azienda Ospedaliera di Padova,
prot. n. 17760).

CSF Cytokine Investigation
CSF specimens were collected by non-traumatic lumbar puncture
between 8.00 and 9.00 a.m., as previously reported (13). Following
routine examination (consisting in cell count and differentiation,
calculation of albumin ratio andquantitative IgG indexes, detection
of oligoclonal IgG bands), paired serum and CSF specimens were
stored in 0.5-ml aliquots at -80°C until further analysis. The CSF
concentration of 69 cytokineswas assessed bymultiplex technology
(Bio-Plex Pro Human Cytokine, GF and Diabetes 27-Plex Panel,
Bio-Plex Pro Human Chemokines 40-Plex Panel, Bio-Plex Pro
Human Inflammation Assays 37-Plex Panel) as already described
(12). Briefly, for each molecule the percentage of detectable
concentration was evaluated. Cytokines not detected in all (MS
and NIND) samples were excluded from the analysis. When the
same cytokine was detectable by two kits, results from the kit with
higher sensitivity were further analyzed.

Spectral Domain OCT and Hyper-
Reflective Foci Count
All MS patients underwent spectral domain OCT (Spectralis;
Heidelberg Engineering, Carlsbad, CA; Heidelberg Eye Explorer
version 1.7.0.0) examination of both eyes, in a dark room without
the injection of any mydriatic agent. In line with recent
publications (3, 6, 14), the analysis of the central linear scan of
the macular map, crossing the fovea, was considered for HRF
counting. HRF were counted in the area included between two
perpendicular lines to Brunch’s membrane traced at 1,500 mm
both temporally and nasally from the center of the fovea.
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HRF were defined as isolated, small-size (<30 mm), punctiform
elements with moderate reflectivity (similar to that of the nerve
fiber layer) but without any back shadowing. The count was
performed in GCIP and INL separately. The presence of HRF
was rated by two independent blind observers (PM, TT). For
each patient, HRF count was expressed as the median between
the 2 eyes, because a significant correlation was demonstrated
between the two eyes for both GCL and INL HRF count
(Supplementary Figure 1). All examinations were checked for
sufficient quality using the OSCAR-IB criteria (15). The results
are reported in accordance with the Advised Protocol for OCT
Study Terminology and Elements (APOSTEL) (16, 17). Since the
signal strength in macular scan of 2 eyes from 2 MS patients was
not optimal (<15), these scans were not analyzed.

MRI Data Acquisition
MRI was achieved on a 3.0-T scanner (Ingenia, Philips Medical
Systems, Best, The Netherlands) with 33-mT/m power gradient
and a 32-channel head coil. No major hardware upgrades
occurred during the study, and bimonthly quality assurance
sessions were done for measurement stability. The MRI
protocol included the following sequences: (i) three-
dimensional (3D) T1 MPRAGE: repetition time (RT) = 7.8 ms,
echo time (ET) = 3.6 ms; 180 contiguous axial slices with the off-
center positioned on zero with thickness of 1.0 mm; flip angle =
8°; matrix size = 220 × 220; FOV 220 × 220 × 180 mm3; (ii) 3D-
FLAIR: RT = 4,800 ms, ET = 310 ms, inversion time (IT = 1,650
ms; 365 contiguous axial slices with thickness of 1.0 mm; matrix
size 256 × 256; and FOV = 256 × 256 × 182 mm3; and (iii) 3D-
DIR: RT= 55,000 ms, ET = 284 ms, inversion time (IT) = 2,550
ms; contiguous axial slices with thickness of 1.0 mm; matrix size
212 × 212; and FOV = 256 × 256 × 182 mm3.

MRI Data Processing
T1-weighted images were processed following these procedures:
correction formagneticfield inhomogeneity, performedwithANTs
N4BiasFieldCorrection tool, (18) brain extraction, performedwith
antsBrainExtraction tool, (19) brain segmentation, performedwith
FSL fast(20) tool and lesionfilling, performedwith FSL lesionfilling
tool (21). The FLAIR images were processed following these steps:
correction formagneticfield inhomogeneity, performedwithANTs
N4BiasFieldCorrection (18) tool and brain extraction, performed
with FSL bet tool (22). The processed FLAIR image was then
registered to the processed T1-weighted image by using ants
Registration SyN Quick (19) tool and the estimated
transformation was applied to the WM lesion mask. DIR images
Frontiers in Immunology | www.frontiersin.org 3
were corrected for magnetic field inhomogeneity with ANTs
N4BiasFieldCorrection (18) tool and was then registered to the
processed T1-weighted image by using FSL flirt tool (23, 24). Thus,
theGMlesionmask,designed in theDIRspace,was registered to the
same space applying the transformation estimated in the previous
step. In order to evaluate the role of the WM lesions on the optic
radiations (ORs), we used a previously described atlas, (25) which
includes the tracts of the OR, defined in the MNI152 space. To
conduct a subject-level analysis, MNI152 brain image was
registered to the processed T1-weighted image as described
elsewhere. After having applied the estimated transformations to
theOR tracts, an expert neuroradiologist fixed the lower thresholds
for the left OR tract to 0.7 and for the right OR to 0.55. Then, we
quantified global and normalized WM and GM lesion volume
(WMLV and GMLV) as well as WM lesion volume and their
normalized values in both ORs.
Statistical Analysis
Data were reported as mean (± standard deviation) or median
(range) for continuous variables. Group differences between
RRMS patients and NIND were tested by the chi-square test
for sex and by the T-test for age. Non-parametric Spearman
correlation was applied to correlate HRF count and cytokines.
Multiple linear regression analysis considered HRF count as a
dependent variable and cytokines as an independent variable.
Differences between ONIND and RRMS subgroups were tested
by the Kruskal–Wallis test corrected with multiple-comparison
Dunn’s test. A p-value lower than 0.05 was considered
statistically significant. Prism 9.2.0 was used for all the analyses.
RESULTS

GCL and INL HRF Counts Associated With
Different Patterns of Monocyte-Derived
CSF Cytokines
GCL HRF count associated with IL-1Ra (r: -0.67, p = 0.0016),
IL-9 (r: -0.61, p = 0.0056), IL-15 (r: -0.63, p = 0.0041), G-CSF
(r: -0.51, p = 0.0257), and IFN-g (r: -0.49, p = 0.0334) (Table 2,
Supplementary Table 1). On the basis of GCL HRF median
count (i.e., 8.5), patients were divided into high GCP HRF count
(G-HRFhigh) and low GCP HRF count (G-HRFlow). Interestingly,
significantly lower levels of IL-1Ra, IL-9, and G-CSF were found
in G-HRFhigh compared to G-HRFlow (Figure 1). Finally, IL-1Ra,
TABLE 1 | Clinical and demographic characteristics of patients.

NIND (15) RRMS (19)

Gender ratio (F/M) 2.0 (10/5) 1.7 (12/7)
Age at CSF (y) 43.9 ± 8.1 34.6 ± 9.9
Disease duration at CSF (m) n.a. 3.5 ± 4.0
Disease duration at OCT (m) n.a. 4.1 ± 4.0
EDSS n.a. 2.0 (1.0-3.0)
May 2022 | Volume 13 | A
NIND, other non-inflammatory neurological diseases; RRMS, relapsing–remitting multiple sclerosis; y, years; m, months; EDSS, Expanded Disability Status Scale. CSF, cerebrospinal fluid;
OCT, optical coherence tomography; n.a., not applicable.
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IL-9, and G-CSF were reciprocally correlated (p < 0.0005 for
all correlations).

INL HRF count associated inversely with IL-22 (r: -0.47, p =
0.043), IL-34 (r: -0.51, p = 0.027), IL-35 (r: -0.47, p = 0.044), and
CXCL-2 (r: -0.53, p = 0.020) and directly with CXCL-10 (r: 0.47,
p = 0.042) and CXCL-13 (r: 0.50, p = 0.03) (Table 3 and
Supplementary Table 2). The correlation matrix revealed 3
clusters of cytokines, from whom IL-22, CXCL-2, and CXCL-
13 were selected (Figure 2A). The regression model indicated
that CXCL-2 associated inversely (b: -0.965, p = 0.0052) while
CXCL-13 associated directly (b: 0.241, p = 0.018) with HRF
count (r2: 0.47) (Figures 2B, C). Consequently, the CXCL-13/
CXCL-2 ratio strongly associated with INL HRF count (r: 0.76,
p = 0.0002) (Figure 2C). Patients were divided on the basis of
median INL HRF count (i.e., 17.5), in INL HRFhigh (I-HRFhigh)
and INL HRFlow (I-HRFlow). I-HRFhigh had a CXCL-13/CXCL-2
ratio (4.05 ± 2.67) than both I-HRFlow (0.57 ± 0.43, p = 0.0001)
and NIND (0.22 ± 0.11, p < 0.0001) (Figure 2D).

CSF Cytokines Reflected Different Aspects
of Cortical Pathology
While IL-1Ra and G-CSF concentrations correlated with global
cortical thickness (r: 0.52, p = 0.022, and r: 0.49, p = 0.034
Frontiers in Immunology | www.frontiersin.org 4
respectively), the CXCL-13/CXCL-2 ratio correlated with gray
matter lesion volume (GMLV) (r: 0.465, p = 0.045).
DISCUSSION

The impossibility of obtaining histological specimens of the
human retina in vivo keeps the question on the origin and
pathologic significance of HRF still open. Nevertheless, indirect
evidence, accumulated over the last decade, supports the
hypothesis that these nodules are constituted by clusters of
activated retinal microglia that migrate close to the blood-
retinal barrier probably in response to detrimental triggers.

Inasmuch as a widespread microglial activation has been
demonstrated by histological and neuroimaging (advanced
MRI and PET techniques) studies in MS (26), this disease may
constitute an ideal pathological field, where the origin of HRF is
clarified and microglial behavior during the course of CNS
inflammatory disorders is analyzed. In a previous study, we
found that INL HRF count correlated with both inflammatory
cortical pathology and INL thickness, suggesting HRF parallel
gray matter rather than white matter damage in RRMS (6). These
findings were in line with histological observations supporting a
TABLE 2 | CSF concentrations of cytokines correlating with GCL HRF count.

ONIND G-HRFlow G-HRFhigh ONIND vs. G-HRFlow
(p-value)#

ONIND vs. G-HRFhigh
(p-value)#

G-HRFlow vs. G-HRFhigh
(p-value)#

Disease duration at CSF (m) n.a. 3.3 ± 3.9 3.7 ± 4.3 n.a. n.a. 0.6
EDSS n.a. 2.0 (1.0-2.5) 2.0 (1.0-3.0) n.a. n.a. 0.3
Brain MRI gad+ (%) n.a. 40.0% 37.5% n.a. n.a. 1.0
Spinal cord MRI gad+ (%) n.a. 30.0% 12.5% n.a. n.a. 1.0
Radiological activity (%) n.a. 50.0% 37.5% n.a. n.a. 1.0
Clinical activity (%) n.a. 60.0% 37.5% n.a. n.a. 0.7
Disease activity (%) n.a. 80.0% 62.5% n.a. n.a. 1.0
IL1-Ra (pg/mL) 147.5 ± 51.8 164.1 ± 61.4 95.1 ± 21.8 >0.999 0.0681 0.0244
IL-9 (pg/mL) 7.0 ± 2.6 8.0 ± 4.4 4.6 ± 1.5 >0.999 0.0789 0.0281
IL-15 (pg/mL) 32.4 ± 14.7 34.2 ± 12.5 20.6 ± 9.4 >0.999 0.1187 0.0946
G-CSF (pg/mL) 14.6 ± 5.3 16.8 ± 11.6 9.6 ± 3.9 >0.999 0.0095 0.0249
IFN-g (pg/mL) 2.9 ± 1.2 2.8 ± 1.0 2.2 ± 0.6 >0.999 0.4621 0.5566
May 2022 | Vo
NIND, other not inflammatory neurological diseases; G-HRFlow, RRMS patients with GCL HRF count ≤8.5; G-HRFhigh, RRMS patients with GCL HRF count >8.5; #p-values from Kruskal-
Wallis test corrected with multiple comparison Dunn’s test; n.a., not applicable.
FIGURE 1 | GCL HRF count associates with monocyte-derived CSF cytokines. ONIND, other non-inflammatory neurological diseases; G-HRFlow, RRMS patients
with GCL HRF count ≤ 8.5; G-HRFhigh, RRMS patients with GCL HRF count > 8.5; *p < 0.05; **p < 0.01. n.s., not significant.
lume 13 | Article 852183

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Puthenparampil et al. Retinal Microglia and CSF Cytokine
FIGURE 2 | INL HRF count associates with an imbalance between CSF concentrations of CXCL-13 and CXCL-2. (A) Correlation matrix revealed 3 clusters of cytokines,
narrowed to 2 by multiple regression analysis (CXCL-13 and CXCL-2). (B) While CXCL-13 CSF concentrations progressively increased from ONIND to both I-HRFlow and
I-HRFhigh, CXCL-2 significantly decreased between RI-HRFlow and I-HRFhigh. (C) The ratio between CXCL-13 and CXCL-2 strongly associated with HRF count in INL; (D)
this ratio significantly increased in I-HRFhigh compared with both ONIND and I-HRFlow. ONIND, other non-inflammatory neurological diseases; I-HRFlow, RRMS patients
with GCL HRF count ≤ 17.5; I-HRFhigh, RRMS patients with GCL HRF count > 17.5; *p < 0.05; ; **** p < 0.001. n.s., not significant.
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 8521835

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Puthenparampil et al. Retinal Microglia and CSF Cytokine
pivotal role for microglia and a marginal role for T cells in both
retinal and cortical pathology in MS (27).

Thus, we investigated the possible correlation of HRF with a
wide range of inflammatory soluble molecules (including
monocyte-, microglia-, granulocyte-, lymphocyte-related
cytokines) in the CSF of RRMS patients at clinical onset and
untreated. The most significant and interesting finding was the
inverse correlation between GCL HRF counts and G-CSF values.
This cytokine showed a neuroprotective effect in a rat model of
anterior ischemic optic neuropathy (rAION model) (28) and has
been used to modulate several ON/retina animal models,
including ON axotomy or crush injury, light-induced retinal
damage, retinal ischemia and reperfusion, and oxygen-induced
retinopathy (29–31). Because of the protective effect of IL-1Ra on
the retina (32), the inverse association of G-CSF and IL-1Ra with
microglial proliferation sounds plausible and may indicate a loss
of protective effect by local microglia, suggesting a shift to a
different phenotype.

Among several monocyte/microglia-derived cytokines/
chemokines, CXCL-13, whose role in MS has been repeatedly
ascribed (33, 34), seems particularly linked to INL HRF count.
Our study furtherconfirms that this cytokine is increased inMSCSF
(33) and associated with cortical pathology (34). INL pathological
changes appear particularly relevant in this context. Indeed, INL
thickness has been linked to both an impairment of Müller cell-
maintained retinal fluid homoeostasis and an increased blood–
retina barrier permeability induced by the local production of pro-
inflammatory cytokines (IL-1 and IL-6) and iNOS by microglia
(35). Since RRMS patients with clinical or subclinical optic neuritis
were excluded fromthis study, the increasedHRFcount assumes an
unexpected and novel pathological significance, indicating that the
retinamight be an independent site of CNS involvement inMS and
local microglia could activate in the absence of optic nerve or
radiation inflammation.

Taken altogether, our data strongly support the hypothesis
that HRF might be constituted, at least partially, by activated
microglia. HRF should be interpreted in the context of the
widespread microglial activation and proliferation that take
place in MS CNS. The different concentrations of macrophage/
microglia-derived cytokines/chemokines strongly indicate that
these pro-inflammatory factors may also be produced in the
retina, thus explaining the morphological changes observed
Frontiers in Immunology | www.frontiersin.org 6
here. Indeed, microglial activation in GCP and INL could
induce a cytokine release that leads to BRB dysfunction and
increases permeability determining an increase in the INL
volume. This immunopathological hypothesis agrees with a
recent observation on blood–brain barrier dysfunction
associated with specific patterns of microglia-derived pro-
inflammatory cytokines in the CSF (e.g., chitinase 3-like 1)
(36). The microglial origin can also explain the correlation
between Lyso-Gb3 and HRF count and vessel tortuosity in
Fabry’s disease. Indeed, endothelial glycosphingolipid
deposition may stimulate the recruitment and activation of
local microglia.

The different patterns of cytokines/chemokines associated
with HRF count are worth commenting. Indeed, I-HRFhigh had
higher CSF CXCL-13 than NIND and I-HRFlow, while the
CXCL-2 concentration was slightly increased in I-HRFlow and
then dropped in I-HRFhigh. This behavior may reflect
phenotypical changes of retinal microglia. Indeed, I- or G-
HRFlow patients have CSF cytokine concentrations similar to
those observed in NIND, suggesting a “physiological” low-level
release of soluble mediators by microglia, in line with the
homeostatic role of these cells. Furthermore, the association of
increased HRF count with different cytokine profiles in I- or G-
HRFhigh suggests a microglial shift from a homeostatic to an
activated profile, characterized by proliferation and production
of higher levels of pro-inflammatory mediators. However, since
no histological or cytological evaluation is here provided and
considering that these data derive from a limited cohort of MS
patients, our findings need to be handled with caution and need
to be further confirmed. Longitudinal studies will reveal whether
the association of CSF cytokines with HRF counts is worthy of
further experimental development and will help to better weight
our preliminary findings. Moreover, to further explore the origin
of HRF, studies evaluating the parallel behavior of retinal and
brain microglia should be performed [as mentioned above, PET
allowed the observation of a widespread microglial activation in
the gray matter of a small cohort of MS patients (37)].

In conclusion, our study links HRF count with soluble
markers of microglial origin in CSF and MRI parameters of
cortical pathology, further supporting the hypothesis that HRF
are clusters of activated and proliferating microglia. Retinal HRF
appear promising candidate biomarkers for elucidating in vivo
TABLE 3 | CSF concentrations of cytokines correlating with INL HRF count.

NIND I-HRFlow I-HRFhigh NIND vs. I-HRFlow
(p-value)a

NIND vs. I-HRFhigh
(p-value)a

I-HRFlow vs. I-HRFhigh
(p-value)a

Disease duration at CSF (m) n.a. 4.9 ± 2.5 2.5 ± ± 3.1 n.a. n.a. 0.4
EDSS n.a. 1.5 (1.0-3.0) 2.5 (1.5-2.5) n.a. n.a. 0.1
Brain MRI gad+ (%) n.a. 25.0% 54.6% n.a. n.a. 0.6
Spinal cord MRI gad+ (%) n.a. 25.0% 18.2% n.a. n.a. 1.0
Radiological activity (%) n.a. 37.5% 45.5% n.a. n.a. 1.0
Clinical activity (%) n.a. 37.5% 63.6% n.a. n.a. 0.4
Disease activity (%) n.a. 62.5% 81.8% n.a. n.a. 0.6
CXCL-2 (pg/mL) 4.1 ± 1.2 7.4 ± 4.2 3.6 ± 2.2 0.2569 0.8726 0.0251
CXCL-13 (pg/mL) 0.8 ± 0.4 4.5 ± 5.7 14.0 ± 13.6 0.0217 <0.0001 0.4280
May 2022 | Volu
ONIND, other not inflammatory neurological diseases; I-HRFlow, RRMS patients with INL HRF count ≤17.5; I-HRFhigh, RRMS patients with INL HRF count >17.5.
ap-values from the Kruskal–Wallis test corrected with multiple-comparison Dunn’s test; n.a., not applicable.
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the mechanisms behind microglial activation and proliferation in
inflammatory and neurodegenerative brain disorders.
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