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Being the most common cause of dementia, AD is a polygenic and neurodegenerative
disease. Complex and multiple factors have been shown to be involved in its
pathogenesis, of which the genetics play an indispensable role. It is widely accepted
that discovery of potential genes related to the pathogenesis of AD would be of great
help for the understanding of neurodegeneration and thus further promote molecular
diagnosis in clinic settings. Generally, AD could be clarified into two types according to
the onset age, the early-onset AD (EOAD) and the late-onset AD (LOAD). Progresses
made by genetic studies on both EOAD and LOAD are believed to be essential not only
for the revolution of conventional ideas but also for the revelation of new pathological
mechanisms underlying AD pathogenesis. Currently, albeit the genetics of LOAD is
much less well-understood compared to EOAD due to its complicated and multifactorial
essence, Genome-wide association studies (GWASs) and next generation sequencing
(NGS) approaches have identified dozens of novel genes that may provide insight
mechanism of LOAD. In this review, we analyze functions of the genes and summarize
the distinct pathological mechanisms of how these genes would be involved in the
pathogenesis of AD.
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INTRODUCTION

Being the most common cause of dementia, AD is a polygenic and neurodegenerative disease,
defined as the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles
(Ramirez-Bermudez, 2012). Neuroinflammation, synaptic and neurotransmitter loss are also
involved in the pathogenesis of AD (Huang and Mucke, 2012; Anand et al., 2014). Clinically,
patients’ increasingly loss of memory and impairment of related cognitive functions is the main
feature of AD, which can be further divided into two subtypes, the early onset and late-onset forms,
based on the on-set age. (Reitz et al., 2011).

Early-onset AD (EOAD) is usually autosomal dominant inherited, constituting barely 1–2% of
AD, with genes including amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin
2 (PSEN2) being regarded as major factors (Reitz et al., 2011; Alzheimer’s Association, 2015).
Although, late-onset AD (LOAD) is epidemiologically more common compared to EOAD,
it is much more complex genetically because of the involvement of genetic, epigenetic and
environmental factors. The apolipoprotein E (APOE) ε4 allele is the first discovered genetic risk
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factor for LOAD (Liu et al., 2013). Thereafter, with the
advent of the genome-wide association studies (GWASs),
dozens of additional genes have been found as potential risk
factors for LOAD. This long gene list has already included
ABCA7, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1,
DSG2, EPHA1, FERMT2, HLA-DRB5/DRB1, INPP5D, MEF2C,
MS4A4/MS4A6E, NME8, PICALM, PTK2B, SLC24A4/RIN3,
SORL1, ZCWPW1 (Harold et al., 2009; Lambert et al., 2009;
Seshadri et al., 2010; Hollingworth et al., 2011; Naj et al., 2011;
Lambert et al., 2013; Dong et al., 2017), with novel identified
genes, such as TREM2 and PLD3 which might be involved in
LOAD, continuously being added (Guerreiro et al., 2013; Jonsson
et al., 2013; Cruchaga et al., 2014). The discovery of these
genes has facilitated our gaining of the in-depth knowledge of
the signaling pathways participated in AD pathogenesis. In this
review, we will analyze functions of these genes and summarize
possible mechanisms of how these genes would be involved in
the pathogenesis of AD.

Early-Onset Alzheimer’s Disease (EOAD)
Amyloid β (Aβ) Metabolism
Highly penetrant mutations in APP, PSEN1, PSEN2, cause the
autosomal dominant EOAD (Reitz et al., 2011; Alzheimer’s
Association, 2015). Additionally, rare variants in APP, PSEN1,
PSEN2 (Cruchaga et al., 2012), and ADAM10 (Kim et al., 2009),
have been listed as the risk factors for LOAD (Panza et al., 2012).
These studies indicated that the disturbance of Aβ metabolism
plays a central role in AD pathogenesis.

APP
The APP gene is located on chromosome 21 and contains
19 exons for encoding a ubiquitously expressed type I
transmembrane protein amyloid precursor protein (APP)
(Goldgaber et al., 1987). The amyloidogenic pathway and
non-amyloidogenic pathway are the two mutually exclusively
pathways thought to be involved. The amyloidogenic pathway
is defined as consecutive cleavage of APP by β- and γ-secretase.
Aβ, soluble APP ectodomain (sAPPβ) and the APP intracellular
domain (AICD) are the generated products (O’Brien and Wong,
2011; Zhang et al., 2011). Alternatively, α- and γ-secretase
are engaged in the non-amyloidogenic pathway. Soluble APP
ectodomain (sAPPα), p3-peptide and AICD are the end-products
(O’Brien and Wong, 2011; Zhang et al., 2011).

Goate et al. (1991) first discovered a missense mutation in
APP in AD pedigrees. At least 40 APP mutations are known
to cause familial AD, mainly with an autosomal dominant
inheritance pattern1. Two recessive mutations in APP, E6931
and A673V, were also identified to cause EOAD (Di Fede et al.,
2009; Giaccone et al., 2010). Most of these mutations are found
in the neighborhood of the Aβ domain (exons 16 and 17 of
APP). The Swedish APP mutation (KM670/671NL) lies at the
N-terminus of the Aβ domain and increases plasma Aβ levels
by 2 to 3-fold by affecting the efficiency of β-secretase cleavage
(Mullan et al., 1992). A sensible hypothesis is that excessive
production of Aβ surpassing a certain threshold may cause AD.

1http://www.molgen.ua.ac.be/ADmutations

A supporting phenomenon is that Down syndrome patients, who
have an extra copy of APP due to the 21 chromosome triplet,
usually develop AD in their early life (Zekanowski and Wojda,
2009). Other APP mutations cluster at or after the C-terminal
amino acids of the Aβ domain, such as the Flemish mutation
(A692G) (Hendriks et al., 1992), Italian mutation (E693K) (Zou
et al., 2014), Dutch mutation (E693Q) (Levy et al., 1990), Arctic
mutation (E693G) (Kamino et al., 1992), and Iowa mutation
(D694N) (Grabowski et al., 2001), Iranian mutation (T714A)
(Pasalar et al., 2002), Australian mutation (T714I) (Kumar-Singh
et al., 2000; Bornebroek et al., 2003), French mutation (V715M)
(Ancolio et al., 1999; Bornebroek et al., 2003), German mutation
(V715I) (Cruts et al., 2003), Florida mutation (I716V) (Eckman
et al., 1997), and London mutation (V717I) (Goate et al., 1991).
One thing these mutations may have in common is that they
could produce more Aβ42 while decreasing the production of
Aβ40 by affecting the cleaving activity of γ-secretase. Since
Aβ42 is more amyloidogenic and easier to aggregate than Aβ40,
patients with such APP mutations are more susceptible to AD,
although their total amount of Aβ seems to be at the normal level.
The Arctic mutation, E693G, affects neither the total Aβ amount
nor the ratio of Aβ42 to Aβ40 (Kamino et al., 1992). However, this
mutation increases the aggregation rate of the mutant peptide.
These findings altogether indicate Aβ aggregation plays a key role
in AD pathogenesis.

PSEN1 and PSEN2
PSEN1 and PSEN2 are located at chromosome 14q24.3 and
1q31-q42, respectively, encoding the presenilin 1 and presenilin
2 proteins, which are participated in the formation of γ-secretase
complex (Steiner et al., 2008). In 1995, the first batch of mutations
of the two genes were identified by researchers in EOAD families
(Levy-Lahad et al., 1995; Rogaev et al., 1995; Sherrington et al.,
1995). To date, 219 different PSEN1 mutations and 16 PSEN2
mutations have been identified in association with EOAD1.
PSEN1 mutations account for 80% of the early-onset familial
AD (EOFAD) cases, with PSEN2 mutations found in 5% EOFAD
families1.

In the APP cleavage scenario, endoproteolysis at the
C-terminal end followed by a second cleavage at the N-terminal
end of the Aβ domain was executed by the γ-secretase, resulting
in the generation of Aβ fragments (O’Brien and Wong, 2011;
Zhang et al., 2011). Normally, most of the Aβ fragments are the
less amyloidogenic Aβ40, Aβ42 occupies a small percentage. In
contrast, the mutant γ-secretase would predominantly yield Aβ42
with small amount of Aβ40. Similar to what we have described for
APP mutations, patients baring mutations of PSEN1 or PSEN2
might also be more susceptible to AD due to accumulation of the
more amyloidogenic protein Aβ42 (Bagyinszky et al., 2014).

ADAM10
Recently, having worked through 1000 LOAD families,
researchers found, Q170H and R181G, in 7 pedigrees of them
(Kim et al., 2009). ADAM10 gene is located at chromosome
15q21.3, and encodes the AMAD10 protein, which is a member
of the disintegrin and metalloprotease family (Saftig and
Lichtenthaler, 2015). ADAM10 has been shown not only be
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able to readjust the constitutive activity of α-secretase, but to
be responsible for accommodation of the regulatable activity of
α-secretase in APP cleavage (Lammich et al., 1999; Lopez-Perez
et al., 2001; Saftig and Lichtenthaler, 2015). Both Q170H and
R181G mutations reside in the ADAM10 prodomain and
significantly damage the cleavage ability of ADAM10 at the
β-secretase site of APP both in vitro and in vivo (Kim et al.,
2009). These findings further support the hypothesis that
alteration of APP processing and Aβ generation is sufficient to
cause AD.

Since Aβ peptides were discovered as a major pathological
feature in AD brains, the hypothesis that excessive accumulation
of misfolded β-sheet proteins causes AD started to gain public
recognition. More and more evidence highlighted by genetic
studies has been reported to support the central role that Aβ

played in the pathogenesis of AD. For example, highly penetrant
mutations have been identified as risk factors of AD in genes
whose translation products are involved in APP processing and
Aβ generation. Mutated genes such as APP, PSEN1, and PSEN2
are thought to contribute to the pathogenesis of EOAD, while
rare variants in ADAM10 may increase the risk of developing
LOAD. Given Aβ production was affected by mutations or
variants in these genes, these findings further strengthened
causal relationship between Aβ generation and AD pathogenesis
(Figure 1).

Late-Onset for Alzheimer’s Disease
(LOAD)
Cholesterol Metabolism
The APOE ε4 allele has been identified as a main risk factor for
LOAD (Michaelson, 2014). The encoded protein apolipoprotein
E (ApoE) plays the role as a cholesterol carrier in the brain.
This implicates the role of cholesterol metabolism pathway in AD
pathogenesis. Additionally, GWAS studies have identified several

genes that might be potential risk factors for LOAD, including
ABCA7, CLU, and SORL1 (Harold et al., 2009; Lambert et al.,
2009; Hollingworth et al., 2011; Lambert et al., 2013; Dong et al.,
2017), which are involved in cholesterol metabolism.

APOE
The APOE is a gene situated in chromosome 19q13.2 encoding
a protein containing 299 amino acids which is mainly expressed
in the liver and brain (Siest et al., 1995). APOE is a key
component of the lipoprotein complexes and plays a role
in cholesterol metabolism by regulating cholesterol transport,
delivery and distribution (Mahley and Rall, 2000; Lambert et al.,
2009; Alonso Vilatela et al., 2012). ε2, ε3, and ε4 are the are
three common alleles of APOE in humans differed in sequence
by two single nucleotide polymorphisms, rs429358 and rs7412
(amino-acid position 112 and 158) in exon 4 (Liu et al., 2013;
Michaelson, 2014). APOE ε3 allele is the most frequent isoform
and accounts for 50–90% in all populations (Mahley and Rall,
2000; Alonso Vilatela et al., 2012). The percentage of individuals
having the APOE ε4 allele is approximately 50% in LOAD
patients compared with 20–25% in controls (Alonso Vilatela
et al., 2012; Michaelson, 2014). So far APOE ε4 is the most
well-established genetic risk factor for both sporadic LOAD
and familial AD in different populations (Harwood et al., 1999;
Quiroga et al., 1999; Evans et al., 2000). Compared with controls
having no ε4 alleles, the risk of AD is 4 times higher when
subjects bearing one copy of the ε4 allele, and 12 times higher
with two copies (Alonso Vilatela et al., 2012). Conversely, the
lower prevalence of the ε2 allele in AD individuals compared
with controls implicates its protective role in AD (Alonso
Vilatela et al., 2012; Michaelson, 2014). In addition, the APOE
ε4 allele can affect clinical diagnosis of AD by influencing
MRI features except white matter lesion volume (Biffi et al.,
2010).

FIGURE 1 | Schematic of APP processing pathways that are either amyloidogenic or non-amyloidogenic. The site of action of various AD-associated mutations are
listed in the orange colored boxes.

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 October 2017 | Volume 10 | Article 319

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-10-00319 October 4, 2017 Time: 16:16 # 4

Sun et al. AD: From Genetics to Mechanisms

The mechanism of APOE increasing AD risk is not well
known. The different APOE isoforms have different effects on Aβ

aggregation and clearance in AD pathogenesis (Castellano et al.,
2011). Clearance of Aβ in the brain depends on coordination
with APOE (Wollmer, 2010; Verghese et al., 2013). Specifically,
types of APOE that Aβ bound to affect its transportation
efficiency. Aβ being bound to APOE2 or APOE3 results in better
efficiency compared to APOE4 (Wollmer, 2010). APOE4 can
also participate in other pathways, such as neuronal glucose
hypometabolism, mitochondrial abnormalities and oxidative
stress, by which play an important role in AD pathogenesis (Liu
et al., 2013; Huang and Mahley, 2014).

ABCA7
ABCA7 is a gene situated in chromosome 19p13.3 encoding
ATP-binding cassette transporter A7 (ABCA7) which is a
member of the ABC superfamily (Kim et al., 2006). The protein
is highly expressed in the brain and functions as a transporter in
the biogenesis of HDL by working together with cellular lipid and
helical apolipoproteins (Tanaka et al., 2011). Data from several
GWAS studies indicate ABCA7 is a genetic risk factor for LOAD
(Hollingworth et al., 2011; Lambert et al., 2013). According to a
meta-analysis published on the AlzGene website in April, 20112,
a positive association between ABCA7 rs3764650 and AD was
found in total 31011 cases and 48354 controls in all populations.
Additionally, several other genetic studies further confirmed the
relevance between ABCA7 SNPs and methylation changes with
AD (Yu et al., 2015).

Loss of ABCA7 in mice is not embryonic lethal, suggesting
that ABCA7 is not essential (Kim et al., 2005). However, loss of
ABCA7 in mice seems to impair the ability of bone marrow-
derived macrophages to uptake oliomeric Aβ. A recent study
further showed that crossing between ABCA7-deficient and
transgenic amyloidogenic mice would double the insoluble Aβ

levels and amyloid plaques in the brains of their progenies
compared with controls (Li et al., 2015). These findings indicate
that ABCA7 may participate in the regulation of Aβ homoeostasis
in the brain.

CLU
The CLU gene is located at 8p21.1 and encodes a multifunctional
chaperone protein, clusterin (Wong et al., 1994), which has
been implicated in AD for the past 20 years (May et al.,
1990; Oda et al., 1994; Calero et al., 2000). Clusterin, also
meaning as apolipoprotein J (APOJ), is one of the major
apolipoproteins, with upregulated expression in the cortex and
hippocampus of AD patients (May et al., 1990; Oda et al., 1994;
Pasinetti, 1996). In terms of cholesterol metabolism, clusterin
takes part in reverse cholesterol transport as a component of
HDL particles (Wollmer, 2010). In addition, clusterin levels have
been shown to be elevated in AD plasma (Jones et al., 2010).
Meta analysis show that SNPs rs11136000, rs2279590, rs7012010,
rs7982, and rs9331888 in CLU are protective genetic factors in
LOAD3. However, the reproducibility of these associations was

2www.alzgene.org
3http://www.alzgene.org

questionable when ethnic factors were taken into account (Li
et al., 2011; Klimkowicz-Mrowiec et al., 2013; Tan L. et al.,
2013). Genetic heterogeneity may be the underlying cause at
play. Clusterin has several functions similar to apolipoprotein E
and there are some interactions between them (Wollmer, 2010).
Clusterin can also bind Aβ and modulate Aβ metabolism which
are influenced by the molar ratios of clusterin and Aβ. (Yerbury
et al., 2007; Aiyaz et al., 2012). In addition, clusterin participates
in cell apoptosis and complement regulation, lipid transport and
membrane protection, thus plays a role in AD pathogenesis (Bell
et al., 2007; Nuutinen et al., 2009; Wollmer, 2010; Martin et al.,
2014).

SORL1
The SORL1 gene, also known as SORLA1 or LR11, is situated
in 11q23.2–q24.2 and encodes the sortilin-related receptor
containing LDL receptor class A repeats (Wollmer, 2010). SORL1
is a member of the VPS10 receptors family which functions by
binding lipoproteins including APOE-containing particles, thus
mediating endocytotic uptake (Willnow et al., 2008; Wollmer,
2010). The decreased SORL1 expression was found to be
associated with AD in 10 years ago (Scherzer et al., 2004).
Utilizing microarray screening and immunohistochemistry,
researchers showed that AD patients tend to have moderately
lower SORL1 DNA transcription levels in their lymphoblast
and significantly decreased SORL1 protein level in their brains,
especially the pyramidal neurons and frontal cortex (Scherzer
et al., 2004). The suppression of SORL1 expression can lead to
overexpression of Aβ and an increased risk of AD (Andersen
et al., 2005; Offe et al., 2006; Vardarajan et al., 2012). In addition,
two specific clusters of SNPs in SORL1 were identified to have an
association with familial and sporadic AD (Bettens et al., 2008;
Lee et al., 2008; Kimura et al., 2009; Tan et al., 2009; Sweet et al.,
2010; Reitz, 2013).

Since cholesterol is an integral component of biomembrane,
due to the key roles of biomembrane in transportation and
cleavage of APP, aggregation of Aβ, and Aβ toxicity, it is entirely
possible that abnormality of cholesterol metabolism may have an
impact on multiple links of the pathogenic signaling pathways
of AD. Epidemiological studies showed that high cholesterol
levels in mid-life may lead to dementia in later life. Cholesterol-
lowering reagents, such as 3-hydroxy-3-methylglutaryl-coenzym,
which is a reductase inhibitor known as statins, may reduce
the likelihood of developing dementia. The APOE plays an
indispensable role in cholesterol transport of the brain. As a
risk factor of AD, the APOE gene bridges the gap between AD
pathogenesis and cholesterol metabolism. This bridge was further
reinforced when recent GWAS studies showed a new batch of
genes, including ABCA7, CLU, and SORL1, may increase the risk
of LOAD by affecting cholesterol metabolism.

CELL ADHESION AND ENDOCYTOSIS

Endocytosis is central to AD because APP, Aβ, and APOE
are all internalized through the endolysosomal trafficking
pathway, and alterations in APP trafficking through intracellular
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compartments can directly influence APP proteolytical cleavage
(Huang and Mucke, 2012). Several genes identified in GWAS-
LOAD studies are associated with cell adhesion and endocytosis,
including BIN1, CD2AP, EPHA1, PICALM, and SORL1 (Harold
et al., 2009; Hollingworth et al., 2011; Naj et al., 2011; Lambert
et al., 2013; Zhang et al., 2015).

BIN1
The Bridging Integrator 1 (BIN1) is located on chromosome
2q14.3 and has 20 exons which can be spliced into multiple
isoforms (Panza et al., 2012; Prokic et al., 2014). BIN1 isoforms,
such as isoforms 1–6, are mainly expressed in the brain, in
neurons (Prokic et al., 2014). BIN1 was initially found as a tumor
suppressor with a MYC-interacting domain, a C-terminal SH3
domain, and an N-terminal BAR (Bin1/Amphiphysin/RVS167)
domain (Sakamuro et al., 1996). Processing diverse cellular
functions, BIN1 is a key regulator within a cell. From endocytosis
to membrane recycling, from cell cycle progression to apoptosis,
we can see its roles (Prokic et al., 2014). Cytoskeleton regulation
and DNA repair are also involved (Prokic et al., 2014).

BIN1 was regarded as the second most important genetic risk
factor for LOAD after the APOE ε4.4 Common variants in the
BIN1 gene are initially identified to be associated with AD in
GWAS-LOAD studies (Harold et al., 2009; Seshadri et al., 2010;
Naj et al., 2011). The main associated SNPs are in the 5′ region,
including the most significant SNPs rs744373 and rs7561528,
which are located approximately 30 and 25 kb from the BIN1
coding region, respectively (Harold et al., 2009; Seshadri et al.,
2010; Naj et al., 2011; Karch and Goate, 2015). BIN1 can interact
with cytoplasmic linker protein 170 (CLIP-170), a microtubule-
associated protein (Meunier et al., 2009). Genetic variants in
BIN1 were associated with magnetic resonance imaging measures
associated with AD including entorhinal cortex thickness and
temporal pole cortex thickness (Biffi et al., 2010). Recent studies
have demonstrated the physical interaction between BIN1 and
tau protein in human neuroblastoma cells overexpressing these
two proteins and in wild type mouse brain homogenates
(Kingwell, 2013). Besides its potential effects on tau pathology,
BIN1 has also been identified as a regulator of endocytosis and
trafficking, immunity and inflammation of the brain, transient
calcium potentials, and apoptosis (Tan M.S. et al., 2013).

CD2AP
CD2AP (CD2-associated protein) is located on chromosome
6q12. CD2AP is first discovered as a ligand protein interacting
with the T-cell-adhesion protein CD2 (Dustin et al., 1998; Wolf
and Stahl, 2003). CD2AP is widely expressed, primarily in
epithelial and lymphoid cells (Shih et al., 2001). It consists of
three N-terminal SH3 domains followed by a proline rich domain
(PRD) and a C-terminal coiled-coil domain (Shih et al., 2001).
CD2AP has been shown to be involved in signal transduction,
podocyte homeostasis and dynamic actin remodeling (Ma et al.,
2010). The protein also takes part in membrane trafficking during
endocytosis and cytokinesis (Ma et al., 2010). SNPs rs9296559
and rs9349407 in CD2AP are associated with increased LOAD

4http://www.alzgene.org/

risk (Hollingworth et al., 2011; Naj et al., 2011; Chen et al., 2012).
Like PICALM, the homologs of CD2AP have shown to be able
to suppress the Aβ toxicity in yeast and Caenorhabditis elegans
(Treusch et al., 2011). In addition, RNA interference-mediated
disruption of cindr, the fly ortholog of CD2AP, enhances Tau
toxicity in Drosophila (Shulman et al., 2014).

EPHA1
EPHA1 (EPH Receptor A1) is a gene situated in chromosome
7q34. The encoded EPH Receptor A1 protein is a member of
the ephrin family of tyrosine kinase receptors. Proteins of this
family modulate cell adhesion by interacting with ephrin ligands
on adjacent cells (Sharfe et al., 2008). Ephrin receptors also plays
a role in regulating synapse formation and synaptic plasticity (Lai
and Ip, 2009). In addition, these ephrin receptors participate in
regulating apoptosis of neural progenitor cells (Kullander and
Klein, 2002; Kim et al., 2008). The SNP rs11771145 was identified
as a protective genetic factor for LOAD (Hollingworth et al., 2011;
Naj et al., 2011; Chen et al., 2012). Albeit some research has
been made on the function of ephrin receptors, knowledge on the
EPHA1 gene and its role in AD etiology remains to be lacking.

PICALM
PICALM (phosphatidylinositol binding clathrin assembly
protein) is a gene situated in 11q14.2, encoding a clathrin
adaptor protein which is produced as two main isoforms with
19–21 exons and 7 different known splice variants. PICALM was
first cloned as a gene fused with AF10 in acute myeloid leukemia
(Dreyling et al., 1996; Ando et al., 2013). Whereas PICALM
is ubiquitously expressed, its homolog AP180 is exclusively
expressed in neuron (Yao et al., 2005). PICALM is implicated
in clathrin mediated endocytosis and intracellular trafficking
of the synaptic vesicle protein VAMP2 which is necessary for
neurotransmitter release at the presynaptic membrane (Tebar
et al., 1999; Schnetz-Boutaud et al., 2012). Two SNPs (rs3851179
and rs541458) 5′ to the PICALM gene were identified to be
associated with reduced LOAD risk in Caucasians (Harold et al.,
2009; Lambert et al., 2009; Lambert et al., 2013). However, the
reproducibility of these results was questionable when ethnic
factor was taken into account (Li et al., 2011; Klimkowicz-
Mrowiec et al., 2013; Tan L. et al., 2013). Genetic heterogeneity
may be the underlying reason at play. In addition, AD patients
with PICALM mutants may manifest different imaging features
on MRI (Biffi et al., 2010). Hippocampal volume and entorhinal
cortex thickness are the two measures affected most prominently
(Biffi et al., 2010). Till now, the role of PICALM in AD etiology
has not been known. The YAP1802, ortholog of PICALM, was
found as a modifier of Aβ toxicity in a genome-wide screen in
yeast (Treusch et al., 2011; Ando et al., 2013). PICALM was also
shown to have a protective role for C. elegans and rat cortical
neurons against the toxicity of oligomeric Aβ (Treusch et al.,
2011). Another finding was that along with adaptor protein
2 (AP2) and APP-CTF, PICALM would be targeted to the
autophagosomes to take part in the clearance of APP-CTF (Tian
et al., 2013). In other words, PICALM may have a functional
role in the clearance of Aβ via autophagy (Tian et al., 2013). In
addition, PICALM displayed a specifically co-localization with
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neurofibrillary tangles in AD cases, suggesting that PICALM
may participate in AD tau pathology (Ando et al., 2013).

Endocytosis is an active transportation mechanism to engulf
molecules into a cell via vesicles formed by the cell membrane.
It is the basis of various neuronal physiological functions,
including synaptic vesicle transport and neurotransmitter release.
The transportation and amyloidogenic cleavage of APP are
interacting with the endocytosis pathway within cells. Thus,
abnormal alterations in endocytosis may contribute to AD
pathogenesis. Based on this hypothesis, SNPs in genes related to
cell adhesion and endocytosis, such as BIN1, CD2AP, EPHA1,
PICALM, and SORL1 are very likely to be involved in AD
pathogenesis.

IMMUNE RESPONSE

Neuroinflammation is a hallmark of AD (Heneka et al., 2015).
Solid evidence have proven the activation of inflammatory
pathways in AD pathogenesis (Heneka et al., 2015; Zhang
et al., 2015). Common variants in ABCA7, CD33, CLU, CR1,
EPHA1, HLA-DRB5/DRB1, INPP5D, MEF2C, and MS4A, have
been found to be associated with immune responses in recent
GWAS studies (Harold et al., 2009; Lambert et al., 2009; Seshadri
et al., 2010; Hollingworth et al., 2011; Naj et al., 2011; Lambert
et al., 2013). Additionally, rare coding variants in TREM2 gene
related to the immune response were identified to increase risk of
AD in LOAD (Guerreiro et al., 2013; Jonsson et al., 2013).

CD33
CD33 is located on chromosome 19q13.3 and encodes a
transmembrane glycoprotein cluster of differentiation 33 (CD33)
(Zhang et al., 2014). CD33, which belongs to the sialic acid-
binding immunoglobulin-like lectins (Siglecs) family, bears
molecular features of immune cell surface receptors that could
trigger immune cell–cell interactions (von Gunten and Bochner,
2008). Studies showed that the expression of CD33 was increased
in AD brains (Karch et al., 2012). The rs3865444 in CD33 was
reported to be linked to a lowered LOAD risk (Hollingworth
et al., 2011; Naj et al., 2011). The rs3865444 A allele is associated
with the decreased overall CD33 expression and an increased
proportion of the CD33 isoform lacking exon 2 (Malik et al.,
2013). The exon 2 in CD33 codes the IgV domain which mediates
Siglecs family members binding to sialic acid, resulting in
inhibition of phagocytosis (Villegas-Llerena et al., 2016). Loss of
exon2 of CD33 in microglia abolishes the inhibitory effect of Aβ

phagocytosis (Malik et al., 2013). In the context of the rs3865444
risk allele, there are increased cell surface expression of CD33
in monocytes, decreased internalization of Aβ42 accumulation
in neuritic and fibrillar amyloid pathology, and more microglias
activated (Bradshaw et al., 2013). Thus, CD33 may play an
important role in Aβ clearance mediated by microglia in AD
brain.

CR1
CR1 (Complement receptor 1) is located on chromosome
1q32 and encodes a multifunctional glycoprotein, expressed on

microglia and blood cells such as erythrocytes (Villegas-Llerena
et al., 2016). CR1 is a cell surface receptor that has binding
sites for complement factors C3b and C4b. It participates in
the clearance of immune complexes and regulates complement
activation (Dunkelberger and Song, 2010). Two SNPs (rs6656401
and rs3818361) in CR1 have been found to be associated with
LOAD risk in most Caucasians (Lambert et al., 2009). These
associations could not be reproduced in other ethnic groups
including African American, Israeli-Arab, Caribbean Hispanic,
and Polish individuals due to the genetic heterogeneity (Li et al.,
2011; Klimkowicz-Mrowiec et al., 2013; Tan L. et al., 2013).
Genetic variants in CR1 can affect magnetic resonance imaging
measures associated with AD such as entorhinal cortex thickness
(Biffi et al., 2010). The exact function of CR1 in AD pathogenesis
remains to be elusive. Since Aβ oligomers can bind C3b, some
researchers postulated that CR1 may take part in the clearance of
Aβ (Crehan et al., 2012).

HLA-DRB5/DRB1
The HLA-DRB5/DRB1 locus is a highly polymorphic region
located on chromosome 6, encoding a member of the major
histocompatibility complex class II (MHC II), which is involved
in the immune response and histocompatibility (Trowsdale
and Knight, 2013; Villegas-Llerena et al., 2016). Recently,
HLA-DRB5/DRB1 has been shown to be associated with multiple
sclerosis and Parkinson’s disease (PD) (International Multiple
Sclerosis Genetics Consortium et al., 2011; International
Parkinson Disease Genomics Consortium et al., 2011). Although
PD and AD have distinct etiologies, they are both characterized
by neurodegeneration resulting from abnormal protein
aggregation. Therefore, it is a distinct possibility that HLA
genes may play a similar role in both PD and AD through
regulating inflammatory responses.

INPP5D
The INPP5D gene is a gene situated in chromosome 2q37.1,
encoding a 145 kD protein which is a member of the inositol
polyphosphate-5-phosphatase (INPP5) family, also known as
SH2 domain containing inositol-50-phosphatase 1 (SHIP1)
(Arijs et al., 2012; Zhang et al., 2015). INPP5D is expressed
predominantly in the hematopoietic cells (Hazen et al., 2009;
Arijs et al., 2012; Zhang et al., 2015). On the cell membrane, the
protein takes part in various signaling pathways by hydrolyzing
the 5′ phosphate from phosphatidylinositol (3,4,5)-trisphosphate
and inositol-1,3,4,5-tetrakisphosphate (Scharenberg et al., 1998).
Also, INPP5D plays as a negative regulator in B cell proliferation,
chemotaxis and activation, as well as IgE- or IgE + Ag-induced
inflammatory cytokine release from mast cells (Sly et al., 2003,
2007; Zhang et al., 2015). More studies are needed to understand
the mechanism of how SHIP regulates the immune response and
inflammation in the brain.

MEF2C
MEF2C protein is widely expressed and belongs to the MADS box
transcription enhancer factor 2 (MEF2) family of transcription
factors. The MEF2C gene is located on chromosome 5q14.3. It
has been reported that MEF2 acts as a central transcriptional
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component of the innate immune response in the adult fly (Clark
et al., 2013). Therefore, it is possible that MEF2C is involved in
the inflammatory process in AD brains.

MS4A
The MS4A locus is located on chromosome 11 and contains
at least five genes implicated in immune modulation (Villegas-
Llerena et al., 2016). The discovery of the MS4A family owes to
their homology to CD20, a B-lymphocyte cell surface molecule.
Members of the MS4A family, including MS4A6A, are factors
affecting AD pathology (Proitsi et al., 2014). Variations in proxies
of rs670139 can increase AD risk (Allen et al., 2012).

TREM2
The TREM2 gene maps to chromosome 6p21.1, encoding
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2).
TREM2 is mainly expressed on myeloid cells (Colonna, 2003;
Jin et al., 2014). In the brain, TREM2 is primarily expressed on
microglia (Lue et al., 2015). TREM2 takes part in inflammatory
responses regulation (Rohn, 2013).

Homozygous mutations in TREM2 gene cause Nasu–
Hakola disease, characterized by early onset frontotemporal-
like dementia and bone involvement (Klunemann et al., 2005).
In addition, some families with FTD-like dementia with
leukodystrophy but without bone involvement have homozygous
TREM2 mutations (Guerreiro et al., 2013). Recently, rare variants
of the TREM2 gene have been identified to increase susceptibility
to LOAD with an odds ratio similar to that of APOE ε4
(Boutajangout and Wisniewski, 2013). rs75932628 is the most
common variant in TREM2 polymorphism. It replaces Arginine
47 with Histidine and causes a 3-fold increase in the susceptibility
to LOAD (Guerreiro et al., 2013; Jonsson et al., 2013; Zhang et al.,
2015). The status of TREM2 as a major LOAD risk locus was
further strengthened by the odds ratio of 3.4 reported in a meta
analysis (Guerreiro et al., 2013). The exact functions of TREM2
are not well understood. TREM2 may affect AD pathology
through regulating phagocytosis (Hickman and El Khoury, 2014).
The expression levels of TREM2 are upregulated in microglia
found at the border of amyloid plaque deposits in transgenic AD
mice (Lue et al., 2015). Moreover, there was a positive correlation
between TREM2 expression and the phagocytic clearance of Aβ

in APP transgenic mice (Lue et al., 2015).
Increasing evidence suggests the activation of inflammatory

pathways in AD pathogenesis. GWAS suggests that several
genes (ABCA7, CD33, CLU, CR1, EPHA1, HLA-DRB5/DRB1,
INPP5D, MEF2C, and MS4A) regulating clearance of misfolded
proteins mediated by glia and the inflammatory reaction could
increase the risk of AD in LOAD. Furthermore, a rare variant
of the TREM2 gene, with an odds ratio similar to that of
APOE ε4, was recently identified to be able to increase patients’
susceptibility to LOAD. These results together argue for the point
that neuroinflammation is associated with AD pathogenesis.
Although there is a lack of understanding how inflammation
in AD is affected by these genes, the discovery of them have
broadened our knowledge scope of AD and may expedite the
unraveling of new therapeutic targets for the prevention and
treatment of AD.

TAU METABOLISM

The microtubule-associated protein tau is integral to the
pathogenesis of AD. Rare mutations in the MAPT gene
cause familial dementia syndromes (Lee and Leugers, 2012).
GWAS studies have identified several genes that might be
potential risk factors for LOAD, including BIN1, CD2AP, CELF1,
FERMT2 and PICALM, which are involved in modulating
tau neurotoxicity (Harold et al., 2009; Seshadri et al., 2010;
Hollingworth et al., 2011; Naj et al., 2011; Lambert et al.,
2013).

CELF1
The CELF1 gene is located on chromosome 11p11.2 and encodes
the CUGBP and Elav-like family member 1 protein (CELF1).
Members of the CELF protein family regulate alternative splicing,
editing, and translation of mRNA (Wagnon et al., 2012). CELF1
gene may have a role in myotonic dystrophy type 1 (DM1)
because of its interactions with the dystrophia myotonica-
protein kinase (DMPK) gene (Roberts et al., 1997). In addition,
overexpression of CELF1 suppressed the neurodegenerative eye
phenotype in a transgenic fly model of fragile X-associated
tremor/ataxia syndrome (FXTAS) (Sofola et al., 2007). The
CELF1 protein modulates rCGG-mediated toxicity via a specific
interaction with hnRNP A2/B1 (Sofola et al., 2007). Like
FERMT2, RNA interference-mediated disruption of aret, the fly
ortholog of CELF1, enhances Tau toxicity in a Drosophila model
of AD (Shulman et al., 2014).

FERMT2
The FERMT2 (Fermitin Family Member 2) gene is located on
chromosome 14q22 and is also known as mitogen-inducible
gene 2 (MIG2) or kindlin 2 (KIND2) (Siegel et al., 2003).
FERMT2 is ubiquitously expressed in mammalian cells
and functions as a kind of cell-extracellular matrix (ECM)
structures (Tu et al., 2003). A recent research validated the
association of FERMT2 with AD risk by using a Drosophila
model (Shulman et al., 2014). RNA interference-mediated
disruption of FERMT2 homologs enhances Tau toxicity
in Drosophila indicates these associations (Shulman et al.,
2014).

Comprising of hyper-phosphorylated and aggregated tau
protein, NFTs are one of the major pathological signatures of
the AD brain. The neurotoxicity of Tau plays a central role
in AD pathogenesis by affecting Aβ metabolism. It has been
shown that there was a causal relationship between certain
mutations of either APP or MAPT and familial dementia
syndromes. As more and more genes related to tau neurotoxicity
were identified as risk genes of AD, hopefully the molecular
basis between Tau toxicity and AD would gradually become
clear.

PERSPECTIVES

Genome-wide association studies is a powerful tool in identifying
putative genetic risk factors. To date, more than 20 genetic
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TABLE 1 | Potential mechanisms of AD genes.

Gene SNP Chromosome
position

Protein EOAD/ LOAD Proposed function Implicated pathways

ABCA7 rs3764650
rs4147929

19p13.3 ATP-binding cassette
transporter A7

LOAD Lipid homeostasis Cholesterol
metabolism; immune
response

ADAM10 rs61751103
rs145518263

15q21.3 A disintegrin and
metalloprotease family,
AMAD10

LOAD Proteolytic cleavage of
integral membrane
proteins

Aβ metabolism

APOE rs429358
rs7412

19q13.2 Apolipoprotein E LOAD Mediates binding,
internalization, and
catabolism of
lipoproteins

Cholesterol metabolism

APP − 21q21.3 Amyloid precursor protein EOAD Neurite outgrowth,
adhesion, and
axonogenesis

Aβ metabolism

BIN1 rs744373
rs7561528

2q14 Bridging Integrator 1 LOAD Regulation of
endocytosis of synaptic
vesicles

Cell adhesion and
endocytosis; tau
metabolism

CASS4 rs7274581 20q13.31 Cas scaffolding protein family
member 4

LOAD Docking protein in
tyrosine-kinase
signaling involved in cell
adhesion and
spreading

Cytoskeleton and
axonal transport

CD2AP rs9296559
rs9349407

6p12 CD2-associated protein LOAD Scaffold molecule
regulating actin
cytoskeleton

Cell adhesion and
endocytosis; tau
metabolism

CD33 rs3865444 19q13.3 Cluster of differentiation 33 LOAD Mediates sialic
acid-dependent binding
to cells

Immune response

CELF1 rs10838725 11p11 CUGBP and Elav-like family
member 1

LOAD Regulates pre-mRNA
splicing

Tau metabolism

CLU rs11136000,
rs2279590,
rs7012010,

rs7982,
rs9331888

8p21-p12 Clusterin LOAD Chaperone; regulation
of cell proliferation

Cholesterol metabolism
Immune response

CR1 rs6656401
rs3818361

1q32 Complement receptor 1 LOAD Mediates cellular
binding of immune
complexes that activate
complement

Immune response

DSG2 rs8093731 18q12.1 Desmoglein 2 LOAD Mediates cell–cell
junctions between
epithelial and other cell
type

Cytoskeleton and
axonal transport

EPHA1 rs11771145 7q34 EPH Receptor A1 LOAD Brain and neural
development;
angiogenesis, cell
proliferation, and
apoptosis

Cell adhesion and
endocytosis; immune
response

FERMT2 rs17125944 14q22.1 Fermitin Family Member 2 LOAD Actin assembly and cell
shape and mediator of
angiogenesis

Tau metabolism

HLA-DRB5/DRB1 rs9271192 6p21.3 Major histocompatibility
complex, class II, DR beta 5-
DR beta 1

LOAD Immunocompetence
and histocompatibility

Immune response

INPP5D rs35349669 2q37.1 Inositol
polyphosphate-5-phosphatase

LOAD Negative regulator of
myeloid cell proliferation
and survival

Immune response

MEF2C rs190982 5q14.3 Myocyte enhancer factor 2C LOAD Controls synapse
formation

Immune response

(Continued)
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TABLE 1 | Continued

Gene SNP Chromosome
position

Protein EOAD/ LOAD Proposed function Implicated pathways

MS4A4/MS4A6E rs983392
rs670139

11q12.1 Membrane-spanning
4-domains, subfamily A,
member 4A/6E

LOAD Signal transduction Immune response

NME8 rs2718058 7p14.1 NME/NM23 family member 8 LOAD Ciliary functions Cytoskeleton and
axonal transport

PICALM rs3851179
rs541458

11q14 Phosphatidylinositol binding
clathrin assembly protein

LOAD AP2-dependent
clathrin-mediated
endocytosis

Cell adhesion and
endocytosis; tau
metabolism

PSEN1 – 14q24.3 Presenilin 1 EOAD Component of catalytic
subunit of
gamma-secretase
complex

Aβ metabolism

PSEN2 – 1q31-q42 Presenilin 2 EOAD Component of catalytic
subunit of
gamma-secretase
complex

Aβ metabolism

PTK2B rs28834970 8p21.1 Protein tyrosine kinase 2 beta LOAD Induction of long term
potentiation in
hippocampus

Endocytosis

SLC24A4/RIN3 rs10498633 14q32.12 Solute carrier family 24,
member 4/ Ras and Rab
interactor 3

LOAD Brain and neural
development

Neural development,
synapse function,
endocytosis

SORL1 rs11218343 11q23.2-q24.2 Sortilin-related receptor
containing LDL receptor class A
repeats

LOAD APOE receptor; binds
LDL and RAP and
mediates endocytosis
of the lipids to which it
binds

Cholesterol
Metabolism; Cell
adhesion and
endocytosis

TREM2 rs75932628 6p21.1 Triggering Receptor Expressed
on Myeloid Cells 2

LOAD Induces phagocytosis
of apoptotic neurons,
and regulates Toll-like
receptor mediated
inflammatory
responses, and
microglial activation

Immune response

ZCWPW1 rs1476679 7q22.1 Zinc finger, CW type with
PWWP domain 1

LOAD Epigenetic regulation Epigenetic regulation

variants have been identified as risk factors of AD. There is
no gainsaying that GWAS helps us find novel perspectives
on the pathogenesis of AD. However, there are still some
limitations to be scrutinized. Firstly, some of these AD-associated
variants are too rare or too weak to be used as prognostic
predictors, which to some extent confound the integration of
potential pathophysiological pathways of AD. On the contrary,
whole exome sequencing has also discovered rare variants,
such as TREM2 variants, whose odds ratios are comparable
to that of APOE ε4 in terms of increasing the risk of AD.
Therefore, the range of these variants seems to be overly
wide, which may have made it difficult for us to form a
coherent and integrated theory. Moreover, although both SNPs
with minor allele frequency down to 1% and novel functional
exonic variants have been incorporated into the latest version
of GWAS arrays, the detection would still be problematic
when it comes to variants not tagged by the known SNPs
or some extremely rare structural variants whose minor allele
frequency are less than 1%. However, the role of such rare

and structural variants should not be negligible in complex
disease like AD. Therefore, ongoing and future large-scale next-
generation whole exome or whole genome sequencing techniques
need to address the issues aforementioned to accurately target
causative variants in regions identified by GWAS. For only
truly causative variants could yield meaningful functional
studies to dissect molecular pathways in AD pathogenesis
(Table 1).

CONCLUSION

AD is a complex disorder. What we have known is still a
drop in the ocean. To improve the prevention and treatment
strategies of AD, finding the potential genes in AD pathogenesis
and their relationships is a necessary and essential step. It is
the fundamental basis for the molecular diagnosis of AD and
the mechanistic study on neurodegeneration. Current genetic
findings indicated putative disease mechanisms including Aβ
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metabolism, cell adhesion and endocytosis, immune
response, tau metabolism. Future GWASs or next
generation sequencing (NGS) approaches studies would keep
playing important roles in revealing promising therapeutic
targets.
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