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Deconvolution-based analysis of CT and MR brain perfusion data is widely used in clinical practice and it is still a topic of ongoing
research activities. In this paper, we present a comprehensive derivation and explanation of the underlying physiological model for
intravascular tracer systems. We also discuss practical details that are needed to properly implement algorithms for perfusion
analysis. Our description of the practical computer implementation is focused on the most frequently employed algebraic
deconvolution methods based on the singular value decomposition. In particular, we further discuss the need for regularization in
order to obtain physiologically reasonable results. We include an overview of relevant preprocessing steps and provide numerous
references to the literature. We cover both CT and MR brain perfusion imaging in this paper because they share many common
aspects. The combination of both the theoretical as well as the practical aspects of perfusion analysis explicitly emphasizes the
simplifications to the underlying physiological model that are necessary in order to apply it to measured data acquired with current
CT and MR scanners.

1. Introduction

Tissue perfusion measurement from iodinated contrast agent
enhancement on CT scans was first proposed by Axel in
1980 [1]; this was based on earlier developments by Meier
and Zierler [2] for measuring blood flow and blood volume.
At that time, the CT-based measurements were strictly
limited to research because of the low speeds and narrow
coverage of the existing CT scanners. However, the intro-
duction of perfusion CT (PCT) helped expand the utility of
CT significantly since it could now provide capillary level
hemodynamic information. Within about a decade, per-
fusion imaging techniques were also adopted in MR [3–5].

With the advent of helical scanners and faster rotating
gantries (0.33–0.5 s/rotation) in conjunction with multide-
tector geometries which provide larger coverage, PCT has
now become part of the routine screening for many diseases.

Given the existing developments in perfusion imaging,
the purpose of this paper is to focus on a detailed derivation
of the theoretical model for deconvolution-based perfusion
measurement. While the main equation of this model is well
known, its derivation is spread over several publications.

We therefore first present a summary of the derivation,
with the aim of fully explaining the parameters and the
underlying assumptions that are made. Based on the main
equation of the theoretical model, we also present a guideline
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for the algorithmic implementation of the deconvolution-
based perfusion measurement. We discuss robust numer-
ical deconvolution and discuss topics related to data pre-
processing, providing references to the literature for each of
the special topics. The overall aim of this paper is to provide
an understanding of the underlying assumptions of the
theoretical model and to show how the (simplified) model
can be robustly implemented for clinical image analysis.

2. Clinical Applications of Perfusion Imaging

Perfusion imaging is most widely used in acute stroke and
oncology [6]. When used in diagnosis of stroke, the purpose
of perfusion imaging is to identify the extent of affected
tissue and to delineate the ischemic tissue that can be
reperfused. In oncology, perfusion imaging helps to identify
angiogenetic tumors that alter the local tissue perfusion due
to generation of neovasculature. Perfusion measurements
are increasingly being used for assessment, staging, and
monitoring posttherapy [6, 7].

Figure 1 shows common parameter maps based on
a brain perfusion CT exam (Somatom Definition AS+,
Siemens AG, Healthcare Sector, Forchheim, Germany) of a
69-year-old male stroke patient. The patient presented to the
hospital with an acute high-grade hemiparesis on the right
side. A CT angiography scan indicated an occlusion of the left
middle cerebral artery. The time-to-peak (TTP) image shows
a large lesion that illustrates the maximum affected tissue.
In addition, the cerebral blood flow (CBF), cerebral blood
volume (CBV), and mean transit time (MTT) images exhibit
perfusion deficits in a smaller brain territory. In general,
these perfusion CT maps are interpreted appropriately in
order to guide the recanalization procedure of the occluded
vessel.

Blood flow is critical to the functionality of any organ
since it provides the essential nutrients and oxygen. In case
of flow disruption, the body autoregulates the flow and
pressure either by altering blood flow or volume or both.
In the brain, there are some fairly well-defined thresholds
for the cerebral blood flow in normal, reversibly damaged,
and necrotic tissue. The normal value for the cerebral blood
flow is between 50 and 60 mL/100 g/min for grey matter
[8]. The average value decreases with age and is about 2
to 3 times lower in white matter compared to grey matter
[9]. Any reduction in normal perfusion pressure results
in vasodilation and hence an increase in blood volume
and transit times. As the perfusion pressure falls lower,
compensatory vasodilation is unable to offset the deficit.
When this value falls below 20 mL/100 g/min (for grey
matter), synaptic transmission ceases to function. When the
flow is below 8–10 mL/100 g/min, the cell membrane pumps
fail, causing irreversible damage to the cells [6].

2.1. Perfusion CT. In the acute stroke setting, conventional
CT has been the imaging modality of choice for ruling
out intracerebral hemorrhages (ICH). However, overall the
sensitivity of CT for stroke detection is 60–65% [10, 11]. For
ischemic stroke, which represents about 85% of all stroke
cases, the inclusion of PCT along with CT angiography

(CTA) can identify the subtle abnormalities in the cerebral
tissue that can be missed on the noncontrast agent-enhanced
scans. Most commonly, the perfusion scan consists of
imaging one or two slices at the level of the basal ganglia.
This allows inclusion of the branches of the carotid artery
that are typically thrombosed. After approximately 7–10 s
following an intravenous injection of iodinated contrast
agent, continuous scanning is performed for about 50 s.
Table toggling techniques are sometimes used to increase
the coverage. More recent wide detector scanners allow
whole brain coverage in each scan. The temporal scans are
reconstructed and one of several approaches can be used to
calculate the perfusion parameters.

In animal studies, the product of CT cerebral blood
volume (CBV) and flow (CBF) from CT measurements
was found to have sensitivity of 90.6% and specificity
of 93.3% (compared with histological measurements) for
discerning ischemic and oligemic tissue [12]. One study
that compared stroke diagnosis using CT perfusion plus
angiography, against MRI, found good correlation and no
significant prognosis differences [13]. Typical PCT scans add
approximately 5 or less additional minutes to the scan time
with around a 50 mL bolus of additional iodinated contrast
agent. With regards to the X-ray dose in PCT, depending on
the parameters, the effective dose is estimated to be between
1.2 mSv [6] and 3.4 mSv [14]. This is in the same range as the
effective dose of a standard cerebral CT, which is reported to
deliver about 2.5 mSv to the patient [14].

The gold standard for perfusion CT has been imaging
with stable xenon as the contrast agent [7, 15]. This method
involves inhalation of a mixture of stable xenon gas and
oxygen followed by CT scanning. Because of the high atomic
number of xenon, it serves as a radio-opaque contrast agent
as it diffuses into the blood and neurons in a well-balanced
manner. It has been proven to be accurate in quantifying
perfusion by comparing the results with those obtained using
radio-labeled microspheres.

2.2. Perfusion MR. Perfusion imaging in MR can be per-
formed with or without contrast agent [16]. Noncontrast
agent-enhanced perfusion imaging usually uses spin labeling
of blood entering the imaging volume. This method is
less commonly used because of the increased sensitivity
to motion and related artifacts and low signal in case
of slow flow. Gadolinium-based tracers such as Gd-DTPA
are more commonly used for measuring perfusion derived
from changes in the local susceptibility. Both spin echo
(SE) and gradient echo (GRE) sequences have been applied
successfully in perfusion MR. GRE sequences are most
frequently used because they provide a better contrast-to-
noise ratio for imaging of the contrast agent compared
to SE sequences [17–19]. However, GRE sequences have
the disadvantage of disproportionately weighting the con-
tribution of the contrast agent in relatively large vessels,
whereas SE sequences provide a more accurate assessment
of blood flow through vessels of all sizes [19]. After the
7–10 s interval that the gadolinium contrast agent takes
to reach the brain following the intravenous injection, the
signal in the cerebral tissue dips. The signal changes are
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Figure 1: CT perfusion parameter maps of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time-
to-peak (TTP). The ischemic stroke lesion is marked with arrows.

most significant over about 15 s during which the change in
T2∗ or equivalently the change in the associated relaxation
rate R2∗ is monitored. Note that this also requires that the
contrast agent is intravascular. Rapid imaging (interval less
than 2 s) is required for accurate measurement of perfusion
parameters. Typically echo-planar imaging (EPI) sequences
are used for this purpose.

3. Theoretical Model

The aim of this section is to provide a compact outline of
both some elementary as well as practically relevant theory of
perfusion estimation based on previous work. In particular,
we will introduce a theoretical physiological model of tissue
perfusion for intravascular tracer systems and present the
derivation of a deconvolution-based mathematical approach
for the estimation of diagnostically important perfusion

parameters. In addition, we will briefly describe alternative
methods that do not require deconvolution.

3.1. Model of Microcirculation at the Tissue Level. For com-
puting the tissue perfusion, we assume a physiological model
of the blood supply to the tissue. Figure 2 shows this model
that consists of a volume of interest Vvoi covering the organ-
specific parenchyma, the interstitial space, and the capillary
bed. The volumes of the parenchyma and the interstitial
space are denoted by V∗

voi, while the volume of the capillary
bed is referred to as Vcap. The entire volume of interest
Vvoi = V∗

voi + Vcap shall be supplied with blood by a single
arterial inlet and correspondingly drained by a single venous
outlet. In general, it may have a different shape than the
cuboid shown in Figure 2. A blood cell can take various paths
through the capillary bed. The transit time t it needs to pass
through the capillary bed depends on the chosen path. We
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Figure 2: Physiological model of the tissue perfusion. A blood cell
can take several paths through the capillary bed. The variables are
defined in Table 1.

assume a stationary probability density distribution h(t) of
transit times.

Once a contrast agent bolus has been injected, it enters
the volume Vvoi under consideration via the arterial inlet
and is then diluted into the capillary bed. The local contrast
agent concentrations cart(t) and cven(t) are measured directly
adjacent to the capillary bed on the arterial and venous
sides, respectively. Furthermore, the average contrast agent
concentration cvoi(t) within the volume of interest can
also be measured. In perfusion CT, an iodinated contrast
agent is used whereas, in perfusion MR, the measured
signal difference is created by a paramagnetic contrast agent
based on gadolinium (Gd) (see Section 2.2). The contrast
agent concentration is defined as mass of iodinated contrast
agent per volume (unit: g/mL) or amount of Gd-based
contrast agent per volume (unit: mol/mL), respectively [20].
For the following analysis, we assume the contrast agent
concentration to be measured as mass per volume, which can
easily be related to amount per volume.

Figure 3 illustrates typical time-concentration curves
cart(t), cvoi(t), and cven(t) that may be measured in brain
tissue, for example. For the sake of simplicity, the maximum
contrast agent concentration has been normalized to 1. Note
that the (average) enhancement within the volume of interest
is commonly more than an order of magnitude below the
enhancements of the feeding artery and the draining vein.

An additional important assumption is that the contrast
agent remains in the intravascular space. For our case of
cerebral perfusion, it should therefore not cross the blood-
brain barrier (BBB). As a consequence, this means that
all contrast agents entering from the arterial inlet will
eventually leave the volume of interest at the venous outlet. A
breakdown of the BBB may occur in tumor patients, in stroke
patients, and in patients that suffer from inflammations or
infections, for example. In these cases, the methods presented
in this paper may lead to inaccurate perfusion estimates
and particularly to an overestimation of the blood volume
[21, 22]. Note that there exist other modelling approaches
which do not assume that the contrast agent remains in the
intravascular space. These models can be used for measuring
tumor perfusion, for example [6, 20, 23].

Finally, we suppose that the contrast agent mixes per-
fectly with the blood and that the physical properties of the

blood (its flow behavior, in particular) are not influenced by
the contrast agent.

As we will see, only knowledge of the functions cart(t)
and cvoi(t) is needed to compute the blood flow within
the volume under consideration. In practice, the function
cart(t)—also known as the arterial input function (AIF)—is
not measured directly at the respective volume of interest,
but in a larger feeding artery in order to achieve a reasonable
signal-to-noise ratio (SNR) (see Section 4.1).

As a first diagnostically relevant perfusion parameter, the
mean transit time (MTT) of the volume under consideration
is defined as the first moment of the probability density
function h(t) of the transit times, that is,

MTT =
∫∞

0
τh(τ)dτ. (1)

Furthermore, the residue (or residual) function r(t)—
compare [24]—represents an intermediate quantity of inter-
est and is defined as

r(t) =
⎧⎪⎨
⎪⎩

1−
∫ t

0
h(τ)dτ, for t ≥ 0,

0, for t < 0.
(2)

The (dimensionless) residue function thus quantifies the
relative amount of contrast agent that is still inside the
volume Vvoi of interest at time t after an (idealized) delta-
shaped contrast agent bolus has entered the volume at the
arterial inlet at time t = 0; that is, cart(t) = δ(t). Due
to the various transit times within the capillary bed, the
contrast agent will not leave the volume instantaneously,
but gradually over time. In particular, this means that the
residue function decreases continuously from r(0) = 1 to 0.
Figure 4 shows typical examples of a distribution function
h(t) of transit times as well as the corresponding residue
function r(t). In this example, the function h(t) is modeled
by a gamma distribution [25].

3.2. Derivation of the Indicator-Dilution Theory. Using the
parameters defined in Table 1, the accumulated masses of
contrast agent that have entered and left the volume of
interest during the time interval [0, t], denoted as mc,voi,in(t)
and mc,voi,out(t), respectively, can be expressed as

mc,voi,in(t) = F
∫ t

0
cart(τ)dτ,

mc,voi,out(t) = F
∫ t

0
cven(τ)dτ.

(3)

The volume flow F is assumed to be constant over time. The
contrast agent concentrations cart(t) and cven(t) at the arterial
inlet and the venous outlet, respectively, are time-dependent
functions which we assume to be 0 for t < 0. These functions
primarily depend on the parameters of the contrast agent
injection and the patient’s cardiac cycle.
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Figure 3: Examples of the time-concentration curves cart(t), cvoi(t), and cven(t) given in arbitrary units (a.u.). (b) Represents a zoomed view
of (a) with a rescaled ordinate.

We can compute the mass mc,voi(t) of a contrast agent
within the volume of interest at time t using the principle of
conservation of mass as

mc,voi(t) = mc,voi,in(t)−mc,voi,out(t)

= F
∫ t

0
(cart(τ)− cven(τ))dτ.

(4)

The contrast agent concentration cven(t) at the venous
outlet can be computed from the contrast agent concen-
tration cart(t) at the arterial inlet by convolving it with the
probability density function h(t). We therefore obtain

cven(t) =
∫ +∞

−∞
cart(ξ)h(t − ξ)dξ. (5)

Note that throughout this paper, all integrals with infinite
integration endpoints shall be interpreted as the limit of the
integral when the respective endpoint approaches±∞. Using
(5), we can rewrite (4), by applying the delta function δ(t),
as

mc,voi(t)

= F
∫ t

0

(∫ +∞

−∞
cart(ξ)δ(τ − ξ)dξ −

∫ +∞

−∞
cart(ξ)h(τ − ξ)dξ

)
dτ.

(6)

Changing the order of integration and rearranging this
equation leads to

mc,voi(t) = F
∫ +∞

−∞
cart(ξ)

(∫ t

0
(δ(τ − ξ)− h(τ − ξ))dτ

)
dξ.

(7)

By applying the substitution τ′ = τ − ξ, recalling that, for
t ≥ 0, we have

r(t) = 1−
∫ t

0
h(τ)dτ =

∫ t

0
(δ(τ)− h(τ))dτ, (8)

and considering that h(t) = 0 for t < 0, we obtain

∫ t

0
(δ(τ − ξ)− h(τ − ξ))dτ

=
∫ t−ξ

−ξ
(δ(τ′)− h(τ′))dτ′ = r(t − ξ).

(9)

Equation (7) thus eventually reads

mc,voi(t) = F
∫ +∞

−∞
cart(ξ)r(t − ξ)dξ. (10)

We introduce the cerebral blood flow (CBF) as the blood
volume flow normalized by the mass of the volume Vvoi,

CBF = F

Vvoi · ρvoi
. (11)

Inserting this definition into (10) yields

mc,voi(t)
Vvoi

= CBF · ρvoi ·
∫ +∞

−∞
cart(ξ)r(t − ξ)dξ. (12)

According to Table 1, we define the contrast agent concentra-
tion cvoi(t) within the volume Vvoi of interest as

cvoi(t) = mc,voi(t)
Vvoi

, (13)
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Figure 4: Examples of the distribution function h(t) of transit times (the mean transit time is 4 s) and the corresponding residue function
r(t).

Table 1: Summary of parameters used to derive the indicator-dilution theory and to define clinically relevant tissue perfusion quantities.

Variable Unit Description

Vvoi mL Total volume under consideration

Vcap mL Volume of the capillary bed within the volume Vvoi

V∗
voi mL Volume Vvoi without the volume of the capillary bed, V∗

voi = Vvoi −Vcap

ρvoi g/mL Mean density of the volume Vvoi

ρ∗voi g/mL Mean density of the volume V∗
voi

mc,voi(t) g Total mass of contrast agent in volume Vvoi

cart(t) g/mL Local contrast agent concentration at the arterial inlet, cart(t) = dm/dV |t , measured at the arterial inlet

cven(t) g/mL Local contrast agent concentration at the venous outlet, cven(t) = dm/dV |t , measured at the venous outlet

cvoi(t) g/mL Average contrast agent concentration in the total volume Vvoi, cvoi(t) = mc,voi(t)/Vvoi

ccap(t) g/mL Average contrast agent concentration in the capillary bed, ccap(t) = mc,voi(t)/Vcap

c∗voi(t) g/mL Average contrast agent concentration corresponding to V∗
voi, c

∗
voi(t) = mc,voi(t)/V∗

voi

F mL/s Volume flow at the arterial inlet and at the venous outlet

h(t) 1/s Probability density function of the transit times

which finally leads to the following formulation of the in-
dicator-dilution theory,

cvoi(t) = CBF · ρvoi ·
∫ +∞

−∞
cart(ξ)r(t − ξ)dξ

= CBF · ρvoi · (cart ∗ r)(t),

(14)

where ∗ denotes the convolution operator as usual, see also
[21, 26]. An alternative derivation of the same mathematical
result is presented in [20]. A historical overview of the
development of the indicator-dilution theory with numerous
references to mathematical aspects can be found in [27].
Note that the solution of (14) with respect to CBF and other
clinically important perfusion parameters will be discussed
in Section 3.3.

From a physiological point of view, it would be more
meaningful to normalize CBF by the mass of the volume
V∗

voi. This volume V∗
voi contains the mass of the parenchyma

(and the interstitium) only. In that case, CBF would be a local

measure for the blood volume flow per mass of parenchyma
(and interstitium) that actually requires blood supply for
oxygen and nutrient delivery. In (11), however, the volume
Vvoi also contains the mass of the blood-filled capillary bed
itself. Another aspect to consider is that the mean density
ρvoi of the volume, which influences the CBF value, actually
depends on the (varying) mass of the contrast agent in the
capillary bed. The alternative definition of CBF,

CBF∗ = F

V∗
voi · ρ∗voi

, (15)

would then lead to a corresponding alternative formulation
of the indicator-dilution theory,

c∗voi(t) = CBF∗ · ρ∗voi · (cart ∗ r)(t). (16)

From a practical perspective, however, it is more convenient
to use the definition of CBF given by (11), see Section 4.1.
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The derivation of the indicator-dilution theory in this
section was focused on brain perfusion imaging. This the-
oretical model can be used in stroke patients if the BBB is
intact—compare Section 3.1—but it is not suited for semi-
permeable tumors, for example. With slight adaptations, this
theoretical model can also be applied in other applications
of perfusion imaging such as pulmonary perfusion imaging.
See [28] for detailed discussions. A discussion of models in
hepatic and renal perfusion imaging is given in [29, 30],
respectively.

In the context of perfusion measurement, the term
recirculation refers to the physiological phenomenon that,
due to the patient’s cardiac activity, the contrast agent passes
through the volume under consideration multiple times. It
can easily be shown, however, that there is no need to correct
for recirculation when deconvolution methods are applied to
determine perfusion parameters [31].

3.3. Computation of Perfusion Parameters Using Deconvolu-
tion. In (14), the variables cart(t) and cvoi(t) can be measured
and have known values whereas the values of CBF, r(t), and
ρvoi are unknown. In order to compute CBF as well as other
diagnostically relevant tissue perfusion parameters, we first
need to introduce an intermediate variable, the flow-scaled
residue function k(t),

k(t) = CBF · ρvoi · r(t), (17)

which is given in units of 1/s and can be determined directly
from the measured data cart(t) and cvoi(t). Using (17), (14)
can be written as

cvoi(t) = (cart ∗ k)(t). (18)

Hence, k(t) can be obtained from the measured data cart(t)
and cvoi(t) using a deconvolution method. Since a fun-
damental property of the residue function r(t) is r(0) =
max(r(t)) = 1, we may then determine CBF as

CBF = 1
ρvoi

·max(k(t)). (19)

Using max(k(t)) instead of k(0) has particular practical
advantages that will be discussed in detail in Section 4.1.

The flow-scaled residue function k(t) can further be used
to determine the MTT parameter of the tissue volume under
consideration. From (2), it follows that, for t > 0, we have

dr(t)
dt

= −h(t). (20)

Equation (1) can thus be rewritten, and then using integra-
tion by parts and (17) and (19), we obtain

MTT =
∫∞

0
τ
(
−dr(τ)

dτ

)
dτ

=
∫∞

0
r(τ)dτ − lim

ξ→∞

(
τr(τ)|ξ0

)

=
∫∞

0
r(τ)dτ

= 1
max(k(τ))

·
∫∞

0
k(τ)dτ.

(21)

Note that we have assumed that there is a constant T > 0
such that r(t) = 0 for t > T . This assumption ensures that

lim
ξ→∞

(
τr(τ)|ξ0

)
= lim

ξ→∞
(ξr(ξ)) = 0. (22)

The cerebral blood volume (CBV) corresponding to the
tissue volume Vvoi represents another diagnostically relevant
perfusion parameter and is defined as

CBV = Vcap

ρvoi ·Vvoi
. (23)

It quantifies the blood volume normalized by the mass ofVvoi

and is typically measured in units of mL/100 g. The quantity
CBV can be computed from the parameters CBF and MTT
using the central volume theorem [22, 26], according to
which

CBF = CBV
MTT

(24)

holds for the perfused volume of interest. Interestingly, this
theorem has been recognized for a long time and is already
found in a historical publication from 1893 [32]. It states that
the perfusion parameters CBV and CBF corresponding to the
volume Vvoi of interest are related by the respective temporal
parameter MTT that quantifies the mean time that a blood
cell needs to pass through its capillary bed. With (19) and
(21), it follows from (24) that

CBV = MTT · CBF = 1
ρvoi

·
∫∞

0
k(τ)dτ, (25)

which demonstrates that the CBV parameter can be derived
from the flow-scaled residue function k(t) as well.

A healthy human brain exhibits a CBV of about 4 mL/
100 g for grey matter and a CBV of about 2 mL/100 g for
white matter [8].

Note that the definition of CBV that corresponds to the
alternative definition of CBF in [16] is

CBV∗ = Vcap

ρ∗voi ·V∗
voi

. (26)

Accordingly, this alternative definition relates the blood
volume to the mass of the parenchyma (and the interstitium)
only and explicitly omits the mass of the capillary bed itself.

Furthermore, there are references in the literature that
suggest measuring the blood volume in units of mL/mL.
This alternative dimensionless quantity may therefore be
considered as a measure of blood (or vascular) volume
fraction. When relating the volume Vcap of the capillary bed
to the entire volume Vvoi of interest, a typical average ratio
of about 4% will result for the human brain. We refer to [33]
for both technical and clinical details.

3.4. Overview of Nondeconvolution-Based Methods for Per-
fusion Imaging. For the sake of completeness, this section
will briefly cover two alternative approaches for CBV and
CBF estimation that are practical and relevant, and that do
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not involve deconvolution operations. Nondeconvolution-
based methods for estimating perfusion parameters are also
referred to as direct measurement-based approaches [26].

Firstly, there is an alternative method to compute the
blood volume of the tissue volume under consideration
[1]. This approach assumes that the average contrast agent
concentration cvoi(t) in the tissue volume can be related
to the average contrast agent concentration ccap(t) in the
capillary bed by

cvoi(t) =
(
ρvoi · CBV

) · ccap(t). (27)

According to the principle of conservation of mass, it follows
that

mc,tot = F
∫∞

0
cart(τ)dτ = F

∫∞
0
ccap(τ)dτ = F

∫∞
0
cven(τ)dτ,

(28)

where mc,tot is the total mass of contrast agent that has passed
through the volume of interest. This results in an alternative
expression for CBV,

CBV = 1
ρvoi

·
∫∞

0 cvoi(τ)dτ∫∞
0 cart(τ)dτ

= 1
ρvoi

·
∫∞

0 cvoi(τ)dτ∫∞
0 cven(τ)dτ

. (29)

Hence, assuming a suitable correction for contrast agent
recirculation [1, 34], CBV can be estimated from the integrals
of either cvoi(t) and cart(t) or cvoi(t) and cven(t) over time. See
[21] for details and further references with a particular focus
on MR perfusion measurements.

It is argued in [34] that, particularly for the case of CT
perfusion imaging of the brain, a physiologically reasonable
approximation to (29) is given by

CBV = [cvoi(t)]max

[cven(t)]max
, (30)

which avoids the computation of the integrals over time and
only requires the maximum values of cvoi(t) and cven(t).

Secondly, there is a nondeconvolution-based approach
to estimate the blood flow of the tissue volume under
consideration; the maximum slope method [22, 34]. The
derivation of this method is based on (4) and further assumes
for simplicity’s sake that there is no venous outflow from
the tissue volume under consideration during the time of
observation; that is,

mc,voi(t) = mc,voi,in(t) = F ·
∫ t

0
cart(τ)dτ. (31)

Recalling the CBF definition—compare (11)—and that
mc,voi(t) = cvoi(t) ·Vvoi, we obtain

cvoi(t) = ρvoi · CBF ·
∫ t

0
cart(τ)dτ. (32)

Taking the derivative of (32) yields

dcvoi(t)
dt

= ρvoi · CBF · cart(t), (33)
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Figure 5: Perfusion parameters that are measured directly using the
time-concentration curve. See Sections 3.5 and 4.1 for explanations
(BAT: bolus arrival time, TTP: time-to-peak, FM: first moment,
AUC: area under the curve).

and since (33) must hold for all t, the blood flow is given by
[

dcvoi(t)
dt

]
max

= ρvoi · CBF · [cart(t)]max, (34)

which means that CBF can be estimated by dividing the
maximum slope of the tissue time-concentration curve
cvoi(t), shown as an example in Figure 5, by the maximum
value of the contrast agent concentration cart(t) in the feeding
artery.

An advantage of the maximum slope method is the
shorter overall acquisition time. As a downside, however, it
requires a faster contrast agent bolus injection rate in order
to approximately fulfill the no-venous-outflow condition.

A more comprehensive discussion of the maximum slope
method and a comparison with the deconvolution method
is presented in [35]. According to [35], the clinical results
based on these two approaches are generally of comparably
high quality in CT imaging applications. However, in cases
with insufficient data quality (e.g., in terms of noise, contrast
agent concentration, bolus shape), deconvolution-based
methods may lead to superior results. Moreover, violation
of the aforementioned no-venous-outflow condition may
yield incorrect perfusion estimates when the maximum slope
method is employed. This can happen for penumbral regions
of the brain which characterize the tissue at risk after an
ischemic stroke.

3.5. Additional Perfusion Parameters. Besides the aforemen-
tioned quantities CBV, CBF, and MTT, there are additional
perfusion parameters such as the time-to-peak (TTP) of
the time-concentration curve, the maximum contrast agent
concentration cmax, as well as the first moment (FM) of the
time-concentration curve, for example. The first moment
can be computed by projecting the centroid of the area under
the curve (AUC) of the time-concentration curve onto the
time axis.

Figure 5 illustrates the quantities cmax, TTP, and FM.
The remaining parameter bolus arrival time (BAT) will be
explained in Section 4.1. In practical measurements, the time
point t = 0 represents the start of the scanning. A detailed
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Table 2: Summary of perfusion parameters and how these param-
eters can be estimated using deconvolution-based and nondecon-
volution-based methods.

Parameter w/Deconvolution w/o Deconvolution

CBV (1/ρvoi) ·
∫∞

0 k(τ)dτ
(1/ρvoi) ·

∫∞
0 cvoi(τ)dτ/∫∞

0 cart(τ)dτ

CBF (1/ρvoi) ·max(k(t))
(1/ρvoi) · [dcvoi(t)/dt]max/
[cart(t)]max

MTT
∫∞

0 k(τ)dτ/max(k(τ)) see comment in Section 3.5

TTP — arg maxt(cvoi(t))

FM —
∫∞

0 cvoi(τ)τdτ/
∫∞

0 cvoi(τ)dτ

description and analysis of these additional quantities,
however, is beyond the scope of this paper. A comparison of
several perfusion parameters and their clinical impact on the
treatment of stroke patients is given in [36].

In summary, Table 2 covers the most common diag-
nostically relevant perfusion parameters and shows how
they can be determined employing deconvolution-based
and nondeconvolution-based methods. In principle, the
central volume theorem—compare (24)—may also be used
to numerically estimate the MTT from the parameters
CBF and CBV when the latter have been computed using
nondeconvolution-based algorithms. However, the authors
are not aware of any reference that describes the application
of this approach in clinical practice.

4. Practical Implementation

This section is devoted to the practical computer imple-
mentation of algorithms for perfusion image analysis. First,
we will discuss the necessary adaptations of the theoretical
model from Section 3 that are needed for its application to
data from real CT and MR scanners. Afterwards, we will
describe commonly used algebraic deconvolution methods
and also give an overview of alternative approaches. We will
motivate the need for suitable regularization and discuss the
influence of the regularization parameter on the resulting
perfusion estimates. For the sake of completeness, we will
also address techniques for the pre-processing of the acquired
perfusion data.

4.1. Adaptations of the Model of Microcirculation. In Sec-
tion 3.1, we presented a model of microcirculation at the
tissue level. We have assumed that we can measure the
average contrast agent concentration cvoi(t) corresponding
to a volume Vvoi under consideration which is supplied by
one single capillary bed only. Furthermore, we have supposed
that we can measure the contrast agent concentration cart(t)
locally at the arterial inlet into the capillary bed. However,
real CT and MR scanners are characterized by limited spatial
(and contrast) resolution and, in reality, one cannot rely
on these two aforementioned assumptions. We will thus
introduce two major adaptations of the physiological model
which are necessary once it is to be applied to data from real
scanners.

First, during a standard CT and MR perfusion exam, a
volume of interest is scanned and the data is reconstructed
on a grid of regularly spaced voxels. In the object domain,
each voxel volume Vvox (Vvox � Vvoi) contains numerous
capillary beds as well as arterioles and venules that supply
and drain these capillary beds, respectively. For the particular
case when the volume Vvox is located completely within a
larger artery or vein, there are of course no capillary beds
located within Vvox.

The measured signal (X-ray attenuation or MR relax-
ation rate) in a voxel is thus a combination of the signals
from both the capillary beds as well as the arterial and
venous vessels [37]. The perfusion parameters that are
computed from the voxel’s time-concentration curve are
therefore not true parameters of the capillary perfusion. If
no larger artery or vein is located inside the volume Vvox, we
may adapt the model introduced in Section 3.1 as follows:
the measured time-concentration curve cvoi(t) refers to the
average perfusion from the arterioles through the capillary
beds to the venules found in Vvox.

The second adaptation of the model concerns the
measurement of cart(t). In reality, it is not possible to locally
measure the concentration at the arterial inlet into the
volume Vvox. Instead, it is common practice that a global
arterial input function (AIF) is chosen in a large arterial
vessel. In brain perfusion imaging, for example, the anterior
cerebral artery is often selected [38].

This approach leads to a traveling time of the contrast
agent bolus from where the AIF is measured to the location of
the tissue volume where cvoi(t) is measured. We will refer to
this traveling time as the bolus delay. Another physical effect
that needs to be taken into consideration is bolus dispersion
[39]. It appears as a widening of the shape of the bolus that is
caused during the flow from the remote AIF location to the
measurement site of cvoi(t).

The bolus delay has two implications. First, the curve
cvoi(t) does not start to rise at the same time point as cart(t)
starts to rise. The difference between these two time points
can be defined as the bolus arrival time (BAT), which may
be considered as an additional perfusion parameter [40].
Alternatively, the BAT can be defined as the time interval
between the start of the scanning and the time when cvoi(t)
begins to rise, see Figure 5. The results obtained with this
alternative definition differ from the results obtained with
the first definition by a constant value only.

Second, the flow-scaled residue function k(t) is equal to
0 from t = 0 to t = BAT. In addition, due to the bolus
dispersion, k(t) will not rise instantaneously to its maximum
at t = BAT, but it will have a finite rise time. The time-
to-maximum (TMAX) of the flow-scaled residue function,
defined as

TMAX = arg max
t

(k(t)), (35)

has also been suggested as an additional perfusion parameter
[41, 42]. Since the function k(t) can be 0 at t = 0 (due to
bolus delay), it is reasonable and recommended to estimate
CBF as the maximum of k(t)—compare (19)—and not as the
value of k(t) at time t = 0.
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Bolus delay and dispersion may lead to an underesti-
mation of CBF [39]. In order to correct for bolus delay
and dispersion several methods have been proposed [43,
44]. The use of local arterial input functions could also
reduce the effect of bolus dispersion, see Section 4.5.6. On
the other hand, new perfusion parameters (BAT, TMAX)
are motivated by these two effects and can be defined
accordingly. They represent perfusion characteristics related
to the flow of the contrast agent bolus from the selected
feeding artery to the respective tissue site, see again Figure 5.

4.2. Deconvolution Using Algebraic Methods. In this section,
we will discuss the robust numerical solution of the main
equation of the indicator-dilution theory—(18)—by means
of algebraic deconvolution methods. An overview of further
deconvolution methods will then be given in Section 4.3.
We will introduce the discretization of (18) and show that
its solution without regularization leads to nonphysiological
results. We will explain and motivate suitable regulariza-
tion approaches by a singular value decomposition-based
analysis. To illustrate the mathematical concepts, we will
provide examples using the time-attenuation curves μart(t j)
and μvoi(t j) shown in Figure 6 that were extracted from a real
perfusion CT scan.

We assume that the measured time-attenuation curves
can be converted to time-concentration curves using a
constant of proportionality of 1 g/mL/HU. Details about
the conversion, also discussing perfusion MR data, will be
explained in Section 4.5.4.

In practice, the time-concentration curves cart(t) and
cvoi(t) are sampled at discrete time points. We denote these
time points as t j = ( j − 1) · Δt with j = 1, . . . ,N . A typical
value of the sampling period Δt is 1 s, for example. We can
discretize (18) as

cvoi

(
t j
)
=
∫∞

0
cart(τ)k

(
t j − τ

)
dτ ≈ Δt

N∑
i=1

cart(ti)k
(
t j−i+1

)
,

(36)

see [45]. We assume that the values of cart(t) can be neglected
for t > NΔt. Since k(t) = 0 for t < 0, the end summation
index could also be set to j instead of N . By rewriting this
expression using matrix-vector notation, we obtain

Δt ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cart(t1) 0 · · · 0

cart(t2) cart(t1) · · · 0

...
...

. . .
...

cart(tN ) cart(tN−1) · · · cart(t1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k(t1)

k(t2)

...

k(tN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cvoi(t1)

cvoi(t2)

...

cvoi(tN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(37)

or shortly

Ak = c, (38)

where Δt and cart(t j) are contained in the matrix A ∈ RN×N ,
and k(t j) and cvoi(t j) represent the entries of the vectors
k ∈ RN and c ∈ RN , respectively. Different ways to discretize
(18) are investigated in [46]. For example, it was suggested in
[47, 48] to use a discretization method with a block-circulant
matrix A in order to reduce the influence of the bolus delay.
See the appendix for details.

A standard approach to solve (37) for k is to use the
singular value decomposition (SVD) of A. For a matrix A ∈
RN×N with r = rank(A) linearly independent rows and
columns, it is defined as

A = UΣVT =
r∑

i=1

uiσivT
i , (39)

where U = [u1, . . . , ur] and V = [v1, . . . , vr] are unique
orthogonal matrices composed of the left and right singular
vectors ui and vi, respectively [49]. The number of rows and
columns in A that only contain zeros is determined by the
number Nlz of leading zeros in the series cart(t j), j = 1, . . . ,N .
Therefore, A has rank r ≤ N−Nlz. After the subtraction of the
baseline, it may happen that the first entry cart(t1) is zero, see
Section 4.5.4, and that A thus becomes rank-deficient. The
diagonal matrix Σ = diag(σ1, . . . , σr) contains the singular
values σi in nonincreasing order σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
The least-squares solution kls of (38) using the SVD of A is
given by

kls =
r∑

i=1

uT
i c
σi

vi, (40)

see again [49]. Note that the unique vector kls is referred
to as least-squares solution since determining it from (40)
is equivalent to minimizing the squared Euclidean residual
norm of the linear systems given by (37) and (38); that is,

kls = arg min
k∈RN

(
‖Ak− c‖2

2

)
. (41)

However, the least-square solution kls does not represent
a suitable solution of (38) if the matrix A is ill-conditioned.
It can be shown that a matrix A with a structure as shown
in (37) or (A.3), also known as a Toeplitz matrix, is in fact
ill conditioned [50, 51]. In that case, a small change in c
(e.g., due to projection noise) can cause a large change in kls.
The rate at which a change in c influences the solution kls is
roughly proportional to the condition number of A, defined
as σ1/σr [49].

As an example, Figure 7 shows the solution kls of the
example data from Figure 6. The solution is strongly
oscillating and even has a rising amplitude. It is obvious
that this solution has nothing in common with the real
physiological behavior of the flow-scaled residue function.

In order to get a better understanding of why kls is not
a meaningful solution and to motivate the regularization
approach, we will investigate the individual terms of (40). We
use the data shown in Figure 6 to obtain A and c. Figure 8
represents a plot of the absolute values of the expressions
(uT

i c)/σi that occur in (40). These factors weight the right
singular vectors vi of A.
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Figure 6: Examples of measured time-attenuation curves in perfusion CT in (a) an arterial vessel and (b) in tissue. The time curves have
been pre-processed by baseline subtraction and removal of the baseline time frames. The example data is measured at N = 35 discrete time
points.
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Figure 7: Least-squares solution vector kls of (38) using the example data from Figure 6. (kls) j denotes the jth entry of the vector kls. The
plot shown in (a) illustrates the strong oscillations of kls. The plot given in (b) shows the amplitude |kls| of this function on a logarithmic
scale.

It is known from numerical analysis that the discrete
Picard condition represents a means to analyze discrete ill-
conditioned problems [50, 51]. This condition is violated, if
the expressions uT

i c do not decay faster, on average, than the
singular values σi until a threshold value is reached where the
singular values level off. The reader is referred to [51] for a
more detailed explanation of the discrete Picard condition
and its relation to the Picard condition from which it is
derived. A usual reason for the violation of the discrete Picard
condition is noise in the measured data that the matrix A
is based on. We can see that the discrete Picard condition
is actually violated in the example shown in Figure 8 [52].

Consequently, the absolute values of the ratios (uT
i c)/σi—

which represent the weighting factors of the right singular
vectors vi—become very large.

To obtain a numerically stable result, a filter is used
for regularization. The filter should suppress the influences
of small singular values σi or, equivalently, the influences
of high absolute values of the weighting factors (uT

i c)/σi.
The regularized solution kλ, where λ is a regularization
parameter, is given by

kλ =
r∑

i=1

(
fλ,i

uT
i c
σi

)
vi. (42)
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Figure 8: SVD analysis of the matrix A constructed from the
example data shown in Figure 6. The plot displays the absolute
values of the weighting factors (uT

i c)/σi and of their individual
components |uT

i c| and σi on a logarithmic scale.

We will focus on two common definitions of the filter
factors fλ,i. Firstly, the filter factors f (tsvd)

λ,i correspond to the
truncated singular value decomposition (TSVD) approach
and are defined with a sharp threshold at λ,

f (tsvd)
λ,i =

⎧⎨
⎩

0, for σi < λ,

1, for σi ≥ λ.
(43)

Secondly, the filter factors f (tikh)
λ,i are based on the Tikhonov

regularization approach and characterized by a smooth
weighting function centered around λ,

f (tikh)
λ,i = σ2

i

σ2
i + λ2

. (44)

The (absolute) regularization parameter λ is usually
computed relative to the maximum singular value σ1, that
is,

λ = λrelσ1. (45)

The relative regularization parameter λrel is supposed to lie
in the interval between 0 and 1.

In order to illustrate the Tikhonov filter factors, Figure 9

shows a plot of the function f (tikh)
λ = σ2/(σ2 + λ2) which

is—unlike (44)—defined for a continuous range of σ . For

determining f (tikh)
λ , we assumed σ1 = 1. It can be seen that,

for increasing λ (i.e., stronger regularization), the values of

f (tikh)
λ decrease for all σ .

Interestingly, the solution k(tikh)
λ of (38) using the filter

factors f (tikh)
λ,i is equivalent to minimizing the weighted sum

of the squared Euclidean residual norm ‖Ak − c‖2
2 and the

squared Euclidean solution norm ‖k‖2
2; that is,

k(tikh)
λ = arg min

k∈RN

(
‖Ak− c‖2

2 + λ2‖k‖2
2

)
. (46)

Figure 10(a) shows the solution k(tikh)
λ computed for two

different regularization parameters. The solution for λrel =
0.1 still shows some nonphysiological oscillations. However,
the solution for λrel = 0.3 can in fact be interpreted as a
flow-scaled residue function in the presence of bolus delay
and dispersion, compare Section 4.1. Figure 10(b) illustrates

a plot of max(k(tikh)
λ ), which is proportional to CBF (see

Section 3.3 and Table 2), as a function of λrel. Apparently,
CBF depends on the choice of regularization parameter.
Choosing an optimal regularization parameter that will lead
to physiologically reasonable estimates will be discussed in
Section 4.4.

4.3. Alternative Deconvolution Approaches. The algebraic
deconvolution approach from Section 4.2 is very com-
monly applied to analyze perfusion data. Yet, deconvolution
problems arise in many other applications, and numerous
alternative algorithms to solve these problems have been
developed [53]. In this section, we provide a brief overview
of alternative deconvolution approaches that have also been
applied to perfusion data.

The Fourier transform represents a standard method to
solve deconvolution problems [54], and it has also been
evaluated to analyze perfusion data [45, 55–57]. Interestingly,
the Fourier transform-based deconvolution approach is
mathematically equivalent to the SVD-based deconvolution
approach with a block-circulant matrix A, compare the
appendix [47, 58–60]. However, results obtained with SVD-
based and FT-based deconvolution can be different because
the chosen regularization approaches for these two methods
are usually not equivalent. The regularization in the con-
text of the Fourier-based deconvolution approach can be
implemented by means of a modified Wiener filter [55], for
example. The reader is referred to [60, 61] for a detailed
analysis of the equivalence of SVD-based and Fourier-based
regularization approaches.

In contrast to the model-independent deconvolution
approaches also model-dependent approaches exist. Model-
dependent approaches assume a certain shape of the residue
function. For example, in [45, 62] a decaying exponential
function was used which makes the deconvolution more
stable since it reduces the degrees of freedom of the residue
function [45]. However, if the underlaying residue function
is different from the model the perfusion parameters may not
be estimated correctly.

Deconvolution using orthogonal polynomials was inves-
tigated in [63]. An iterative deconvolution algorithm based
on maximum likelihood expectation maximization (ML-
EM) algorithm was proposed in [64]. An approach using
Gaussian processes was evaluated in [65]. The deconvolution
algorithm in [66] uses a nonlinear stochastic regularization
method.

A comprehensive comparison of all available deconvolu-
tion methods has not been carried out yet. The SVD-based
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Figure 10: Deconvolution with Tikhonov regularization: (a) Regularized solution k(tikh)
λ for two different regularization parameters λrel and

(b) maximum of k(tikh)
λ as a function of λrel. (k(tikh)

λ ) j denotes the jth entry of the vector k(tikh)
λ .

deconvolution approach, which is available in several soft-
ware packages [67–69], is comparably simple to implement
and can be considered as the current standard method in
perfusion image analysis.

4.4. Determination of the Regularization Parameter. Fig-
ure 10(b) demonstrated that (the maximum of) the solution

k(tikh)
λ depends on the regularization parameter λrel. Con-

sequently, the computed perfusion values—which can be

derived from k(tikh)
λ according to Table 2—vary for different

λrel. As an example, the CBF value will be underestimated
systematically for large λrel.

Therefore, an optimal choice of λrel is crucial. A simple
approach is to empirically determine a fixed value λrel. This
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approach is often used in practice, and a typical value in brain
perfusion CT is, for example, λrel = 0.2 [68]. However, there
exist more sophisticated approaches as well to determine
the values λrel independently for each voxel position [70].
Since the required amount of regularization depends roughly
on the signal-to-noise ratio (SNR), these approaches can be
more flexible when the SNR is spatially variant.

In [45, 47, 48], an oscillation index (OI) was defined
to determine the intensity of oscillations of the flow-scaled
residue function. The regularization can then be varied until
the OI value falls below a certain threshold.

The L-curve criterion represents a model-independent
method to determine λ (and λrel) [31, 71, 72]. The L-
curve is defined by a double logarithmic plot of the squared
Euclidean norm ‖kλ‖2

2 of the solution versus the squared
Euclidean norm ‖Akλ − c‖2

2 of the residual for a range of
different λ values. The optimal regularization parameter λopt

can be found at the location of the characteristic corner point
of the L-curve.

Another method to determine an appropriate regulariza-
tion parameter is generalized cross-validation as described in
[50, 73]. An implementation of the L-curve method and the
generalized cross-validation can be found in [52].

Furthermore, a parameter estimation method that uses a
priori knowledge of the behavior of the residue function was
proposed in [74].

Kudo et al. [68] reported that two manufacturers applied
a fixed threshold value λrel in their perfusion analysis
software. Unfortunately, the clinical use of methods with
adaptive threshold values is rarely described in the current
literature.

4.5. Perfusion Data Preprocessing. This section gives an over-
view of pre-processing techniques that can be applied in
order to enhance the quality of the estimated perfusion
parameters. Pre-processing occurs prior to the deconvo-
lution step which may be implemented as described in
Section 4.2.

A simple, yet mandatory, pre-processing step consists
of the conversion to contrast agent concentration values,
see Section 4.5.4. Further pre-processing steps are used
to enhance the image quality (e.g., noise reduction) and
to correct for artifacts (e.g., motion correction, partial
volume correction) and specific properties of the blood
(e.g., correction of differences in hematocrit). There are also
pre-processing steps that can optimize the analysis of the
perfusion value maps (e.g., segmentation of certain anatomic
structures) and the application workflow (e.g., automated
AIF estimation).

The order of the pre-processing steps presented in this
section can act as a guideline for their practical imple-
mentation. However, a different ordering can of course be
reasonable as well. Finally, this overview cannot include all
details regarding suitable pre-processing steps. The reader is
referred to the available literature for in-depth discussions.

4.5.1. Motion Correction. Patient motion (e.g., due to head
movement or breathing) can result in a sudden change

of the attenuation values at the fixed (stationary) voxel
positions. Since this change in the attenuation value is caused
by motion and not by contrast agent flow, the computed
perfusion values can be severely biased. A practical approach
for motion correction is to register all time frames of the
reconstructed data set onto the first time frame [75]. A
3D registration should be used because it can also correct
motion that occurs perpendicular to the orientation of the
reconstructed slices. For a brain perfusion scan, a rigid
registration may be sufficient. Conversely, in abdominal
perfusion imaging, a non-rigid registration may be better
suited to compensate for the deformations due to breathing.

As an alternative to registration, use of groupwise
motion correction based on an optimization of a global
cost function has been suggested [76]. There are also several
approaches for motion correction in fMRI data [77]. These
approaches may be used for perfusion MR data as well
since both types of data typically consist of T2∗-weighted
EPI images [78]. However, the dynamic signal changes are
relatively higher in DSC-MR data when compared to fMRI
data [78]—in particular during the contrast agent bolus
passage—which must be taken into account when adapt-
ing fMRI-based motion correction algorithms to DSC-MR
data.

A related issue is streak artifact in reconstructed per-
fusion CT images that are caused by patient motion that
occurs while the projection data corresponding to a single
time frame is acquired. In perfusion MR images, ghosting
artifacts can arise if the patient moves during the data acqui-
sition. These kinds of artifact cannot be corrected by inter-
frame motion correction. Instead, dedicated reconstruction
algorithms would be required. As a practical alternative,
time frames that exhibit severe reconstruction artifacts
may simply be removed from the data set (i.e., from the
series of successive time frames), which corresponds to the
elimination of invalid sampling points of the voxel-specific
time-concentration curves.

4.5.2. Noise Reduction. In the course of a perfusion exam,
the measured signal in tissue that is caused by the contrast
agent flow can be very low. For the case of perfusion
CT, for example, tissue enhancements of less than 10 HU
are measured. Hence, noise in the reconstructed images
can be of a similar order of magnitude as the signal in
tissue itself. Consequently, noise reduction should be taken
into consideration in order to improve the accuracy of the
estimated perfusion parameters.

Noise reduction can be implemented as a spatial smooth-
ing of the data. Using a basic approach, each time frame
can be filtered independently of the other time frames, and
linear isotropic filters (e.g., based on a Gaussian filter kernel)
may be applied. Alternatively, anisotropic filters that preserve
edges and avoid blurring of large vessels can also be employed
[79].

Both linear and nonlinear filtering in the tempo-
ral dimension—that is, between successive time frames—
represent further methods for noise reduction [80]. It
should be noted, however, that the regularization during
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the deconvolution step is equivalent to linear filtering in the
temporal domain.

Recently, sophisticated 4D filtering techniques have been
proposed that perform filtering in both the spatial and the
temporal dimension and that are optimized for perfusion
data [81, 82]. Fitting of the time-concentration curves to a
model function such as a gamma-variate function is also a
means for noise reduction [75].

4.5.3. Segmentation. A segmentation of certain anatomic
structures in the reconstructed data set can optimize the
perfusion image analysis [69, 83]. For example, the time-
concentration curves could then be analyzed only in regions
of interest where blood flow is actually expected [84]. Other
regions such as air, bone, cerebrospinal fluid (CSF), and
calcifications can be neglected. A segmentation and the
subsequent removal of vessels is useful in order to optimize
the quantitative analysis of perfusion parameters in tissue.
Such a vessel segmentation can be performed prior to the
deconvolution step, but it can also be implemented as a
postprocessing step as described in [85].

4.5.4. Conversion to Contrast Agent Concentration. Neither
for the case of CT imaging nor for the case of MR imaging
can the time-concentration curves cart(t) and cvoi(t) be
measured directly. Instead, the measurement is a super-
position of the signal from the tissue itself and the con-
trast agent. Since the deconvolution approach presented in
Section 4.2 expects that the functions cart(t j) and cvoi(t j)
only refer to the signal caused by the contrast agent, the
tissue signal must be subtracted. Furthermore, the measured
signal must be converted to a contrast agent concentration
value.

In perfusion CT, it is assumed that the (underlying) con-
trast agent concentration value is proportional to the (mea-
sured) X-ray attenuation value [86, 87]. Since deconvolution
is a linear operation, the constant of proportionality does
not influence the computed flow-scaled residue function. It
can also be seen that the additional perfusion parameters
from Section 3.5 are independent of this constant. Therefore,
this constant is usually set to kct = 1 g/mL/HU for the
sake of simplicity. The baseline value μ0 can be computed
as the mean of μ(t j) during the B acquired time frames
before the contrast agent bolus arrives in the arterial input
function. The conversion formula from an attenuation
value μ(t j) (corresponding to a particular voxel) into the
respective contrast agent concentration value c(t j) then reads
as

c
(
t j
)
= kct

(
μ
(
t j+B−1

)
− μ0

)
,

μ0 = 1
B

B∑
i=1

μ(ti).
(47)

In perfusion MR, however, the contrast agent concen-
tration value is not proportional to the received signal s(t j)

(in one voxel). Instead, it can be determined using the
following formula:

c
(
t j
)
= −kmr

TE
ln

⎛
⎝ s
(
t j+B−1

)

s0

⎞
⎠,

s0 = 1
B

B∑
i=1

s(ti),

(48)

see [21]. Here, kmr is a constant of proportionality which—
with a similar argument as for kct—can have a norm of 1 and
TE is the echo time of the MR sequence. It must be noted,
however, that the constant kmr can be different for blood and
tissue due to differences in T2∗ relaxivities [37, 88]. This
complicates absolute quantification of cerebral perfusion
as discussed in [89]. Furthermore, studies have shown
that fully oxygenated blood, for example, demonstrates a
nonlinear relationship between the measured difference in
T2∗ relaxation rate and contrast agent concentration [90].

Note that if only one time frame is considered as the
baseline (i.e., if B = 1), then c(0) = 0, and the matrix
A defined by (37) and (38) will be rank deficient, compare
Section 4.2.

4.5.5. Correction of Hematocrit Differences. Hematocrit (Hct)
is a value that describes the proportion of the blood that
consists of red blood cells. Hct is higher in arteries than
in capillaries. Consequently, the proportion of the plasma
in the blood, given by the difference (1-Hct), has a higher
value in capillaries than in arteries. Since the contrast agent
is distributed in the plasma only, the amount of plasma has
a direct influence on the measured Hounsfield value or MR
relaxation rate.

If the Hct difference is not corrected, it may bias the
absolute quantification of the contrast agent concentration.
A constant dimensionless correction factor κ, derived from
the known Hct values in arteries and capillaries (often set to
κ = 0.73) has been proposed [22, 85]. The measured time-
concentration curve cvoi(t) is then multiplied with κ to avoid
the bias due to different Hct values.

4.5.6. Automated AIF Estimation. The total time for the
perfusion image analysis can be shortened and the analysis
can be made user independent by an automated estimation
of the arterial input function. Several methods have been
proposed that detect one global AIF [91–93].

An interesting alternative approach is to estimate several
local AIFs, which would be better suited to the theoretical
model that was introduced in Section 3 [94–96]. Since the
local arteries are often small, this approach can have several
disadvantages [89]. For example, partial volume effects—
compare Section 4.5.7—can be more severe when compared
to choosing one global AIF in a larger vessel. Perfusion
analysis using local AIFs is actually investigated in [97]
and the authors state that it produced more useful CBF
maps.

Besides the arterial input function cart(t) the venous
outflow function cven(t) could also be detected automatically.
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Knowledge about the venous outflow function could be used
to automatically correct for partial volume effects which are
described next.

4.5.7. Correction of Partial Volume Effects in the AIF. Due
to limited spatial resolution in reconstructed perfusion CT
and MR data, the AIF can suffer from partial volume effects
[26]. This effect can lead to an underestimation of the AIF
and consequently to incorrect perfusion values. To correct
for partial volume effects in the AIF, several methods have
been proposed [98–100]. Commonly, the peak concentration
value within a larger venous vessel or the area under the curve
of a large venous vessel is used to rescale the AIF [31].

5. Summary

We have presented an overview of algorithms for the estima-
tion of the most prominent perfusion parameters from CT
or MR measurements that play an essential role in the assess-
ment of flow altering diseases such as stroke, for example. In
particular, we have emphasized the class of deconvolution-
based methods that result from the application of the
indicator-dilution theory, which is also derived in detail.
Alternative approaches that do not use a deconvolution
method are addressed briefly as well. The robust numerical
solution of the resulting system of linear equations represents
the second major topic of this paper. We have included a
detailed discussion regarding the application of the singular
value decomposition method as well as the practically
relevant introduction of a suitable regularization technique
in order to avoid physiologically unrealistic behavior of the
estimated solution. Since this paper is intended to provide
an introduction both to the underlying theory and to
implementation-relevant aspects, we have provided a survey
of preprocessing techniques that should be considered when
designing a clinically useful tool for CT or MR perfusion
analysis.

The novel contribution of this paper is to present the
fundamental model, the mathematical deconvolution with

regularization, and the practical pre-processing steps in one
place. For a thorough understanding of perfusion image
analysis, knowledge of all of these aspects is important and
we have elaborated several links between these topics.

Appendix

The matrix A in (38) can be replaced by a block-circulant
matrix Acirc to reduce the influence of the bolus delay,
compare Section 4.1, and thus to become independent of
time shifts in the tissue time-concentration curve. Several
studies actually exhibited an improvement of the accuracy
of the perfusion estimates when using this alternative
discretization method compared to the approach given by
(36) [47, 48, 101]. On the other hand, in a receiver operating
characteristics analysis—concerning infarct prediction in
acute stroke patients—both discretization methods led to
almost equal results [36].

The elements ai, j of A ∈ RN×N—with i denoting the row
index (i = 1, . . . ,N) and j denoting the column index ( j =
1, . . . ,N) as usual—are defined as

ai, j =
⎧⎪⎨
⎪⎩
Δtcart

(
ti− j+1

)
, for j ≤ i,

0, for j > i,
(A.1)

see (37). In order to assemble the block-circulant matrix
Acirc, the size of the time series cart(t j) must be increased from
N to M (M ≥ 2N) using zero padding. We denote the new
zero-padded time series as c̃art(t j). The size of cvoi(t j) must be
changed accordingly in order to retain consistency in (38).

The elements (acirc)i, j of the block-circulant matrix
Acirc ∈ RM×M can then be defined as

(acirc)i, j =
⎧⎪⎨
⎪⎩
Δtc̃art

(
ti− j+1

)
, for j ≤ i,

Δtc̃art

(
tM+i− j+1

)
, for j > i.

(A.2)

As an example, for M = 2N , the matrix Acirc has the
following structure:

Acirc = Δt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cart(t1) 0 · · · 0 0 cart(tN ) · · · cart(t2)
cart(t2) cart(t1) · · · 0 0 0 · · · cart(t3)

...
...

. . .
...

...
...

. . .
...

cart(tN ) cart(tN−1) · · · cart(t1) 0 0 · · · 0

0 cart(tN ) · · · cart(t2) cart(t1) 0 · · · 0
0 0 · · · cart(t3) cart(t2) cart(t1) · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 cart(tN ) cart(tN−1) · · · cart(t1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.3)

The horizontal and vertical lines drawn in (A.3) sub-
divide the matrix into four quadrants. As can be seen, the

matrix A is a submatrix of Acirc, and it appears in the upper
left and lower right quadrant.
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