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High-throughput technologies such as transcriptomics, proteomics, and metabolomics

show great promise for the discovery of biomarkers for diagnosis and prognosis.

Selection of the most promising candidates between the initial untargeted step and

the subsequent validation phases is critical within the pipeline leading to clinical tests.

Several statistical and data mining methods have been described for feature selection:

in particular, wrapper approaches iteratively assess the performance of the classifier on

distinct subsets of variables. Current wrappers, however, do not estimate the significance

of the selected features. We therefore developed a new methodology to find the smallest

feature subset which significantly contributes to the model performance, by using a

combination of resampling, ranking of variable importance, significance assessment

by permutation of the feature values in the test subsets, and half-interval search. We

wrapped our biosigner algorithm around three reference binary classifiers (Partial Least

Squares—Discriminant Analysis, Random Forest, and Support Vector Machines) which

have been shown to achieve specific performances depending on the structure of the

dataset. By using three real biological and clinical metabolomics and transcriptomics

datasets (containing up to 7000 features), complementary signatures were obtained

in a few minutes, generally providing higher prediction accuracies than the initial full

model. Comparison with alternative feature selection approaches further indicated that

our method provides signatures of restricted size and high stability. Finally, by using our

methodology to seek metabolites discriminating type 1 from type 2 diabetic patients,

several features were selected, including a fragment from the taurochenodeoxycholic

bile acid. Our methodology, implemented in the biosigner R/Bioconductor package and

Galaxy/Workflow4metabolomics module, should be of interest for both experimenters

and statisticians to identify robust molecular signatures from large omics datasets in the

process of developing new diagnostics.

Keywords: feature selection, biomarker, molecular signature, omics data, partial least squares, support vector

machine, random forest

1. INTRODUCTION

High-throughput, non-targeted, technologies such as transcriptomics, proteomics, and
metabolomics, show great promise for the discovery of molecular markers which allow to
efficiently discriminate between biological or clinical conditions of interest (e.g., disease vs.
control states; Nicholson, 2006; van ’t Veer and Bernards, 2008; Boja et al., 2011). In particular,
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metabolomics, by focusing on the end-product of biochemical
reactions, has a strong potential for phenotype characterization
and biomarker discovery (Holmes et al., 2008; Zhang et al.,
2015). Recent studies have described candidate biomarkers for
the diagnosis or prognosis of many diseases, including diabetes
(Wang et al., 2011), kidney diseases (Rowe et al., 2013; Zhao,
2013; Posada-Ayala et al., 2014), cancer (Chen et al., 2011;
Armitage and Barbas, 2014), and neurodegenerative diseases
(Graham et al., 2013; Mapstone et al., 2014).

Powerful statistical and data mining approaches have been
developed to learn classification rules from omics datasets despite
the high feature over sample ratio and the large proportion of
correlated features (Trygg et al., 2007; Scott et al., 2013; Tarca
et al., 2013). Such approaches include Support Vector Machines
(SVM; Boser et al., 1992), Partial Least Square—Discriminant
Analysis (PLS-DA; Wold et al., 2001; Barker and Rayens, 2003),
and Random Forest (Breiman, 2001), which have been widely
used in transcriptomics, proteomics, and metabolomics (Brown
et al., 2000; Diaz-Uriarte and Alvarez de Andres, 2006; Madsen
et al., 2010; Robotti et al., 2014). Although these models can
achieve good predictions accuracies, the excess of features in the
training dataset increases both the risk of overfitting and the
prediction variability. In addition, in the context of biomarker
discovery and clinical diagnostic, selection of a restricted list of
candidate markers is mandatory before entering the subsequent
qualification/verification phases (Baker, 2005; Rifai et al., 2006;
Keating and Cambrosio, 2012).

Since the comprehensive analysis of all 2p combinations
of p features is not computationally tractable for large omics
datasets, several statistical and data mining techniques for feature
selection have been described with the common goal of extracting
a restricted list of variables (i.e., a molecular signature) still
providing high performance of the classifier (Guyon and Elisseeff,
2003; Saeys et al., 2007). One strategy consists in filtering the
features before building the classifier (Golub et al., 1999). In such
filter techniques, features are ranked according to a univariate
(e.g., p-value from hypothesis testing of median differences
between the two classes) or a multivariate metric (e.g., Variable
Importance in Projection, VIP, from PLS-DA), and a threshold
is applied. Filter methods are fast; however, since the selection
is performed before the final model is built, the selected features
may not be optimal for the classifier performance. In addition,
the choice of the threshold may be subjective, and the size of
the signature may be large. A second type of methods combines
feature selection and model construction in a single step: by
including a penalization constraint within the algorithm building
the classifier, the embedded approaches limit the number of
features with non-zero coefficients in the final model (e.g.,
Lasso, Tibshirani, 1996, Elastic Net, Zou and Hastie, 2005,
and sparse PLS, Chun and Keles, 2010). Such strategies are
computationally efficient but the signature may be large and
subject to substantial variation upon repetition of the algorithm
(instability). Moreover, only one type of classifier is used, whereas
several studies have shown that best classification performances
are obtained by distinct models depending on the structure
of the dataset (Guo et al., 2010; Tarca et al., 2013; Determan,
2015). Therefore, a third category of approaches, called wrapper

methods, are of interest because they can be applied to any
classifier, and take into account the specificities of the classifier
in the process of feature selection (Kohavi and John, 1997).

The wrapper feature selection methods (e.g., Recursive
Feature Elimination, RFE, applied to SVM; Guyon et al., 2002)
iteratively (i) select groups of features which still provide a good
classification accuracy, and (ii) re-build the model on the data
subset. Several heuristics have been described to find optimal
combination of features (either deterministic, such as forward
and backward selection of individual or groups of variables, or
stochastic, such as genetic algorithms or simulated annealing;
Kuhn and Johnson, 2013). A limitation of current wrapper
methods is that the selection criterion is based on the classifier
performance only: the added-value of including a particular
group of features instead of noise into the model (which we
call the feature subset significance hereafter) is not evaluated.
Here, we therefore propose a new wrapper algorithm based
on random permutation of feature intensities in test subsets
obtained by resampling, to assess the significance of the features
on the model performance. We wrapped our algorithm around
three classifiers, namely PLS-DA, Random Forest, and SVM, and
applied our feature selection approach to four real metabolomics
and transcriptomics datasets, including one unpublished clinical
LC-HRMS analysis of plasma samples from diabetic patients.
We show that restricted, complementary, and stable molecular
signatures are obtained, and that the corresponding models have
high prediction accuracies.

2. THEORY

The objective of our method is to find the significant feature
subset necessary for a classifier to optimally discriminate
between two classes. Given a machine learning methodology, our
algorithm thus provides both the molecular signature (i.e., the
significant feature subset) and the trained classifier, which can
subsequently be used for prediction on new datasets. Feature
selection is based on a backward procedure in which significance
of each feature subset is estimated by random permutation of the
intensities. The dataset is then restricted to the significant feature
subset, and the whole procedure is performed iteratively until,
for a given round, all candidate features are found significant
(in this case the signature consists of these features), or until
there is no feature left to be tested (in this case the signature is
empty). The algorithm thus consists of three steps (Algorithm 1

and Figure 1):

1. Bootstrap resampling. A boot number of subsets (default is
50) are obtained by bootstrapping. Each subset consists of a
training set (traink,1≤k≤boot) and the inferred test set (testk).
On each traink set, a model (modelk) is then trained. Note that
no other model needs to be built up to step 4, thus reducing
the computation burden. Eachmodelk is evaluated on the testk,
and the balanced prediction accuracy is computed (accuracyk).

2. Feature ranking. For each modelk, the features are ranked
according to a metric rankk (the default metric is variable
importance in projection, VIP, for PLS-DA, Wold et al., 2001,
variable importance for Random Forest, Breiman, 2001, and

Frontiers in Molecular Biosciences | www.frontiersin.org 2 June 2016 | Volume 3 | Article 26

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Rinaudo et al. biosigner: Significant Omics Signature Discovery

squared weights for SVM, Guyon et al., 2002). Finally, the
rankk are aggregated by computing the median to obtain the
final ranking:

rank = RANK(MEDIAN1≤k≤boot(rankk)) (1)

where RANK andMEDIAN are the usual ranking and median
functions.

3. Selection of significant features. The objective of this step is
to discard all non-significant features from the dataset. The
method consists in finding the largest non-significant feature
subset Sf = {g|rank(g) ≥ rank(f )} (or, equivalently, the
feature fns of lowest rank such that Sfns is not significant). A
half-interval search algorithm is used to find fns: for a given
f , the significance of Sf is estimated by randomly permuting
all Sf feature intensities in the testk subsets (Figure 2),
and computing the predictions accuracies of the modelk on
these permuted subsets (accuracyk,perm). If the proportion
of accuracyk,perm ≥ accuracyk over all boot comparisons is
above a defined threshold (5% by default), Sf is declared not
significant, and the next candidate feature f ′ has the rank
closest to the mean of rank(h)− 1 and rank(f )+ 1, where h is
the last significant feature detected. Otherwise Sf is significant,
and the next f ′ is the feature with the rank closest to the mean
of rank(f )−1 and rank(l)+1 where l is the last non-significant
feature detected. At the end of the half-interval search, the

dataset is restricted to the features of ranks < rank(fns). If no
feature has been found significant, the dataset is restricted to
the half of features with lowest ranks, but these features are not
registered as significant in this round.

4. Building the final model. Steps 1–3 are repeated until, for a
given round, candidate features are all found significant (these
features then correspond to the signature), or until there is no
feature left to be tested (the signature is empty). When the
signature is not empty, the final model is then obtained by a
single training on the dataset containing all observations and
restricted to the features from the signature.

3. MATERIALS AND METHODS

3.1. Datasets
• LC-HRMSmetabolomics

• sacurine: Urine from human adults
The metabolomics analysis of urine samples from a

cohort of employees from the CEA Saclay research institute
by liquid chromatography coupled to high-resolution mass
spectrometry (LC-HRMS) has been described previously
(Roux et al., 2012; Thevenot et al., 2015). Briefly, the
samples were analyzed by ultra-high performance liquid
chromatography (Hypersil GOLD C18 column, Thermo
Fisher) coupled to a high-resolution mass spectrometer

FIGURE 1 | Description of the biosigner algorithm for feature selection (see Section 2 for details). The algorithm is wrapped around the PLS-DA, Random

Forest, and SVM binary classifiers.
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Algorithm 1 The biosigner algorithm. The inputs areX: sample×
feature matrix of intensities; α: significance level; and boot:
number of bootstraps.

1: function BIOSIGNER(X, α, boot)
2: while the algorithm has not converged and X contains

features do
3: Create boot training sets traink and test sets testk by

bootstrapping [step 1]
4: for each training set traink do
5: Train the modelmodelk
6: Compute the feature ranking rankk according to

the selected metric
7: Compute the balanced prediction accuracy

accuracyk using testk
8: end for

9: Compute the feature final ranking according to
equation 1 [step 2]

10: Half-interval search for the largest non-significant
feature subset S using α as the threshold rate [step 3]

11: Restrict X to the features not in S
12: end while

13: Repeat the while procedure above until either X is
constant (i.e., the S subset from the last round was empty),
or until X does not contain any feature left [step 4]

14: If X contains features, return the model trained on X

15: end function

(LTQ-Orbitrap Discovery, Thermo Fisher). The raw files
were preprocessed by using the XCMS (Smith et al.,
2006) and the CAMERA R packages (Kuhl et al., 2012).
Annotation at levels 1 and 2 from the metabolomics
standard initiative (MSI; Sumner et al., 2007) was
performed by in-house and public databases query in
addition to MS/MS experiments. Finally, the intensities
of the annotated metabolites were validated by using the
Quan Browser module from the Xcalibur software (Thermo
Fisher), corrected for signal drift and batch-effect, and log10
transformed (Thevenot et al., 2015). Here, we used the
sacurine subset corresponding to the negative ionization
mode, which consists of 183 samples and 109 annotated
metabolites, and is available from the ropls R Bioconductor
package.

• spikedApples: Apples spiked with known compounds
One control group of 10 apples and several spiked

sets of the same size have been analyzed by LC-HRMS
(SYNAPT Q-TOF, Waters; Franceschi et al., 2012). The
spiked mixtures consisted of 2 compounds which were not
naturally present in the matrix, and 7 compounds aimed at
achieving a final increase of 20–100% of the endogeneous
concentrations. The dataset is included in the BioMark R
Bioconductor package (Franceschi et al., 2012). The control
and the first spiked groups (i.e., a total of 20 samples) were
used in this study.

• diaplasma: Plasma from diabetic patients
Collection of plasma samples from type 1 and type 2

diabetic patients (Hôtel-Dieu, Paris, France) was performed

with informed consent of the subjects, in accordance with
the 1964 Helsinki declaration and its later amendments.
Samples were analyzed by ultra-high performance liquid
chromatography (Nexera, Shimadzu) coupled to a high
resolution mass spectrometry operating in the negative
ionization mode (Orbitrap Exactive, Thermo Fisher). Raw
data were processed with XCMS (Smith et al., 2006)
and CAMERA (Kuhl et al., 2012), and the resulting
peak table was annotated by matching the measured
m/z and retention times against an in-house database
from MS spectra of pure compounds. Signal drift was
corrected by using a loess fit of the intensities from
quality control (pool) samples injected periodically (Dunn
et al., 2011; Thevenot et al., 2015). Features which did
not meet the following quality control criteria were
discarded: (i) ratio of mean intensity in samples over
mean intensity in blanks (mobile phase only) >2, (ii)
significant correlation between the intensities of the diluted
pool samples and the dilution factor, and (iii) coefficient
of variation of pool intensities <30%. Five samples
with p-values < 0.001 by using either the Hotellings’
T2 outlier test, or the Z-score corresponding to the
highest deviation of intensity quantiles (Alonso et al.,
2011) were removed. Finally, the intensities were log10
transformed and the few missing values (< 0.01%) were
set to 0.

• Microarray transcriptomics

• leukemia: Bone marrow from acute leukemia patients
Samples from patients with acute lymphoblastic (ALL,

47 patients) or myeloid (AML, 25 patients) leukemia have
been analyzed by using Aymetrix Hgu6800 chips. The
resulting dataset contains expression data from 7129 gene
probes (Golub et al., 1999), and is available from the
golubEsets R Bioconductor package.

3.2. The biosigner Algorithm
The principles of the algorithm are detailed in the Theory section
and are illustrated in Figures 1, 2.

3.2.1. Wrapped Classifiers
The algorithm was independently wrapped around three
machine learning approaches, namely Partial Least Squares—
Discriminant Analysis (PLS-DA), Random Forest, and
Support Vector Machines (SVM), by using the following
implementations:

• Partial Least Squares Discriminant Analysis (PLS-DA)

The PLS-DA implementation from the ropls bioconductor
package (Thevenot et al., 2015; version 1.2.2) was used after
mean-centering and unit-variance scaling of the features.
Briefly, the binary response is converted to a numeric
vector y of values in {-0.5; 0.5}, and a PLS regression is
performed with the NIPALS algorithm (Wold et al., 2001;
Barker and Rayens, 2003). The number of components is
determined automatically as follows (Eriksson et al., 2001): a
new component h is added to the model if :
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FIGURE 2 | Determination of the largest non-significant subset of features (step 3 of the biosigner algorithm). During the two first steps of the algorithm,

the dataset has been split into train and test subsets by resampling, and features have been ranked according to their aggregated importance for the classifier built on

the train subsets (the lower the rank, the higher the importance). In this third step, half-interval search is used to find the feature of lowest rank, fns such that the

subset Sfns of all features with ranks ≥ rank(fns ) is not significant (i.e., random permutation of all Sfns feature intensities in the test subsets does not significantly

decrease the prediction accuracy of the model). In this example, the permutation of all features (green, 1st iteration) significantly reduced model accuracy, but not the

permutation of the 50% features with highest ranks (red, 2nd iteration), nor the 75% of features with highest ranks (red, 3rd iteration).

1. R2Yh > 1%, i.e., the percentage of y variance explained by
component h is more than 1%, and

2. Q2Yh = 1−PRESSh/RSSh−1 > 0 (or 5% when the number
of samples is less than 100), i.e., the predicted residual
sum of squares (PRESSh) of the model including the new
component h estimated by 7-fold cross-validation is less
than the residual sum of squares (RSSh−1) of themodel with
the previous components only (with RSS0 = (n−1)var(y)).

Finally, the predictive performance of the full model is
assessed by the cumulative Q2Y metric: Q2Y = 1 −
r∏

h=1

(1 − Q2Yh). We have Q2Y ∈ [0, 1], and the higher

the Q2Y , the better the performance. However, models
trained on datasets with a larger number of features
compared with the number of samples can be prone to
overfitting: in that case, high Q2Y values are obtained by
chance only. To estimate the significance of Q2Y (and
R2Y) values, Szymanska et al. (2012) therefore proposed to
perform permutation testing: models are built after random
permutation of the y values, and Q2Yperm are computed. The
p-value is equal to the proportion of Q2Yperm above Q2Y
(in this study, the number of random permutations was set
to 1000).

• Random Forest

The implementation of the method from Breiman (2001)
in the randomForest R package was used (Liaw and Wiener,
2002; version 4.6.10). The number of trees was set to 500, and
the number of candidates randomly sampled at each split was
the squared root of the total number of features.

• Support Vector Machine (SVM)

The e1071 R package (Meyer et al., 2014; version 1.6.4)
implements the libsvm algorithm (Chang and Lin, 2011).
Features were mean-centered and unit-variance scaled prior
to linear SVMmodeling with cost = 1.

3.2.2. Resampling (Step 1)
The default number of bootstraps was 50.

3.2.3. Feature Ranking (Step 2)
The following metrics were used: the variable importance in
projection (VIP) for PLS-DA (Wold et al., 2001), the variable
importance based on the error rate for Random Forest (Breiman,
2001), and the squared weights for SVM (Guyon et al., 2002).

3.3. Quality of the Feature Selection
The (balanced) prediction accuracy of a classifier is the mean
of sensitivity and specificity. The stability of the signature was
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determined as follows: the dataset was split into 10 subsets,
each containing 90% of the samples, and the feature selection
approach was applied to each subset, resulting in 10 signatures.
The stability was the average similarity over all pairs of signatures.
We used the similarity measure proposed by Lustgarten and
colleagues, since (i) it is adjusted for the commonality of subsets
obtained by chance only, and (ii) it allows to compare signatures
of different sizes (Lustgarten et al., 2009). The performance-
robustness trade-off (hereafter performance) was computed
as the harmonic mean of accuracy and stability (Determan,
2015).

3.4. Compared Feature Selection Methods
3.4.1. Filter Methods
Features were filtered according to their VIP value from PLS-DA,
at a threshold of either 1 or 1.5.

3.4.2. Wrapper Methods
We implemented recursive feature elimination (RFE) for SVM
as described in Guyon et al. (2002). We used a 50 bootstrap
resampling strategy (identical to biosigner), and removed the 20%
features with highest ranks at each iteration. The subset giving
the best prediction accuracy was selected. The same approach
was also implemented for PLS-DA and Random Forest. For each
classifier, the machine learning parameters and feature ranking
metrics are identical to those from the biosigner algorithm, as
described above.

3.4.3. Embedded Methods
Prediction analysis for microarrays (PAM; also called nearest
shrunken centroids), sparse PLS-DA, and Lasso/Elastic net were
performed with the the pamr (Hastie et al., 2014), spls (Chung
et al., 2013), and glmnet (Friedman et al., 2010) R packages,
respectively.

3.5. Software
The biosigner package was written in R (R Core Development
Team, 2015; version 3.2.2) and is available (http://bioconductor.
org/packages/biosigner) from the Bioconductor repository
(Gentleman et al., 2004). It includes the diaplasma LC-HRMS
metabolomics dataset. The package was run on a laptop
computer (Windows 7; Intel Core i5 2.6 GHz processor;
8 GB RAM). The biosigner algorithm is also available
with a graphical interface, as a Galaxy module within the
Workflow4Metabolomics.org online resource for computational
metabolomics (http://workflow4metabolomics.org; Giacomoni
et al., 2015).

4. RESULTS

4.1. Development of the biosigner

Algorithm
We developed a new wrapper algorithm to select features
which significantly improve the prediction of any binary
classifier (see Section 2 and Figure 1). A feature subset
Sf is declared significant if the predictions on test subsets
(generated by resampling) are less accurate after randomly

permuting the intensities of all features in Sf (Figure 2).
The dataset is then restricted to the significant features and
the procedure is iterated until the set of significant features
remains unchanged (i.e., corresponds to the final signature),
or until there is no feature left in the dataset to be tested
(Theory section and Figure 1). The algorithm was wrapped
around three machine learning approaches, namely Partial
Least Squares Discriminant Analysis (PLS-DA), Random Forest,
and Support Vector Machine (SVM), which rely on specific
mathematical backgrounds (latent variables, decision trees, and
kernel methods, respectively). For each classifier, the biosigner
algorithm therefore returns a stable final S signature (possibly
empty), in addition to several tiers (from A to E) corresponding
to the features discarded during one of the previous iterations
(e.g., features from the A tier were selected in all but the last
iteration).

4.2. Evaluation on Published Metabolomics
and Transcriptomics Datasets
We addressed the performance of the biosigner algorithm
by analyzing the signatures obtained on two metabolomics
and one transcriptomics real datasets. We started with a
well-annotated human metabolomics dataset, in which the
concentrations of 109 metabolites have been measured in
urine samples from a cohort of 183 adult volunteers by
using liquid chromatography coupled to high-resolution mass
spectrometry (LC-HRMS, Thevenot et al., 2015). A previous
study of the physiological concentration differences between
males and females using this sacurine dataset (Thevenot et al.,
2015) has shown that: (i) no specific gender clusters were
observed by Principal Component Analysis (PCA), (ii) 45
metabolites had a significant difference of medians between
genders (with Mann-Whitney U-tests and a False Discorvery
Rate threshold of 5%), and (iii) PLS-DA modeling of gender
had a significant Q2Y value of 0.58 (metric between 0 and
1 estimating the prediction performance by cross-validation;
see Section 3). By applying the biosigner algorithm, signatures
consisting of 2 (RandomForest) or 3 (PLS-DA, SVM)metabolites
(i.e., less than 3% of the initial features) were identified
(Figure 3A). Testosterone glucuronide was common to all 3
signatures, and oxoglutaric acid and p-anisic acid to 2 of
them. All selected metabolites had a clearcut difference of
intensities between males and females (Figure 4A). Prediction
accuracies of the models restricted to the signatures were all
superior or equal to the models trained on the full dataset
(Table 1).

We then studied a recently published metabolomics dataset
spiked with known compounds (Franceschi et al., 2012).
The spikedApples dataset results from the LC-HRMS analysis
of groups of apples which have been spiked with various
concentrations of 7 endogenous metabolites and 2 exogenous
compounds. The peak table used in this study consists of two
groups of 10 apple samples (control and spiked), and 1632 features
(among which 22 were identified by the authors as originating
from the spiked molecules; Franceschi et al., 2012). Preliminary
modeling of the control vs. spiked response by PLS-DA with the
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FIGURE 3 | biosigner discovery of molecular signatures from biological and clinical omics datasets. (A,B,D) The sacurine, spikedApples, and diaplasma

metabolomics datasets result from the LC-HRMS analysis of, respectively, urines from male or female adult volunteers (Thevenot et al., 2015), control apples or apples

spiked with a mixture of known compounds (Franceschi et al., 2012), and plasma from type 1 or 2 diabetic patients (see Section 3). (C) The leukemia transcriptomics

dataset has been obtained by microarray analysis of bone marrow from patients with acute lymphoblastic or myeolid leukemia (Golub et al., 1999). The biosigner

signatures of gender (sacurine dataset), spiking (spikeApples), ALL/AML leukemia (leukemia), and diabetes type (diaplasma) obtained independantly by each of the 3

classifiers are shown (for diaplasma, the extended signatures up to tier A are displayed). The S tier corresponds to the final signature, i.e., metabolites which passed all

the selection iterations determining whether the candidate variables significantly improve the model prediction. In contrast, metabolites from the other tiers were

discarded during all but the last (A) or previous (B to E) iterations. RF, Random Forest.

full dataset indicated that the Q2Y was not significant: feature
selection was therefore mandatory to avoid overfitting (Table 1).
The biosigner algorithm identified complementary signatures of
1 or 2 features (Figure 3B). Classifiers trained on the dataset
restricted to the signatures outperformed the models trained
on the full dataset. Interestingly, the single features selected
by PLS-DA and Random Forest corresponded to cyanidin-3-
galactoside and a potassium adduct of phloridzin, respectively,
which both belong to the list of expected discriminating
metabolites: the former is absent from the natural matrix
(control group), and the concentration of the latter is increased
up to 80% in the spiked group (Franceschi et al., 2012;
Figure 4B). Surprisingly, the two features selected by SVM are
less concentrated in the spiked group (Figure 4B). It should

be noted, however, that such a decrease in concentrations
was found significant by univariate hypothesis testing for a
total of 9 features (including 722.5/619.1), compared with 17
features with significantly increased concentrations. The high
proportion (35%) of features with decreased concentrations
among the discriminating signals may therefore explain why
two of them have been included in the SVM classification
rule.

Finally, to demonstrate that our approach can be applied
to other omics data, we analyzed the reference transcriptomics
dataset resulting from the microarray analysis of bone marrow
samples from 72 leukemia patients (Golub et al., 1999).
Preliminary univariate hypothesis testing indicated that 1154
out of the 7129 features were significant for median difference
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FIGURE 4 | Individual boxplots of the features selected by at least one of the classification methods. (A–C) Features specifically selected by a single

classifier are colored (red for PLS-DA, green for Random Forest, and blue for SVM). (D) For the diaplasma dataset, two representative features from the A PLS-DA tier

are also displayed. M/F, male/female; ctrl, control; ALL/AML, acute lymphoblastic/myeloid leukemia; T1/T2, type 1/type 2 diabetes.

between the lymphoblastic and myeloid groups. In addition,
the two groups were clearly visible on the score plots from
PLS-DA, but not PCA (data not shown). Our algorithm
identified signatures from 1 to 2 gene probes (Figures 3C, 4C).
Random Forest and SVM (but not PLS-DA) models trained
on the signatures had superior or equal prediction accuracies
than the classifiers trained on the full dataset (Table 1). The

four selected features ranked 1st, 5th, 7th, and 12th in the
list of significant variables by univariate hypothesis testing,
ordered by increasing p-values. Three of them, cystatin C,
zyxin, and CD33, were also part of the 50 gene signature
selected by Golub and colleagues on the basis of a filter
metric derived from the Student’s statistic (Golub et al.,
1999).
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TABLE 1 | Molecular signatures extracted by biosigner from metabolomics and transcriptomics biological and clinical datasets, and prediction

accuracies of the corresponding models before and after feature selection.

sacurine spikedApples leukemia diaplasma

Systems level Metabolomics Metabolomics Tanscriptomics Metabolomics

Groups male/female control/spiked ALL/AML type 1/type 2

Samples 183 20 72 69

Variables 109 1632 7129 5501

Sample/variable ratio 1.7 0.012 0.01 0.013

Time (min) 0.4 0.4 4.8 3.5

PLS-DA 3 1 1 2

Signature S Random forest 2 1 1 1

SVM 3 2 2 0

PLS-DA 5 2 2 5

Signature AS Random forest 3 3 2 2

SVM 8 20 5 2

Full 0.87 0.81 (ns) 0.95 0.83

PLS-DA AS 0.88 1 0.88 0.9

S 0.89 1 0.87 0.91

Full 0.86 0.92 0.92 0.81

Accuracy Random forest AS 0.87 1 0.93 0.82

S 0.86 0.99 0.92 0.81

Full 0.88 0.84 0.93 0.83

SVM AS 0.88 0.97 0.94 0.69

S 0.89 0.86 0.95 na

The accuracies of the models trained on the final S signatures are in bold. na: for the diaplasma dataset, no feature was selected as significant in the last iteration with the SVM classifier;

ns: the Q2Y value of the PLS-DA classifier on the full spikedApples dataset is not significant indicating that the model before feature selection is overfitted.

4.3. Application to the Discovery of
Signatures Discriminating Type 1 and Type
2 Diabetic Patients
We applied our methodology to the study of metabolomics
signatures between type 1 and type 2 diabetes mellitus. Plasma
samples from 69 diabetic patients were analyzed by LC-HRMS,
and a peak table containing 5501 features was obtained after file
preprocessing (see Section 3). Seven hundred features were found
significant by univariate hypothesis testing. It should be noted
that, because type 2 patients were significantly older than type 1
individuals in this cohort (as in the general population of diabetic
patients), some of the observed variations may be the result of
physiological aging (see Section 5). Unsupervised analysis by
PCA did not evidence any clustering according to diabetic type,
in contrast to PLS-DA modeling which resulted in a significant
Q2Y value of 0.46. By further applying the biosigner algorithm,
signatures of 1 and 2 features were obtained with the PLS-DA
and Random Forest classifiers, respectively (Figure 3D), in an
average computation time of 3.4 min pro classifier on a laptop
computer. The two features were highly significant by hypothesis
testing of difference between type medians (p < 10−7 and p <

10−6, respectively; Figure 4D), and to a lesser extent by testing of
correlation with age (p < 10−4 and p < 10−3) or body mass index

(p < 10−2 and p < 5× 10−2). Surprisingly, the S signature from
SVMwas empty (i.e., no feature was selected as relevant in the last
extraction round). We therefore investigated the features from
the antepenultimate (A) tier (Figure 3D): variables from the A
SVM signature were distinct from PLS-DA and Random Forest,
and the accuracy of the SVM model restricted to the A signature
decreased (from 83% to 69%; Table 1). In contrast, accuracies
of the PLS-DA and Random Forest models restricted to the S
signatures (91% and 81%, respectively) were both superior or
equal to the models trained on the full dataset (83% and 81%).

4.4. Stability of the Signatures and
Sensitivity/Specificity of the Selection
The influence of bootstraping on the stability of the S and S+A
signatures was assessed for each of the 4 datasets by increasing the
number of bootstraps from 5 to 200, and looking for differences
in stability by using repeated measure ANOVA. No significant
difference was observed above 20 bootstraps for PLS-DA and
SVM, and 10 bootstraps for Random Forest. The number of 50
bootstraps was thus selected as the default value in biosigner, and
used in all computations.

To assess the sensitivity and the specificity of the methodology,
datasets containing known discriminant variables were simulated
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(see Supplementary Material). To avoid making hypotheses
about the structure of an “omics” dataset (e.g., noise, intensity
distribution, etc.), we started from the real metabolomics
and transcriptomics datasets and removed all features which
were significant by univariate hypothesis testing (Wehrens and
Franceschi, 2012). We then increased the discriminant capacity
of one of the features by multiplying the intensities in one of
the sample groups by a factor. The factor was chosen so that the
target feature was still not detected at a False Discovery Rate of
0.05. By applying this methodology to our transcriptomics and
metabolomics datasets, we observed that, despite the high ratio
of variables to samples (up to 100 for the leukemia dataset), the
target feature was detected with a high sensitivity (from 60% up
to 100% in the union of the three classifier signatures) and a high
specificity (more than 98%; see Supplementary Material).

4.5. Comparison with Alternative Feature
Selection Methods
We compared our algorithm with 6 alternative approaches
for feature selection, namely VIP filtering (at the 1 and 1.5
thresholds; Mehmood et al., 2012), recursive feature elimination
wrapper (RFE; Guyon et al., 2002), and 4 embedded methods
(prediction analysis of microarray, PAM, also called nearest
shrunken centroids, Tibshirani et al., 2002, sparse PLS-DA, Chun
and Keles, 2010, Lasso, Tibshirani, 1996, and Elastic Net, Zou
and Hastie, 2005). In particular, to achieve a comprehensive
comparison between the biosigner and RFE wrapper approaches,
we applied the RFE methodology not only to SVM (as initially
described, Guyon et al., 2002) but also to PLS-DA and Random
Forest. For each algorithm, the accuracy of the final model, the
size and stability of the signature, as well as the performance
(harmonic mean between accuracy and stability) were computed
for each of the 4 datasets, and the running time on a laptop
computer was recorded (Table 2). The best performances were
achieved by using the biosigner algorithm: whereas higher
prediction accuracies could be obtained by regularized methods
such as Elastic Net, the signatures from biosigner were usually
more stable. Surprisingly, the stability of the Random Forest and
SVM biosigner signatures on the spikedApples dataset (and also
of the SVM signature on the diaplasma dataset) was low. The
variability observed with the spikedApples dataset may be due to
the small number of samples (10 in each group) in addition to
the very small proportion of discriminating signals. The median
and interquartile metric values for the sacurine, leukemia and
diaplasma datasets are plotted on Figure 5. We see that biosigner
selects restricted signatures, which are usually of high stability
and provide high prediction accuracy.

4.6. Implementations of the biosigner

Methodology into an R/Bioconductor
Package and a
Galaxy/Workflow4Metabolomics Module
To share the algorithm and its source code with the
bioinformatics community, a biosigner R package (http://
bioconductor.org/packages/biosigner) was published on the
Bioconductor repository (Gentleman et al., 2004). Furthermore,

to provide a graphical interface for the experimenter community,
we developed a Galaxy module which was integrated into the
Worfklow4Metabolomics (W4M) online infrastructure for
computational metabolomics (http://workflow4metabolomics.
org; Giacomoni et al., 2015). The full history (i.e., workflow and
associated input and output data) of the statistical analysis of the
diaplasma dataset described in this study is publicly available on
W4M, with the W4M00003 reference number.

5. DISCUSSION

We have developed a new algorithm for feature selection, named
biosigner, which iteratively removes subsets of features that
do not significantly improve the prediction accuracy of the
model. Compared with alternative wrapper approaches (such as
recursive feature elimination) based on the prediction accuracy
only, biosigner selects feature subsets which significantly improve
this prediction. The two main innovations of the algorithm are:
(1) the significance of a feature subset is estimated by comparing
the model predictions before and after random permutation
of the intensities of these features in test subsets generated by
resampling, and (2) the whole feature selection procedure is
repeated recursively until all features of the selected subset are
found significant, or until there is no feature left to be tested.
Since permutations occur only in the test subsets, the number
of models to be built is limited and the algorithm is fast (only
a few minutes on a laptop for datasets of several thousands of
variables). biosigner returns (i) the final S signature, (ii) the tiers
(A to E) containing the features discarded during one of the
previous selection rounds, and iii) the models trained on the S
(and S+A) signatures to be used for future predictions.

The term significance is usually associated in the statistical
literature to a hypothesis test and to a so called null hypothesis.
Here, we do not assess the significance of the model itself, but we
rather estimate the influence of a given subset of features on the
prediction accuracy of the model. However, since the number of
selected features in the final signature is restricted (i.e., smaller
than the number of samples), the risk of overfitting is limited.
Also, since the training and testing subsets are not set apart
during the full procedure (because of the resampling between the
selection rounds), the returned performance of the final model
may be slightly over-optimistic. External validation on a new
dataset is therefore required to refine the estimation of the model
accuracy (Esbensen and Geladi, 2010).

By wrapping the biosigner algorithm around 3 binary
classifiers with specific mathematical backgrounds (PLS-DA,
Random Forest, and SVM), we observed on three published
metabolomics and transcriptomics datasets that the signatures
had some degree of similarity (e.g., at least one of the
features in the tiers S+A was common to at least two
classifiers), but also included classifier-specific features. For
example, with the spikedApples dataset, SVM selects features with
opposite variations compared with PLS-DA and Random Forest.
The complementarity between the signatures is in agreement
with several recent studies reporting classifier-specific results
depending on the structure of the dataset (correlation between
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TABLE 2 | Comparison of biosigner with alternative feature selection methods.

Accuracy Stability Performance Number of features Time (min)

sacu spik leuk diap sacu spik leuk diap sacu spik leuk diap sacu spik leuk diap sacu spik leuk diap

VIP filter ≥ 1 0.87 1.00 0.97 0.85 0.56 0.50 0.54 0.57 0.68 0.67 0.70 0.68 36 332 2012 1344 0.1 0.3 2.1 0.9

≥ 1.5 0.88 1.00 0.96 0.91 0.90 0.70 0.76 0.73 0.89 0.83 0.85 0.81 5 72 418 345 0.1 0.4 2.1 0.9

PLS 0.88 1.00 0.84 0.90 0.97 1.00 0.64 0.98 0.92 1.00 0.73 0.94 4 1 2 2 0.7 1.0 8.2 3.1

biosigner RF 0.87 0.90 0.90 0.77 0.98 0.11 0.75 0.94 0.92 0.20 0.82 0.85 2 1 2 3 1.0 0.8 13.1 4.9

SVM 0.87 0.67 0.92 0.75 0.95 0.07 1.00 0.09 0.91 0.12 0.96 0.16 4 1 2 2 0.2 0.7 7.8 2.7

PLS 0.86 0.90 0.95 0.88 0.93 0.43 0.85 0.83 0.89 0.58 0.90 0.86 6 539 480 414 6.8 2.0 7.8 1.0

RFE RF 0.88 0.95 0.97 0.88 0.72 0.17 0.34 0.71 0.79 0.28 0.51 0.79 16 566 1705 101 0.7 0.0 0.2 0.1

SVM 0.92 0.95 0.97 0.80 0.52 0.90 0.86 0.69 0.66 0.92 0.91 0.74 28 41 438 91 2.5 1.1 7.4 2.4

PAM 0.83 1.00 0.95 0.81 0.35 1.00 0.69 0.54 0.49 1.00 0.80 0.65 64 1 1485 1575 0.0 0.0 0.1 0.0

sPLS 0.92 1.00 0.94 0.88 0.45 0.80 0.39 0.76 0.60 0.89 0.55 0.82 87 131 3280 685 0.5 1.6 75.3 15.5

Lasso 0.94 1.00 0.92 0.85 0.51 1.00 0.67 0.64 0.66 1.00 0.78 0.73 35 1 20 11 0.0 0.0 0.1 0.0

Elast. Net 0.94 1.00 0.95 0.85 0.48 1.00 0.79 0.67 0.64 1.00 0.86 0.75 42 2 60 69 0.0 0.0 0.1 0.0

The metrics obtained with the sacurine (sacu), spikedApples (spik), leukemia (leuk), and diaplasma (diap) datasets are shown (performance is the harmonic mean between the accuracy

and the stability). For each metric and each dataset, the method(s) with optimum value is/are in bold. Elast. Net, Elastic Net; PAM, prediction analysis of microarrays (also called nearest

shrunken centroids); RF, Random Forest; RFE, recursive feature elimination; sPLS, sparse PLS-DA; VIP filter, filtering by the variable of importance in projection metric from PLS-DA.

FIGURE 5 | Comparison of biosigner with alternative feature selection approaches. Metric values are from Table 2: the median and interquartile range for the

sacurine, leukemia, and diaplasma datasets are indicated as colored symbols and grays arrows, respectively. PAM: prediction analysis of microarrays (also called

nearest shrunken centroids); RF, Random Forest; RFE, recursive feature elimination; filter VIP, filtering by the variable importance in projection metric from PLS-DA.

features, noise, proportion of zeros intensities; Christin et al.,
2013; Tarca et al., 2013; Determan, 2015). The discrepancies come
from the specific weights each classifier assigns the variables (or
the samples in the case of SVM). In fact, if the same ranking
metric is used for all classifiers in our algorithm, signatures
become more similar (see Supplementary Material). The use
of classifier-specific metrics in biosigner (i.e., VIP for PLS-DA,
variable importance for Random Forest, and squared weights
for SVM) should therefore increase the chances of discovering
distinct features of interest.

The signatures obtained with the three datasets were short
(up to 3 features), and the restriction to these signatures usually

resulted in higher prediction accuracies of the classifiers (except
for the PLS-DA model on the leukemia dataset). Importantly,
restricting to small signatures also helped avoiding the risk of
overfitting: for instance, the high performance of PLS-DA model
of the spikedApples full dataset was not significant, contrary to the
model built on the single feature signature.

The selected molecules were also shown to be in good
agreement with the reported results: the 2 features from the
spikedApples PLS-DA and Random Forest signatures were related
to the spiked compounds (Franceschi et al., 2012), and the
3 gene probes selected by PLS-DA and SVM on leukemia
dataset were already included in the published signature (Golub
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et al., 1999). Interestingly, the probe selected by Random Forest,
myeloperoxidase, is a cytochemical marker for the diagnosis
(and also potentially the prognosis) of acute myeloid leukemia
(AML; Matsuo et al., 2003). Although myeloperoxidase would
also have been included in the published signature if the full
dataset had been used for training (as in this study) instead of
the 38 sample subset (Golub et al., 1999), this feature would
have been ranked only in the 24th position. Altogether, the above
results show that biosigner selects relevant signatures providing
high and significant prediction accuracy of the classifiers.

Comparison with alternative feature selection strategies
revealed that biosigner specifically selected stable signatures. In
contrast, Lasso and Elastic net classifiers showed higher accuracy
but the signatures were more prone to instability, in agreement
with a previous analysis of 4 transcriptomics datasets (Haury
et al., 2011): such methods can therefore be of high interest
when classification accuracy (instead of feature selection) is
the primary goal of the study. For feature selection, however,
stability is critical since the subsequent validation steps leading
to the diagnostic product will focus on the selected features only.
Surprisingly, the stabilities of the biosigner SVM signatures were
low for two of the datasets (diaplasma and spikedApples). This
suggests that the combination of backward selection and feature
ranking with the SVM square weights may result with some
datasets in the elimination of relevant features during the first
selection rounds.

The biosigner signatures were of restricted size. Such small
signatures are pivotal for diagnosis purposes, where only a
limited number of candidates are expected to enter the validation
phase. The size of the signatures may be a consequence of the
stringency of our selection algorithm, but also of the structure
of the datasets analyzed in this study, where a very few variables
are sufficient to efficiently discriminate between the two sample
groups. It should be noted that the criterion for feature selection
focuses on the added value of the tested features for model
performance. Hence, additional features with equal relevance for
predictionmay not appear in the final S signature. As an example,
only a fraction of the features related to the spiked compounds
in the spikedApples dataset is selected. If an extended view of
discriminating candidates is required, it may be of interest to look
also at the S+A signature. An alternative is to re-run the biosigner
algorithm after discarding the S signature, or after increasing the
value of the α significance threshold.

We applied our methodology to address a new clinical
question, namely the discovery of metabolomics signatures
between type 1 and type 2 diabetic patients. The etiology of
diabetes is complex (in particular the type 2, or insulino-
resistant, form), and new biomarkers are needed for prognosis
and diagnosis of the disease (Roberts et al., 2014). We thus
performed a metabolomics analysis of plasma samples from
diabetic patients by LC-HRMS. In this cohort, type 2 patients
are significantly older (p < 10−8) and, to a lesser extent, have
a higher body mass index (p < 10−7) than type 1 patients.
Matching (e.g., by age), however, would have resulted in a very
restricted subset of only 14 patients, in which no type 2 vs. type
1 significant feature could be found by univariate testing nor
biosigner feature selection.We therefore used in this study the full

diaplasma dataset instead (63 samples and 5501 features). Two
features were selected either in the PLS-DA or Random Forest
signatures. Importantly, when these features were modeled by a
combination of the 3 covariates (diabetic type, age, and body mass
index), only the type effect was found significant by analysis of
variance, thus emphasizing the putative value of these markers
in the classification of diabetes. Interestingly, one of the features
from the S+A PLS-DA signature (497.275/487) matched with an
isotope of a taurochenodeoxycholic acid fragment (according to
m/z ratio and retention time): diabetes-associated changes in bile
acid metabolism have been reported (Prawitt et al., 2011), and
variation of the taurochenodeoxycholic acid concentration has
very recently been described in urine of type 2 patients (Taylor
et al., 2014). The biosigner signature, which requires further
validation by MS/MS experiments and confirmation in another
cohort study where patients and controls are matched by age,
may therefore highlight new candidates for diabetes screening
and diagnosis.

The biosigner algorithm is available as an R/Bioconductor
package. As no clinical metabolomics dataset is currently
available on Bioconductor to the best of our knowledge, we
included the diaplasma LC-HRMS dataset into the package:
this dataset should be useful for the benchmarking of new
statistical and annotation algorithms.We also developed aGalaxy
module which was integrated into the Workflow4metabolomics
online infrastructure for computational metabolomics (W4M;
Giacomoni et al., 2015). Galaxy is a powerful open-source
workflow manager enabling users to build their own workflow
by selecting the tools and the parameter values via a graphical
interface (Goecks et al., 2010). Workflows and associated data
inputs and outputs can be saved and shared, allowing fine
tuning of parameters and reproducible research (Boekel et al.,
2015). The W4M infrastructure is therefore of high interest for
experimenters to build, run, and reference reproducible LC-MS,
GC-MS, and NMR workflows, for developers to compare and
diffuse their tools, and also for teachers to organize hands-on
sessions (since no software installation is required).

In conclusion, the biosigner algorithm and the associated
software tools should be of high value for biologists, practitioners,
and biostatisticians, to identify robust biomarker signatures from
large omics datasets for the development of new diagnostics.
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