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Objective: The accurate evaluation of outcomes at a personalized level in patients

with intracerebral hemorrhage (ICH) is critical clinical implications. This study aims to

evaluate how machine learning integrates with routine laboratory tests and electronic

health records (EHRs) data to predict inpatient mortality after ICH.

Methods: In this machine learning-based prognostic study, we included 1,835

consecutive patients with acute ICH between October 2010 and December 2018.

The model building process incorporated five pre-implant ICH score variables (clinical

features) and 13 out of 59 available routine laboratory parameters. We assessed model

performance according to a range of learning metrics, such as the mean area under

the receiver operating characteristic curve [AUROC]. We also used the Shapley additive

explanation algorithm to explain the prediction model.

Results: Machine learning models using laboratory data achieved AUROCs of

0.71–0.82 in a split-by-year development/testing scheme. The non-linear eXtreme

Gradient Boosting model yielded the highest prediction accuracy. In the held-out

validation set of development cohort, the predictive model using comprehensive

clinical and laboratory parameters outperformed those using clinical alone in predicting

in-hospital mortality (AUROC [95% bootstrap confidence interval], 0.899 [0.897–0.901]

vs. 0.875 [0.872–0.877]; P < 0.001), with over 81% accuracy, sensitivity, and specificity.

We observed similar performance in the testing set.

Conclusions: Machine learning integrated with routine laboratory tests and EHRs

could significantly promote the accuracy of inpatient ICH mortality prediction. This

multidimensional composite prediction strategy might become an intelligent assistive

prediction for ICH risk reclassification and offer an example for precision medicine.
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INTRODUCTION

To date, spontaneous intracerebral hemorrhage (ICH), a leading
cause of stroke and a life-threatening and disabling illness,
remains a severe condition worldwide (1–4). Early aggressive
care draws more advocates for spontaneous ICH outlined by
the current practice guideline, requiring early and accurate
identification of individuals who are at risk for unfavorable
outcomes (5). In response to such urgent needs, robust risk
estimators are highly recommended. The ICH score (6) is a
classic prediction tool widely used in ICHmanagement currently.
However, this score assessment system comprises five risk
factors: the Glasgow Coma Scale (GCS) score, ICH volume,
intraventricular hemorrhage (IVH), the infratentorial origin
of ICH, and age simple to use in clinical practice. However,
such a clinical grading scale is used as a stand-alone risk
assessment system and less integrated with additional dimension
information, such as routine clinical laboratory profiles, for more
comprehensive and precise individual risk assessment.

Integrating routine laboratory blood tests for risk predictions
in patients with ICH may have several important implications.
Firstly, linking laboratory biomarkers to augment traditional ICH
risk prediction could benefit individualized disease management.
Those laboratory indicators provide additional multidimensional
information, which is hardly captured by static electronic health
records (EHRs) and even images from the PACS (picture
archiving and communication systems) (7). Secondly, the
multiple laboratory blood tests for inpatients provided dynamic
clues for the progression and pathological changes of the disease
over time (8, 9). In addition, using those objectively measured
and readily available data would allow cost-effective assessment
and intervention of ICH without posing an additional burden in
an urgent clinical scenario. However, most conventional tests are
limers, making clinical replication difficult. Besides, traditional
analytical methods are difficult to adapt to large quantities
of measurements.

Machine learning (ML) is a promising strategy for learning

complex rules and objectively synthesizing and interpreting the
patterns from multidimensional datasets (10, 11). ML could
incorporate an extensive array of predictors in a non-linear
pattern and use multiple interactions to enhance prediction

accuracy (10–13). In recent years, ML has been used for

prediction and decision-making in a multitude of ICH (14–19).
Unfortunately, to our knowledge, there has been no effort to use
ML to take advantage of blood laboratory data to help physicians
predict outcomes at a personalized level in patients with ICHwho
undergo assessments during routine clinical care. Moreover, the
black box-like feature of these algorithms that usually limits their
usefulness in clinical practice (20, 21). Clinicians are more likely
to trust and use MLmethods when they are explainable. In doing
so, we introduced the SHapley Additive exPlanation (SHAP)
algorithm to help explain the prediction model (22, 23). With the
aforementioned considerations in mind, we initially introduced
the SHapley Additive exPlanation (SHAP) algorithm to enhance
the robustness of ML integrated with routine laboratory blood
tests to predict inpatient mortality after ICH.

MATERIALS AND METHODS

Study Population
The patients from the West China Hospital of Sichuan
University, tertiary care, academic and non-profit hospital with
4,300 beds, had ∼279,000 patients discharged in 2019 (24).
Consecutive patients with acute spontaneous ICH admitted
to the hospital between October 1, 2010, and December 31,
2018, were screened. The inclusion criteria include (1) ≥18
years old, (2) with the first-ever diagnosis of spontaneous
ICH within 24 h that was confirmed by the head CT scan,
(3) laboratory blood tests are available at admission, and
(4) complete discharge diagnosis and outcomes records are
available. We excluded patients with primary intraventricular
hemorrhage (IVH) and secondary ICH, such as trauma,
tumors, or vascular structural abnormalities (e.g., aneurysms
and arteriovenous malformation). The West China Hospital
of Sichuan University Biomedical Research Ethics Committee
reviewed and waived informed consent (No. 20-1209) due
to a retrospective data analysis characterized by desensitized
data. This study adheres to the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) reporting guideline for diagnostic and
prognostic studies.

Data Source
Clinical data were derived from the EHRs system. Demographic
information and clinical characteristics were retrieved, including
age, sex, time from the symptom onset to admission (hours),
length of stay (days), admission GCS score, lifestyle risk
factors (smoking and alcohol use), recorded comorbidities
(hypertension and diabetes mellitus), and neurosurgical
operation (hematoma evacuation). Hypertension and diabetes
mellitus was defined as diagnosed or documented—all blood
laboratory biomarkers obtained from standard laboratory
tests in routine clinical practice at the time of admission. Of
note, only measures that were routinely available for most
patients were included. As a result, a total of 59 laboratory
blood parameters were included in the present analysis (see
details in the Supplementary Table 1). Neuroimaging data
on hematoma volume [mL; calculated using the formula
ABC/2 (25)], hematoma locations (infratentorial origin or
not), and the presence of an IVH were also collected manually.
The primary outcome of interest was all-cause in-hospital
mortality retrieved from paramedic EHRs. The outcome
label of in-hospital mortality was defined as a discharge
disposition of “expired.”

If data elements were not structured, they were manually
processed by two experienced investigators (X.L. and a non-
author) who were blinded to the study’s aims. Missing values
for each variable were assigned a default value of “NA” (not
available), which served as an indicator for missingness.
This allowed the algorithm to include observations with
missing features and to gain signals from missingness itself.
Prior studies have also shown that the eXtreme Gradient
Boosting (XGBoost) model can gain signals from missingness
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(or non-missingness) without resorting to imputation
techniques (26).

ML Algorithms and Model Selection
The dataset was separated in a split-by-year training/test scheme.
We trained a ML model on data from patients who were
admitted to the hospital from October 1, 2010 to December
31, 2016. We randomly selected 90% of patients for model
training in the training dataset and a held-out 10% for validation.
We used the annotated 59 laboratory biomarkers to train and
evaluate several supervised learning algorithms and compare
their performances. We experimented with four classifiers:
logistic regression, classification and regression trees, random
forest, and the XGBoost model. Initial tests demonstrated the
superior performance of the XGBoost model compared with
the other three models, so we selected this model using the
Python programming language (Python Software Foundation)
with the XGBoost package as our preferred model, with the 13
most influential circulating parameters for the exciting outcome
chosen using five cross-validations. We created a base model
using the 5 ICH risk score variables. We then provided additional
performance characteristics for the selected approach to focus on
the differences between ML with only clinical data (ML-clinical)
and ML with clinical and laboratory data (ML-combined). In
the test dataset, the model was further validated in an additional
cohort spanning from January 1, 2017 to December 31, 2018. The

SHAP value was used to illustrate the positive or negative effects
of the 18 features attributed to the XGBoost model. We also used
the SHAP dependence plot to explain how a single feature of
these laboratory biomarkers affects the output of the XGBoost
prediction model.

Statistical Analysis
Continuous variables are presented as mean ± standard
deviation (SD) or medians with interquartile ranges (IQR).
Categorical variables are presented as numbers with percentages.
As appropriate, comparisons of intergroup differences were
analyzed using the Student t-test, Mann-Whitney U-test, or
Chi-square test. The performances of the ML models were
evaluated by receiver operating characteristic (ROC) curve,
Kaplan–Meier curve, confusion matrix metrics, and evaluation
metrics, including area under the ROC curve (AUROC),
precision, sensitivity, specificity, and accuracy. The formulas for
computing the metrics were described elsewhere. We calculated
95% confidence intervals (CIs) for comparisons of AUROC
using 1,000 bootstrap replications. Probabilities of more than 2/3
quantile were assigned to high-risk and otherwise to low risk.
All statistical analyses were performed using R, version 3.3 (R
Foundation for Statistical Computing) and Python, version 2.7
(Python Software Foundation) software. A 2- tailed P < 0.05 was
considered statistical significance.

FIGURE 1 | Study design and study flowchart. CART, classification and regression trees; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; LR, logistic

regression; RF, random forest; XGBoost, eXtreme Gradient Boosting.
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TABLE 1 | Demographic and baseline characteristics of study patients.

Characteristics Overall Dataset stratification Outcomes

(N = 1,835) %

missing

Development

dataset

(n = 1,405)

Testing dataset

(n = 430)

P-value Discharged

(n = 1,463)

Death

(n = 372)

P-value

Age*

Mean, years 59 ± 15 0 59 ± 15 60 ± 15 0.125 59 ± 14 62 ± 15 <0.001

Distribution 0.172 <0.001

≥80 162 (8.8%) 0 117 (8.3%) 45 (10.5%) 110 (7.5%) 52 (14.0%)

<80 1,673 (91.2%) 0 1,288 (91.7%) 385 (89.5%) 1,353 (92.5%) 320 (86.0%)

Sex

Female 589 (32.1%) 0 438 (31.2%) 151 (35.1%) 0.126 469 (32.1%) 120 (32.3%) 0.941

Male 1,246 (67.9%) 0 967 (68.8%) 279 (64.9%) 994 (67.9%) 252 (67.7%)

Time from symptom onset to

admission, hours

5.0 (4.0–9.0) 0 6.0 (4.0–9.0) 4.0 (3.0–7.0) 0.288 6.0 (4.0–9.0) 4.0 (3.0–7.0) <0.001

Length of stay, days 5.0 (2.0–9.0) 0 5.0 (2.0–9.0) 5.0 (2.0–9.0) 0.143 6.0 (4.0–10.0) 1.0 (1.0–5.0) <0.001

Lifestyle risk factors

Current smoking 532 (29.0%) 0 424 (30.2%) 108 (25.1%) 0.043 421 (28.8%) 111 (29.8%) 0.687

Alcohol use 263 (14.3%) 0 204 (14.5%) 59 (13.7%) 0.679 205 (14.0%) 58 (15.6%) 0.438

Comorbidities

Hypertension 1,367 (74.5%) 0 1,050 (74.7%) 317 (73.7%) 0.674 1,104 (75.5%) 263 (70.7%) 0.060

Diabetes mellitus 168 (9.2%) 0 125 (8.9%) 43 (10.0%) 0.488 119 (8.1%) 49 (13.2%) 0.003

Hematoma evacuation 99 (5.4%) 0 84 (6.0%) 15 (3.5%) 0.045 90 (6.2%) 9 (2.4%) 0.004

GCS score* 0.013 <0.001

3–4 270 (14.7%) 0 188 (13.4%) 82 (19.1%) 82 (5.6%) 188 (50.5%)

5–12 437 (23.8%) 0 343 (24.4%) 94 (21.9%) 312 (21.3%) 125 (33.6%)

13–15 1,128 (61.5%) 0 874 (62.2%) 254 (59.1%) 1,069 (73.1%) 59 (15.9%)

ICH volume*

Median, mL 15.1

(6.3–36.5)

4.5% 14.9

(6.4–35.4)

15.7

(6.2–38.9)

0.474 12.6

(5.6–27.2)

46.4

(18.5–92.1)

<0.001

Distribution 0.451 <0.001

≥30 527 (30.1%) 4.5% 397 (29.6%) 130 (31.6%) 308 (22.0%) 219 (61.9%)

<30 1,226 (69.9%) 4.5% 944 (70.4%) 282 (68.4%) 1,091 (78.0%) 135 (38.1%)

Presence of IVH* 0.340 <0.001

Yes 488 (26.6%) 0 366 (26.0%) 122 (28.4%) 354 (24.2%) 134 (36.0%)

No 1,347 (73.4%) 0 1,039 (74.0%) 308 (71.6%) 1,109 (75.8%) 238 (64.0%)

Infratentorial origin of ICH* 0.146 <0.001

Yes 455 (24.8%) 0 337 (24.0%) 118 (27.4%) 328 (22.4%) 127 (34.1%)

No 1,380 (75.2%) 0 337 (24.0%) 118 (27.4%) 1,135 (77.6%) 245 (65.9%)

Data are presented as mean ± SD or median (interquartile range) and n (%). ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; GCS, Glasgow Coma Scale.

*Those variables included in the ICH score.

RESULTS

Study Cohort and Population
Figure 1 illustrates the study design and study flow chart.

We included a total of 1,835 patients with ICH in the
present analysis; 1,405 of these patients were included in the
development cohort (training and held-out validation set), and

430 were used as the testing cohort. The mean age was 59
± 15 years, and 67.9% were men. The overall percentages
of all-cause in-hospital mortality for the full population,
development, and testing cohorts were 20.3, 19.4, and 23.0%,

respectively.

Table 1 summarizes the baseline characteristics of the study

population. Patient’s characteristics were similar between the
development and testing cohort except for GCS score (82 of 430
patients with GCS score 3–4 in the development cohort [19.1%]
vs. 188 of 1,405 patients in the testing cohort [13.4%]; P= 0.013),
the lifestyle risk factor of current smoking (P = 0.043), and
undergoing hematoma evacuation therapy (P= 0.045) (Table 1).
Patients who died were older, had a shorter time from the
symptom onset to admission, and more temporary hospital stay,
to have a comorbidity of diabetes mellitus. In addition, they were
more likely to have lower GCS scores and larger ICH volume,
had hematoma located in infratentorial, accompanied by a higher
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FIGURE 2 | Predictive performance of machine learning-based models. (A) Areas under the curve (AUCs) to assess the performance of in-hospital mortality risk

prediction of models in the development cohort (held-out for validation) and testing cohort using clinical features only or combined with selected laboratory variables.

The AUC for ML combined with clinical features and laboratory variables was significantly higher than that used clinical features only. (B) Kaplan–Meier curves indicate

the overall survival of patients with high and low mortality risk in the validation cohort. The tick marks refer to censored patients. The dark green or orange line

indicates the survival probability, and the light green or orange areas represent the 95% confidence interval of survival probability (log-rank P < 0.001).

TABLE 2 | Statistical measures of the performance of models*.

Precision Sensitivity Specificity Accuracy

Development cohort (held-out validation) 0.775 (0.772–0.778) 0.777 (0.774–0.779) 0.777 (0.774–0.779) 0.858 (0.857–0.860)

Testing cohort 0.813 (0.812–0.813) 0.812 (0.811–0.812) 0.812 (0.811–0.812) 0.867 (0.867–0.867)

*The precision, sensibility, specificity, and accuracy were presented by mean (95% CI).

presence of IVH. At the same time, they were less likely to
have undergone hematoma evacuation therapy (all P < 0.05), as
presented in Table 1.

Model Performance and Comparisons
Figure 2A demonstrates the model diagnostic performance in
terms of AUROC in the validation and testing sets. Overall, ML
models using laboratory data achieved AUROCs of 0.71–0.82
in a split-by-year development/testing scheme, with the non-
linear XGBoost model yielded the highest prediction accuracy.
In the held-out validation set, the predictive model using
comprehensive clinical and laboratory parameters outperformed
those using clinical alone in predicting in-hospital mortality
(AUROC [95% bootstrap CI], 0.899 [0.897–0.901] vs. 0.875,
[0.872–0.877]; P < 0.001). Similar performance was observed
in the testing set. Table 2 presents the classification model
performance when applied to the validation set and testing
set. Interestingly, the performance in the held-out validation
cohort was worse than the testing cohort in terms of precision
(77.5 vs. 81.3%), sensibility (77.7 vs. 81.2%), specificity (77.7
vs. 81.2%), and accuracy (85.8 vs. 86.7%). Additional statistical
measures of the performance of models are reported in the
Supplementary Table 2.

We further investigated precise individual-level mortality risk.
With the time from admission to death or discharge as the

endpoint, Kaplan-Meier analysis further confirmed that the ML
model could robustly stratify patients by mortality risk. High-
risk patients labeled by our model were significantly less likely to
survive than low-risk patients in the testing cohort with a hazard
ratio of 11.79 (95% CI: 7.64–18.20), highlighting the capability of
the model to accurately predict the prognosis of ICH patients, as
shown in Figure 2B.

Most Influential Predictors
Figure 3 presents the statistical analysis of the essential predictors
selected by the best classifier (non-linear XGBoost model) from
59 laboratory blood parameters in the training set. A total of
13 features were eventually chosen for modeling, with each
variable included in the model has been varying importance
over in-hospital mortality. Spearman’s correlation coefficient
analysis using raw data of the 13 features exhibited various
degrees of correlation (Figure 3A). Among the top 3 of those
selected variables, blood glucose was selected as the top-most
influential predictor in the model, followed by creatinine, and
white blood cell count, respectively (Figure 3B). In the model
that includes both laboratory blood parameters and clinical
variables, the relative importance of those included parameters
on the model’s predictions was observed to have altered mildly
or moderately. Standard box plots presented the included
parameters’ distributions between discharged and deceased
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FIGURE 3 | Statistical analysis of features included in models. (A) Heatmap represents the correlation between all laboratory features included in the model using

Spearman’s correlation coefficient. The colors in the plot represent the correlation coefficients. The numbers in the triangle represent the value of the correlation

coefficient. (B) Scaled importance rank of all laboratory features included in the models. The size of bars represents the value of relative importance. The bars with

orange represent the feature included in the model that did not contain clinical features, while the gray bar represents the feature included in the model that did not

contain clinical features. (C) Box and jitter plots show the distribution of all laboratory features included in the present study between deceased patients (n = 373) and

discharged patients (n = 1,466). The centerline represents the median of the feature. Box limits represent upper and lower quartiles. Whiskers represent 1.5 times the

interquartile range. Color points represent outliers. Mann-Whitney U-test was used in the univariate comparison between groups, and a two-tailed P < 0.05 was

considered statistically significant. AA, the ratio of alanine aminotransferase to AST; AST, aspartate aminotransferase; HR, hazard ratio; CI, confidence interval; CREA,

creatinine; GLU, blood glucose; LDH, low-density lipoprotein; LYMPH, percentage of lymphocytes; PT, prothrombin time; RBCDW, red blood cell distribution width

(CV); UA, uric acid; WBC, white blood cell count.

patients (Figure 3C). According to datasets and outcomes,
additional distributions of these laboratory values can be found
in Supplementary Tables 3, 4.

Model Explanation
Figure 4 depicts the SHAP algorithm for the interpretations
of the ML model. We illustrated two representative cases
from the holdout validation set (Figure 4A). In this example,
the patient’s GCS scores 3–4 (=2 points) is the most crucial
variable to increase the risk of in-hospital mortality in case

1 who died, while GCS scores 13–15 (=0) is the most
critical risk-decreasing variable in case 2 who discharged.
Additionally, the contribution of each of the 13 features in
the model was visualized by applying the SHAP summary
plot (Figure 4B). This allowed understanding how a single
variable influences the output of the XGBoost prediction model.
According to the prediction model, the higher the SHAP value
of a feature, the more likely death becomes. Furthermore,
we used the SHAP algorithm to rank the importance of all
the included variables for the prediction model (Figure 4C).
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FIGURE 4 | The Shapley additive explanations algorithm for the machine learning model. (A) Illustration of the impact of features for two patient-specific predictions

using the Shapley additive explanations (SHAP) algorithm. Case 1 was alive, while case 2 was deceased during the hospitalization. The factors positively (red) and

negatively (blue) impacting the construction of the model, with the size of the bars depicting importance. For example, Glasgow Coma Scale score 3–4 (=2 points) is

an essential variable increase the risk of in-hospital mortality in case 2. (B) The attributes of the features in the black-box model. Each line represents a feature, and the

abscissa is the SHAP value, which represents the degree of influence on the outcome. Each dot represents a sample. The redder the color, the greater the value of

the feature, and the bluer the color, the lower the value. (C) Ranking of feature importance indicated by SHAP. The most critical variable has the highest mean of

absolute SHAP values. AA, the ratio of alanine aminotransferase to AST; AST, aspartate aminotransferase; CREA, creatinine; GLU, blood glucose; LDH, low-density

lipoprotein; LYMPH, percentage of lymphocytes; PT, prothrombin time; RBCDW, red blood cell distribution width (CV); UA, uric acid; WBC, white blood cell count.

The most crucial variable has the highest mean of absolute
SHAP values.

DISCUSSION

To our knowledge, this study represents the first large-scale

report leveraging explainable ML algorithms to generate accurate

outcome predictions for the ICH population by combining
clinical and routine laboratory blood test data. The non-linear

XGBoost model could automatically derive critical variables from
comprehensive laboratory results such as glucose, creatinine, and

white blood cell count. This pipeline analysis model is suitable
for integrating clinical data with readily available laboratory

profile results for dynamic disease progression prediction. Our
results reveal that an ML-based algorithm offers a great potential
to enhance accuracy in predicting personalized in-hospital all-
cause mortality in patients with ICH. These findings add insights
into ML algorithms designed to improve optimal evaluation and
clinical decisions in digital health care.

Currently, the ability to optimally assess risk in individual
patients remains a significant challenge in ICH. Such a challenge
is mainly because the evaluation of such emergent conditions
is often time pressing. It is crucial but difficult for clinicians to
make rapid and accurate clinical decisions in a short period when
facing a broad array of available information. Traditional clinical
practice has dealt with this situation, in part, by using various risk
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prediction scoring systems, some of which are summarized by
Gregório et al. (27). However, these scoring systems are limited
by the amount of clinically available measurements, particularly
laboratory measures. The presented ML strategy provides insight
into integrating algorithm (software) with routine laboratory
tests (facilities and other resources) and interpretation beyond
what is provided by conventional statistics. More importantly,
our study introduced a novel unsupervised learning algorithm
strategy to derive labs without a priori assumptions about the
influence or weighting of individual factors or how they may
interact. This approach allowed us to filter through the massive
laboratory parameters to identify potential risk factors for death
after ICH.

As a result, certain variables linked to patient survival were
ultimately included in the prediction model. For example, in our
model, blood glucose derived from labs is the most important
feature for predicting ICH mortality during hospitalization, as
considerable previous studies have supported this finding (28–
30). Some of which, including creatinine (31), white blood cell
count (32), prothrombin time (33), chlorine (34), potassium
(35), percentage of lymphocytes (36), red blood cell distribution
width (37), uric acid (38), and phosphorus (39) also correspond
with previously investigated risk factors from previous clinical
studies. These features were presented in nearly two-thirds of the
overall selecting variables (8 out of 13), suggesting our model
is reliable. Notably, our model identified several biomarkers
that other ICH studies have not reported, such as the aspartate
aminotransferase and the ratio of alanine aminotransferase to
aspartate aminotransferase.

When integrating those selecting features, the performance
of the ML-combined score was superior to the clinical risk
metric that is traditionally used to study prognostic outcomes
after ICH. Several studies have been published using ML to
predict outcomes (primarily survival and function) in patients
with ICH (15–19). The reported performances (AUROC) vary
from 0.63 to 0.92, mostly around 0.75–0.85. Therefore, our
model performance is consistent with these studies but with
enhancing clinical utility and generalizability. We developed a
pipeline automatic screening model that is especially suitable for
large-scale clinical data analysis with comprehensive laboratory
parameters in urgent situations to determine disease progression
and conditions. In addition, our model was able to provide a
relatively high AUROC and predicted a probability of death for
each patient. At the point of care, the estimated probabilities
can be used to construct risk strata to quickly separate low-risk
patients from those with a high risk of mortality. This technique
could be precious for determining who is most likely to benefit
when limited resources and assessment time is pressing. Those
results further highlightML technology can assist physicians with
digesting a large amount of information and be critical to fully
utilizing these growing datasets to help transform and optimize
medical practice.

Several limitations of this study need to point out. Firstly,
this study relied on retrospective data, and deriving clinical
information from EHRs is an inherent limitation (40). For
example, some critical variables related to the mortality or
functional outcomes of ICH, such as baseline NIHSS and

hematoma extension, were not included in the model. Secondly,
the laboratory measurements at the time of admission were
used in this study. Dynamic laboratory parameters may
provide more information to the ML model. Bedsides, to
assess the added predictive value of laboratory information
concisely, straightforward, and comparably, we only input
the variables from classic ICH risk score variables rather
than selecting all clinical variables using the ML model.
Third, as with any other ML-based study, the model is
subject to the constraints of the specific population that it
trains on (41). Further validation in a multicenter setting
with different patient populations is warranted because our
model was performed in a single-center study and not
externally validated.

CONCLUSION

In conclusion, our study initially provided translational data
to support that ML integrated with laboratory blood tests
can effectively predict inpatient mortality after intracerebral
hemorrhage. The above strategy might become a novel,
intelligent clinical companion diagnostic tool for risk assessment
of ICH, integrating with the electronic health record and
laboratory blood test results.
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