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In this study, an autonomous type deterministic nonlinear mathematical model that explains the transmission dynamics of
COVID-19 is proposed and analyzed by considering awareness campaign between humans and infectives of COVID-19
asymptomatic human immigrants. Unlike some of other previous model studies about this disease, we have taken into
account the impact of awareness c between humans and infectives of COVID-19 asymptomatic human immigrants on
COVID-19 transmission. The existence and uniqueness of model solutions are proved using the fundamental existence and
uniqueness theorem. We also showed positivity and the invariant region of the model system with initial conditions in a
certain meaningful set. The model exhibits two equilibria: disease (COVID-19) free and COVID-19 persistent equilibrium
points and also the basic reproduction number, R0 which is derived via the help of next generation approach. Our
analytical analysis showed that disease-free equilibrium point is obtained only in the absence of asymptomatic COVID-19
human immigrants and disease (COVID-19) in the population. Moreover, local stability of disease-free equilibrium point is
verified via the help of Jacobian and Hurwitz criteria, and the global stability is verified using Castillo-Chavez and Song
approach. The disease-free equilibrium point is both locally and globally asymptotically stable whenever R0 < 1, so that
disease dies out in the population. If R0 > 1, then disease-free equilibrium point is unstable while the endemic equilibrium
point exists and stable, which implies the disease persist and reinvasion will occur within a population. Furthermore,
sensitivity analysis of the basic reproduction number, R0 with respect to model parameters, is computed to identify the
most influential parameters in transmission as well as in the control of COVID-19. Finally, some numerical simulations
are illustrated to verify the theoretical results of the model.

1. Introduction

Coronaviruses are a large family of viruses that may cause
illness in animals and humans. In humans, several corona-
viruses are known to cause respiratory infections ranging
from the common cold to more severe diseases such as
Middle East respiratory syndrome (MERS) and severe

acute respiratory syndrome (SARS). The most recently dis-
covered human coronavirus disease which is caused by a
novel coronavirus severe acute respiratory syndrome 2
(SARS-CoV-2) is coronavirus disease 2019 (COVID-19)
[1, 2]. This disease was first identified in December 2019
in Wuhan, China, with common manifestation appears
to be pneumonia [3–5]. One of the things which makes
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this new virus so dangerous is that it spreads very quickly
between peoples. COVID-19 is transmitted from human to
human via direct contact with contaminated surfaces and
through respiratory droplets’ inhalation from infected individ-
uals [4, 6, 7]. The most common symptoms of COVID-19
include the following: fever, dry cough, shortness of breath,
and fatigue [3, 8]. Other fewer symptoms may include the fol-
lowing: sore throat, headache, chills, congestion, nausea, and
diarrhea. The incubation period (time from exposure to the
development of symptoms) of COVID-19 is somewhere
between 2 and 14 days, on average around five days after expo-
sure to the virus [9, 10].

The World Health Organization (WHO) declared the
outbreak as a Public Health Emergency of International
Concern on January 2020 and a pandemic on 11 March
2020 [11]. In China mainland until March 8, 2020, a total
of 80,868 confirmed cases and 3,101 deaths were recorded
due to COVID-19 [3]. The outbreak of COVID-19 has
spread to 222 countries and territories, inflicted more than
116.17 million confirmed cases, and claimed more than
2.58 million lives, as reported on March 7th, 2021 [12].
Globally, over 3.1 million new cases and just over 54,000
new deaths were reported during the week of 27 September
to 3 October 2021 and more than 197 million new cases,
and among these, more than 4 million individuals have died
up to the end of July 2021 [13, 14].

Mathematical model is a mathematical equation that
describes changes in the system with time, and it is useful
to accurately predict the evolution of infectious disease
(COVID-19), and this in turn helps to give an insight
for health workers and government to deal on the most
influential parameters in COVID-19 transmission [15].
Since COVID-19 outbreak, different scholars studied the
transmission dynamics of the disease (COVID-19) by con-
sidering different scenarios [1, 2, 5, 9–11, 14–21] to curb
its spread with the help of epidemiological mathematical
model. However, all the above studies failed to consider
the impact of awareness campaign and influx of COVID-
19 asymptomatic human immigrants in the control of
COVID-19 transmission. In this study, we inspire to mod-
ify the model [16] to fulfill the entire gap. Our proposed
model is different from others, and it is that the class of
susceptible human population is subdivided into two: indi-
viduals who have awareness about COVID-19 and apply
all the recommended mitigation of COVID-19 to save
themselves and others are classified as aware susceptible
human population class, denoted by Ah and individuals
who have no awareness about COVID-19 or even they have
awareness but they do not give an emphasis for the severity
of COVID-19 are classified as unaware susceptible human
population class, denoted by Uh. The rate of COVID-19
asymptomatic human immigrants is also included. The
remaining part of this study is structured as follows: in Sec-
tion 2, we developed our mathematical model for the trans-
mission of COVID-19 dynamics. In Section 3, the analytical
analysis of the model established. In Section 4, numerical
simulations of the model are illustrated. The conclusion
and concluding remark with suggestions are provided in
Sections 5 and 6.

2. Model Formulation

In this section, the total number of human population at
a given time t is denoted by NhðtÞ and it is catagorized
into six subclasses named as susceptible human popula-
tion class (Sh), aware susceptible human population class
(Ah), unaware susceptible human population class (Uh),
exposed human population class (Eh), infectious human
population class (Ih), and recovered human population
class (Rh). The class of aware susceptible human will
increase depending on the movement of susceptible
human population and recovered human population class
due to awareness created. Unaware susceptible human
population class increases due to the movement of sus-
ceptible human population class and decreases due to
contact with infectives of COVID-19 humans and prog-
ress into exposed and infectious human population class.
In the formulation of our model, the following additional
assumptions are important:

(1) It is assumed that all recruited humans either by
birth or immigration into susceptible human class
are not carriers of COVID-19

(2) We consider only immigrants of COVID-19 asymp-
tomatic human in our model with a rate of ηh

(3) It is assumed that the influx rate ηh of COVID-19
asmptomatic human immigrants is not constant

(4) It is assumed that the class of unaware susceptible
human populations becomes infective if they contact
with exposed or infectious individuals at the rate β
with probability of α2 and α1, respectively

(5) It is assumed that the rate of asymptomatic human
immigrants ηh is less than the progression rate of
exposed human into infectious or recovered human
class δh

(6) It is assumed that a proportion of θ of susceptible
population properly apply COVID-19 mitigation
measures and hence progress into aware susceptible
human class and the remaining proportion (1−θ)
move to unaware susceptible human class by the rate
of ϕh

(7) It is assumed that recovered human populations
develop permanent immunity due to their improved
immunity or successful hospitalized treatment, and
they join the aware susceptible human population
class at the rate of ωh

(8) It is assumed that all parameters involved in the
model are nonnegative. With regard to the above
considerations, the compartmental flow diagram is
shown below in Figure 1

Based on assumptions and the flow diagram of COVID-19
dynamics (Figure 1), Table 1 the model is governed by the fol-
lowing system of autonomous type nonlinear ordinary differ-
ential equations:
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dSh
dt

=Λh − αh + ϕhð ÞSh,
dAh

dt
= 1 − θð ÞϕhSh − αhAh + ωhRh,

dUh

dt
= θϕhSh − β α2Eh + α1Ihð ÞUh − αhUh,

dEh

dt
= β α2Eh + α1Ihð ÞUh − αh + δh − ηhð ÞEh,

dIh
dt

= τδhEh − αh + ρh + γhð ÞIh,
dRh

dt
= 1 − τð ÞδhEh + γhIh − αh + ωhð ÞRh,

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

with initial conditions: Shð0Þ > 0, Ahð0Þ ≥ 0, Uhð0Þ, Ehð0Þ ≥ 0 ,
Ihð0Þ ≥ 0 , Rhð0Þ ≥ 0, and 0 ≤ θ ≤ 1, 0 ≤ τ ≤ 1.

3. Model Analysis

The validity and the authenticity of any mathematical model
depend on the existence and uniqueness of its solutions. In
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Figure 1: Flow diagram of COVID-19 model.

Table 1: Model parameters with their description.

Parameter Description of parameter

Λh The recruitment rate of susceptible human population

β The contact rate of unaware susceptible humans with exposed and infectious humans

θ The proportion rate that susceptible humans join unaware susceptible humans

ϕh The progression rate of susceptible into aware and unaware susceptible humans

α2 The probability that unaware susceptible humans will contact with infectious humans

α1 The probability that unaware susceptible humans will contact with exposed humans

δh The progression rate of exposed humans into infectious and recovered human class

γh The recovery rate of infectious humans into recovered human class

ωh The progression rate of recovered humans into aware susceptible human class

αh The natural death rate of all human population classes

ρh The disease induced death rate of infectious humans

τ The proportion rate of exposed humans to be infectious

ηh The rate of asymptomatic human immigrants

Table 2: Parameter values and its sensitivity indices.

Parameter Values Sensitivity indices Source

β 0.0143 +1 [16]

Λh 13.5 +1 [16]

θ 0.5 +1 Assumed

α2 0:02 +0.998 [16]

ϕh 0:01 +0.615 Assumed

α1 0:0001 +0.0018 [16]

ηh 0.0001 +0.0016 Assumed

τ 0.7 +0.0015 [16]

γh 0.15 -5.11 [16]

δh 0.07 -11.64 [16]
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this section, the basic properties of the model system of
equations (1) include the following: the existence and
uniqueness of solutions, positivity of solutions, invariant
region, and basic reproduction number, and equilibria with
their stability analysis are focused.

Lemma 1 (Existence and Uniqueness of Solutions). If the
initial data be ðShð0Þ > 0,Ahð0Þ ≥ 0,Uhð0Þ ≥ 0, Ehð0Þ ≥ 0, Ih
ð0Þ ≥ 0, Rhð0Þ ≥ 0Þ to the system equation (1), then there
exists a unique solution in Cðℝ+,ℝ6

+Þ, ∀t ≥ 0.
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Figure 2: Change of human populations at disease free and endemic equilibrium points.
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Proof. The model system of equation (1) can be rewritten in
the form of _x = f ðxÞ, where

_x =

_Sh
_Ah

_Uh

_Eh

_Ih
_Rh

2
666666666664

3
777777777775
 f xð Þ =

Λh − αh + ϕhð ÞSh
1 − θð ÞϕhSh − αhAh + ωhRh

θϕhSh − β α2Eh + α1Ihð ÞUh − αhUh

β α2Eh + α1Ihð ÞUh − αh + δh − ηhð ÞEh

τδhEh − αh + ρh + γhð ÞIh
1 − τð ÞδhEh + γhIh − αh + ωhð ÞRh

2
666666666664

3
777777777775
:

ð2Þ

Each of the right hand side components of f ðxÞ in sys-
tem [2] is continuously differentiable almost everywhere in
Cðℝ+,ℝ6

+Þ, which implies f is locally Lipchitz (f ∈ c1).

Hence, by the fundamental existence and uniqueness theo-
rem [22], the model system of equation (1) exhibits a unique
solution locally in ℝ6

+ for all time t ≥ 0. Since the model sys-
tem of equations [1] monitors human population, it is nec-
essary to show that all its solutions must be nonnegative
for future time t. This will be established by the following
theorem.

Theorem 2 (Positivity of Model Solutions). If the initial
condition be Σ = fShð0Þ > 0, Ahð0Þ ≥ 0,Uhð0Þ ≥ 0, Ehð0Þ ≥ 0,
Ihð0Þ ≥ 0, Rhð0Þ ≥ 0g, then the solution set fShðtÞ, AhðtÞ,
UhðtÞ, EhðtÞ, IhðtÞ, RhðtÞg of model (1) is positively invari-
ant for all time t ≥ 0.

Proof. From the model system of equation (1), consider the
first equation:

Ba
sic

 re
pr

od
uc

tio
n 

nu
m

be
r R

0

0

1

0.5

1.5

2

2.5

0 0.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9 1

𝜃

R0 vs 𝜃

(a) Basic reproduction number R0 vs. θ

Ba
sic

 re
pr

od
uc

tio
n 

nu
m

be
r R

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9 1

𝜂h

R0 vs 𝜂h

(b) Basic reproduction number R0 vs. ηh

Figure 4: The impact of θ and ηh on basic reproduction number R0.

Ba
sic

 re
pr

od
uc

tio
n 

nu
m

be
r R

0

0.0551

0.0552

0.0554

0.0553

0.0555

0.0556

0.0558

0.0557

0.0559

0 0.2 0.4 0.6 0.8 1

R0 vs 𝛾h

𝛾h

(a) Basic reproduction number R0 vs. δh

Ba
sic

 re
pr

od
uc

tio
n 

nu
m

be
r R

0

0.05

0.07

0.06

0.08

0.09

0.11

0.1

0 0.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9 1

R0 vs 𝛿h

𝛿h

(b) Basic reproduction number R0 vs. γh

Figure 5: The impact of δh and γh on basic reproduction number R0:

6 BioMed Research International



dSh/dt = Λh − ðαh + ϕ hÞSh; then, by integrating factor
method, the solution becomes the following:

Sh tð Þ =Λh/αh + ϕh + Sh 0ð Þ −Λh/αh + ϕhð Þe− αh+ϕhð Þ t > 0: ð3Þ

Hence, ShðtÞ > 0 for all time t ≥ 0: From model system of
equation (1), consider the third equation:

dUh/dt = θ ϕhSh − βðα2Eh + α1IhÞUh − αhUh. Assume
that for the first time t1, Uhðt1Þ = 0, dUh/dt ≤ 0, and it is true
that ðShðtÞ, AhðtÞ, EhðtÞ, IhðtÞ, RhðtÞÞ > 0 for t ∈ ð0, t1Þ. Based
on our assumption, dUh/dt = θϕhSh, and then, integrate
both sides and substitute the solution of ShðtÞ obtained from
the above, and we get that Uhðt1Þ = θϕhðΛh/αh + ϕh + ðShð0Þ
−Λh/αh + ϕhÞe−ðαh+ϕhÞt1Þ ≥ 0 which contradicts with our
assumption. Hence, UhðtÞ ≥ 0, ∀t ≥ 0.

Similarly, it can be shown analogously that ðAhðtÞ, EhðtÞ,
IhðtÞ, RhðtÞÞ ≥ 0, ∀t ≥ 0.

Hence, all solutions of model system [1] are positive for
all future time t ≥ 0.

Theorem 3 (Invariant Region). There exists a domain Σ in
which the solution set ðShðtÞ,AhðtÞ,UhðtÞ, EhðtÞ, IhðtÞ, RhðtÞÞ
of model equation (1) is positively invariant.

Proof. The total human population size can be determined
by NhðtÞ = ShðtÞ + AhðtÞ +UhðtÞ + EhðtÞ + IhðtÞ+RhðtÞ.
Then, the time derivative of NhðtÞ along the solutions of
model system (1) gives the following:

dNh

dt
=Λh − αhNh tð Þ − ρhIh tð Þ + ηhEh tð Þ: ð4Þ

In the absence of disease (COVID-19) in the population
and COVID-19 asymptomatic human immigrants,

dNh

dt
≤Λh − αhNh tð Þ⇒Nh tð Þ = Λh

αh
+ Nh 0ð Þ − Λh

αh

� �
e−αh t ,

ð5Þ

where

Nh 0ð Þ = Sh 0ð Þ + Ah 0ð Þ +Uh 0ð Þ + Eh 0ð Þ + Ih 0ð Þ + Rh 0ð Þ:
ð6Þ

Thus, if Nhð0Þ ≤Λh/αh, then NhðtÞ ≤Λh/αh as t⟶∞:
Therefore, Σ = fðShðtÞ, AhðtÞ,UhðtÞ, EhðtÞ, IhðtÞ, RhðtÞÞ

∈ℝ6
+ : Nhð0Þ ≤NhðtÞ ≤Λh/αhg is the feasible solution of

model equation (1) which implies the total number of
human population is positively invariant; hence, each solu-
tion in the system of model equation (1) is positively invari-
ant. Therefore, the model is biologically meaningful and
mathematically well-posed in the region Σ:

3.1. COVID-19-Free Equilibrium Point of the Model. The dis-
ease (COVID-19)-free equilibrium point E0 of model system
(1) is calculated by equating all the right hand side equations
to zero and puttingEhðtÞ = IhðtÞ = 0; then, we obtained

E0 = S0h, A0
h,U0

h, E0
h, I0h, R0

h

� �
= Λh

αh + ϕh
, 1 − θð ÞϕhΛh

αh αh + ϕhð Þ ,
θϕhΛh

αh αh + ϕhð Þ , 0, 0, 0
� �

:
ð7Þ

In epidemiological point of view, the implication of E0 in
the absence of infective populations and immigrants of
COVID-19 asymptomatic humans only, susceptible, aware
susceptible, and unaware susceptible class of human popula-
tions will live in the community.
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3.2. Basic Reproduction Number of the Model. In this subsec-
tion, we will find the basic reproduction number, denoted by
R0 for the considered model (1) using next generation
approach [23]. From model system (1), matrix that consists
the rate of new infections F iðxÞ and the rate of transfer V i
ðxÞ is

F i xð Þ =
β α2Eh + α1Ihð ÞUh

0

" #
,

Vi xð Þ =
αh + δh − ηhð ÞEh

−τδhEh + αh + ρh + γhð ÞIh

" #
,

ð8Þ

respectively.
The Jacobian matrix of F iðxÞ and V iðxÞ at the disease-

free equilibrium point E0 is given by F and V , respectively,
as follows:

F =
βα2U

0
h βα1U

0
h

0 0

" #
, V =

αh + δh − ηh 0
−τδh αh + ρh + γh

" #
,

ð9Þ

and then, the inverse of V is given by

V−1 =

1
αh + δh − ηh

0

τδh
αh + δh − ηhð Þ αh + ρh + γhð Þ

1
αh + ρh + γh

2
6664

3
7775:

ð10Þ

Finally, FV−1 = ðΛhβθϕhðα2ðαh + ϕhÞ + α1τδhÞ/αh αh+ϕhÞ
�

ðαh + δh − ηhÞðαh + ρh + γhÞÞΛhβθϕhα1/αhðαh + ϕhÞðαh + ρh
+ γhÞ00�.

The two eigenvalues of FV−1 are as follows:

λ1 = 0,

λ2 =
Λhβθϕh α2 αh + ϕhð Þ + α1τδhð Þ

αh αh + ϕhð Þ αh + δh − ηhð Þ αh + ρh + γhð Þ :
ð11Þ

It follows that

R0 = max λ1, λ2f g = Λhβθϕh α2 αh + ϕhð Þ + α1τδhð Þ
αh αh + ϕhð Þ αh + δh − ηhð Þ αh + ρh + γhð Þ :

ð12Þ

Here, 1/ðαh + δh − ηhÞ refers the average duration of
human population in exposed state to become infectious or
recovered, and 1/ðαh + ρh + γhÞ is the average duration of
the infectious period of human populations until they die
or recover.

3.3. Stability Behavior of the COVID-19-Free Equilibrium
Point. The following theorems discuss the local and global
stability analysis of disease-free equilibrium point of model
system (1).

Theorem 4. The disease-free equilibrium point E0 of model
system (1) is locally asymptotically stable if R0 < 1 and unsta-
ble if R0 > 1.

Proof. The Jacobian matrix of system (1) at the disease-free
equilibrium E0 is given by

J E0ð Þ =

− αh + ϕhð Þ 0 0 0 0 0
1 − θð Þϕh −αh 0 0 0 ωh

θϕh 0 −αh −
βα2θϕhΛh

αh αh + ϕhð Þ −
θβα1ϕhΛh

αh αh + ϕhð Þ 0

0 0 0 βα2θϕhΛh

αh αh + ϕhð Þ − αh + δh − ηhð Þ βα1θϕhΛh

αh αh + ϕhð Þ 0

0 0 0 τδh − αh + ρh + γhð Þ 0
0 0 0 1 − τð Þδh γh − αh + ωhð Þ

2
6666666666666664

3
7777777777777775

, ð13Þ
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and the characteristic polynomial of JðE0Þ is expressed
by the following:

P λð Þ = λ + αh + ϕhð Þð Þ λ + αhð Þ2 λ + αh + ωhð Þð Þ A0λ
2 + A1λ + A2

� �
= 0:

ð14Þ

The four eigenvalues of JðE0Þ are as follows:
λ1 = −ðα h + ϕhÞ < 0, λ2 = λ3 = −αh < 0, and λ4 = −ðαh +

ωhÞ < 0, and the remaining eigenvalues are determined from
kðλÞ = A0λ

2 + A1λ + A2 = 0, where

A0 = 1 > 0,

A1 = αh + ρh + γhð Þ 1 − βα2θϕhΛh

αh αh + ϕhð Þ αh + ρh + γhð Þ
� �

+ αh + δh − ηhð Þ,

A2 = αh + ρh + γhð Þ αh + δh − ηhð Þ
� 1 − Λhβθϕh α2 αh + ϕhð Þ + α1τδhð Þ

αh αh + ϕhð Þ αh + δh − ηhð Þ αh + ρh + γhð Þ
� �

= αh + ρh + γhð Þ αh + δh − ηhð Þ 1 − R0ð Þ:
ð15Þ

From A0λ
2 + A1λ + A2 = 0, we recall Routh-Hurwitz cri-

teria [24, 25] and characteristic equation A0λ
2 + A1λ + A2

= 0 has strictly negative real root if and only if A0 > 0, A1
> 0, A2 > 0, and A1A2 > 0. It is obvious that A0 and A1 are
positive, and A2 is positive provided that 1 − R0 > 0, which
leads to R0 < 1. Therefore, the disease-free equilibrium point
E0 is locally asymptotically stable if R0 < 11, and COVID-19
cannot invade the population. For R0 > 1, we see that A2 < 0.
This shows as there is one eigenvalue with positive real part,
and hence, the disease-free equilibrium is unstable and the
invasion of COVID-19 is always possible.

Theorem 5. The COVID-19-free equilibrium point E0 of
model system of equation (1) is globally asymptotically stable
if R0 < 1 and vice versa.

Proof. To prove this, we follow Castillo-Chavez et al. theo-
rem [26].

Let us rewrite model system (1)

dX
dt

= F X, Zð Þ,
dZ/dt = G X, Zð Þ,

ð16Þ

with GðX, 0Þ = 0, where X = ðShðtÞ, AhðtÞ,UhðtÞ, RhðtÞÞ
∈ℝ4 represents nondisease state variables and X = ðEhðtÞ,
IhðtÞÞ ∈ℝ2 represents disease state variables in model (1).

To be E0 globally asymptotically stable for model system
(1), the following two scenarios must satisfied:

ðH1Þ For dX/dt = FðX, 0Þ, X∗ is globally asymptotically
stable, where FðX∗, 0Þ = 0.

Clearly one can see that at disease-free equilibrium point
E0 of model system (1),

Lim
t⟶∞

Sh tð Þ, Ah tð Þ,Uh tð Þ, Rh tð Þð Þ

= Λh

αh + ϕh
, 1 − θð ÞϕhΛh

αh αh + ϕhð Þ ,
θϕhΛh

αh αh + ϕhð Þ , 0
� �

:
ð17Þ

Hence, ðShðtÞ,AhðtÞ,UhðtÞ, RhðtÞÞ⟶ ðΛh/αh + ϕh, ð1
− θÞϕhΛh/αhðαh + ϕhÞ, θϕhΛh/αhðαh + ϕhÞ, 0Þ which implies
the global convergence of model system (1) in Σ.

ðH2ÞGðX , ZÞ = AZ − ĜðX, ZÞ, ĜðX, ZÞ ≥ 0 for ðX, ZÞ ∈ Σ,
where A = ∂ZðE0Þ/∂ðEh, IhÞ, Z = ðEh, IhÞT , and GðX, ZÞ =
ð _Eh, _IhÞT . Thus,

A =
βα2θϕhΛh

αh αh + ϕhð Þ − αh + δh − ηhð Þ βα1θϕhΛh

αh αh + ϕhð Þ
τδh − αh + ρh + γhð Þ

2
64

3
75:
ð18Þ

From GðX, ZÞ = AZ − ĜðX, ZÞ, we have that ĜðX, ZÞ = A
Z −GðX, ZÞ, and after simplification, we get that

Ĝ X, Zð Þ =
βθϕhΛh α2Eh + α1Ihð Þ

αh αh + ϕhð Þ − β α2Eh + α1Ihð ÞUh

0

2
64

3
75:
ð19Þ

Clearly A is an M-matrix (off diagonal elements of A are
nonnegative inside Σ) and ĜðX, ZÞ ≥ 0 because UhðtÞ = θ

ϕh½Λh/αh + ϕh + ðShð0Þ −Λh/αh + ϕhÞe−ðαh+ϕhÞt � ≤ βθϕhΛh/αh
ðαh + ϕhÞ as t⟶∞.

Therefore, the disease-free equilibrium point E0is glob-
ally asymptotically stable for model equation (1) when
R0 < 1, and the epidemiological implication of this result
is that in the long run, the disease (COVID-19) will die out
in the population if the awareness is highly created in the
population and in the absence of COVID-19 asymptomatic
human immigrants regardless of infective populations within
the community.

3.4. Existence and Local Stability of COVID-19 Persistent
Steady State. Let E∗ = ð S∗h,A∗

h ,U∗
h , E∗

h , I∗h , R∗
hÞ be COVID-19

persistent equilibrium point of model equation (1) in which
all state variables are to be positive, and hence, the disease
(COVID-19) persists in the population. The components
of E∗ are obtained by making the right hand sides of model
equation (1) to be zeros, and after some mathematical
manipulation we get the following:
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S∗h =
Λh

αh + ϕh
,

U∗
h =

αh + δh − ηhð ÞE∗
h

αh R0 − 1ð Þ ,

E∗
h =

αh αh + ρh + γhð Þ R0 − 1ð Þ
βα1τδh + βα2 αh + ρh + γhð Þ ,

I∗h =
τδhE

∗
h

αh + ρh + γhð Þ ,

R∗
h =

γhτδh + αh + ρh + γhð Þ 1 − τð Þδhð ÞE∗
h

αh + ωhð Þ αh + ρh + γhð Þ ,

A∗
h =

γhτδh + αh + ρh + γhð Þ αh + ωhð Þ 1 − θð ÞϕhΛh + γhτδh + 1 − τð Þωhδhð ÞME∗
h

αh αh + ωhð Þ αh + ρh + γhð Þ αh + ϕhð Þ ,

ð20Þ

where

M = αh + ρh + γhð Þ αh + xϕhð Þ: ð21Þ

As we observe, S∗h is positive and from the value of E∗
h , it

is obvious that all the values of ðA∗
h ,U∗

h , I∗h , R∗
hÞ are positive

for R0 > 1.

Corollary 6. The COVID-19 persistent equilibrium point E∗

of model system (1) exists only when R0 > 1.

Theorem 7. The COVID-19 persistent steady state E∗ =(S∗h
,A∗

h ,U
∗
t ,E

∗
h ,I

∗
h ,R

∗
h ) of model (1) is locally asymptotically stable

if and only if R0 > 1.

Proof. The linearized matrix of the model system (1) at the
endemic steady state E∗ is given by

where

k1 = αh + ϕhð Þ, k2 = 1 − θð Þϕh, k3 = θϕh, k4 = α1β, k5
= ϕh + δh, k6 = βα2, k7 = τδh, k8 = αh + ρh + γh, k9
= 1 − τð Þδh, k10 = αh + ωh, A = k4k7 + k6k8:

ð23Þ

The three eigenvalues of JðE∗Þ are λ1 = −k1 = −ðαh + ϕhÞ
< 0, λ2 = −αh < 0, λ3 = −k10 = −ðαh + ϕhÞ < 0, and the
remaining eigenvalues are determined from the submatrix
given by

J E∗ð Þ =

−k1 0 0 0 0 0
k2 −αh 0 0 0 ωh

k3 0 − k6E
∗
h + k4I

∗
h + αhð Þ −k6U

∗
h −k4U

∗
h 0

0 0 k6E
∗
h + k4I

∗
h k6U

∗
h − αh + δh − ηhð Þ k4U

∗
h 0

0 0 0 k7 −k8 0
0 0 0 k9 γh −k10

2
666666666664

3
777777777775
, ð22Þ

J4 E∗ð Þ =

− k6k8 E
∗
h + αhk8 + k4k7 E

∗
hð Þ

k8

−k6 k5 − ηhð ÞE∗
h

αh R0 − 1ð Þ
−k4 k5 − ηhð ÞE∗

h

αh R0 − 1ð Þ
k6k8 E

∗
h + k4k7 E

∗
hð Þ

k8

k6 k5 − ηhð ÞE∗
h

αh R0 − 1ð Þ
k4 k5 − ηhð ÞE∗

h

αh R0 − 1ð Þ
0 k7 −k8

2
6666664

3
7777775
: ð24Þ
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From COVID-19 persistent equilibrium point E∗, fur-
ther substitution of the value of k and A, we get that

E∗
h =

αhk8 R0 − 1ð Þ
k4k7 + k6k8

= αhk8 R0 − 1ð Þ
A ,U∗

h =
k8 k5 − ηhð ÞE∗

h

k4k7 + k6k8

= k8 k5 − ηhð ÞE∗
h

A and I∗h =
k7E

∗
h

k8:
:

ð25Þ

Now without calculating the eigenvalues of J4ðE∗Þ, we
can simply look the signs of its eigenvalues by using trace
determinant rule as follows: traceð J4ðE∗ÞÞ = −½αhR0A + k4
k7ðk5 − ηhÞ + k8A�/A < 0. Therefore, traceð J4ðE∗ÞÞ < 0. Fur-
thermore, det ð J4E∗Þ = k6k

2
8αh½ðk5 − ηhÞR0 − ðR0 − 1Þ�/A +

αhðk5 − ηhÞ½k4R0 + k6k8R0 + k4k7�/A > 0, which can be veri-
fied by substitute traceð J4ðE∗ÞÞ inequality into det ð J4ðE∗Þ
Þ. Thus, the above scenarios, i.e., λ1 = −k1 = −ðαh + ϕhÞ < 0,
λ2 = −αh < 0, λ3 = −k10 = −ðαh + ϕhÞ < 0, and traceð J4ðE∗ÞÞ
< 0 and det ð J4ðE∗ÞÞ > 0, lead to the COVID-19 persistent
steady state E∗ of model system (1) which is locally asymp-
totically stable whenever R0 > 1. Hence, it is the required
result.

3.5. Sensitivity Analysis of the Basic Reproduction Number.
Sensitivity analysis helps to identify the most influential
parameters on the basic reproduction number so efforts to
control the problem are directed to these parameters. Math-
ematically, we compute the sensitivity analysis of our model
system of equations based on the classical definition [14, 15]
defined as the normalized forward sensitivity index of a var-
iable R0, which depends differentiably on a parameter p,
given by △

R0
p = p/R0 × ∂R0/∂p.

For example, △R0
β ≡ 1, means increasing (or decreasing)

the contact rate β of unaware susceptible with exposed and
infectious individuals by 10%, will result to increase (or
decrease) the value of R0 by 10%, whereas△R0

δh
≡ −5:11,

means increasing (or decreasing) the recovery rate of infec-
tious humans, will result to decrease (or increase) the value
of R0 by 51.1%. The remaining sensitivity analysis of our
model can be obtained as follows:

△
R0
β = 1 > 0,△R0

α1
= α1τδh
α1τδh + αh αh + ρh + γhð Þ > 0,△R0

τ

= α1τδh
α1τδh + α2 αh + ρh + γhð Þ > 0,

△
R0
ϕh
= αh

αh + ϕhð Þ > 0,△R0
θ = 1 > 0,△R0

α2

= α2 αh + ρh + γhð Þ
α1τδh + α2 αh + ρh + γhð Þ > 0,△R0

ηh
= ηh
α1 + δh − ηh

> 0,

△
R0
γh
= α2γh
α1τδh + α2 αh + ρh + γhð Þ −

1
αh + ρh + γhð Þ < 0,△R0

δh

= δhτα1
α1τδh + α2 αh + ρh + γhð Þ −

1
α1 + δh − ηh

< 0:

ð26Þ

The sensitivity analysis indices evaluated at the baseline
model parameters values are resembled from Table 2. The
sensitivity indices are arranged in descending order as
follows.

3.5.1. Interpretation of Sensitivity Indices. From Table 2,
parameters that have positive indices have a negative impact
in the control of COVID-19 transmission if their values are
increasing. On the other hand, parameters which have neg-
ative indices have a positive impact to minimize the burden
of the disease (COVID-19) transmission in the society.
Thus, the most sensitive parameters for the transmission of
disease (COVID-19) are β and θ, and the most sensitive
parameter for the control of the disease (COVID-19) is δh
followed by γh.

4. Numerical Results and Discussion

4.1. Graphs for General Population Dynamics. In this section,
to verify the theoretical results of the model, numerical sim-
ulations are carried out by using MATLAB ode45 solver
with the following initial conditions:

Sh0 = 120,000 , Ah0 = 30,000, Uh0 = 50,000, Eh0 = 25,000,
Ih0 = 35,000, Rh0 = 20,000. It is important to note that
parameter values and initial number of populations are
taken for illustrative purpose.

Figure 2(a)reflects that when the value of Λh = 7:99, θ =
0:47, α1 = 0:19, α2 = 0:1399, αh = 0:22, ϕh = 0:59, ωh = 0:1,
τ = 0:09, β = 0:389, δh = 0:6, ρh = 0:99, γh = 0:1, and ηh
= 0:0898, then R0 = 0:9785 < 1: It is shown that all trajecto-
ries of the solutions of the model system (1) converge towards
disease-free equilibrium point components, or noninfective
class of human population tends to nonzero components,
and the infective class of human population tends to zero
component. In this case, the basic reproduction number is less
than unity (R0 = 0:9785 < 1) which confirms with our local
stability analysis of disease (COVID-19)-free equilibrium
point for model system (1) whenever R0 < 1 stated from The-
orem 4.

Figure 2(b)reflects that when parameter values changed as
Λh = 12:4, θ =0.99, α1 = 0:2, α2 = 0:14, αh = 0:0701, ϕh =
0:79, ωh = 0:1, τ = 0:79, β = 0:39, δh = 0:5, ρh = 0:75, γh
= 0:0391, and ηh = 0:0899, then R0 = 21:2443 > 1: It is shown
that all trajectories of solutions of model system (1) converge
towards the endemic (COVID-19 persistent) equilibrium
point components of model (1), or all distinct classes of
human populations coexist. In this case, the basic reproduc-
tion number is greater than unity (R0 = 21:2443 > 1) which
supports our analytical result about local stability of endemic
equilibrium point E∗ for model system (1) whenever R0 > 1
stated from Theorem 7.

4.2. Graphs on Newly Included Parameters in the Model. As
we observe from Figure 3(a), when the values of ωh and γh
increase and the values of θ decreases while other parameter
values remain constant, then the value of the secondary infec-
tion, R0, decreases and this leads to increase the number of
aware susceptible human population. If we implement effec-
tive awareness creation mechanisms between individuals, then
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the transmission rate and the spread of (COVID-19) will be
eliminated. As we observe from Figure 3(b), when the values
of ηh, θ, and β increase, then the values of secondary infection,
R0, increases. If we implement effective mechanisms to create
awareness between humans to avoid contacts and reduce the
immigration rate of COVID-19 asymptomatic humans, then
the number of exposed human population will be reduced
and also the transmission of COVID-19 pandemic will be
reduced.

4.3. Graphs for Sensitive Analysis of the Model. The authors
can find some significant results which have shown in
Figures 4(a) and 4(b), and one can observe that the large
value of θ or ηh can lead to the large value of secondary
infection R0. This implies that high proportion rate from
susceptible human into unaware susceptible human or high
rate of COVID-19 asymptomatic human immigrants can
increase the opportunity of COVID-19 outbreak. Generally,
from Figure 4, we found that R0 is more sensitive to the pro-
portion rate (θ) of susceptible humans into unaware suscep-
tible human than the rate of COVID-19 asymptomatic
human immigrant (ηh). This supports the idea that θ is the
most sensitive parameter in the transmission of COVID-
19. Therefore, decreasing the proportion rate of humans into
unaware human class by creating unlimited awareness
between individuals helps to reduce COVID-19 outbreak.
From Figures 5(a) and 5(b), we can see that the large value
of δh or γh can lead to the small value of secondary infection,
R0. This is to say that the high progression rate from exposed
into infectious or recovered class and the recovery rate from
infectious human class into recovered human class can
decrease the opportunity of COVID-19 outbreak. Generally,
from Figure 5, we found that R0 is less sensitive to the pro-
gression rate (δh) of exposed humans into infectious and
recovered human class than the recovery rate γh of individ-
uals from their infection. This supports the idea of sensitivity
analysis result that δh is the most sensitive parameter in the
control of COVID-19 transmission than γh.

In Figure 6(a), it can be seen that large value of δh or γh
and small value of ηh in the presence of β can lead to small
value of R0. That is to say, if we increase the progression rate
of exposed into infectious by diagnosis to be quarantined or
recovered human class by treatment and the rate of COVID-
19 asymptomatic humans into exposed human class by pre-
diagnosis in the presence of human to human contact, the
transmission of COVID-19 pandemic will decrease in the
population. From Figure 6(b), it can be seen that large value
of θ or ηh or τ can lead to the large value of R0. If we reduce
the proportion rate from susceptible human class into
unaware susceptible human class by creating awareness
and the rate of infective COVID-19 asymptomatic human
immigrants by effective prediagnosis, then the disease
(COVID-19) outbreak will end.

5. Conclusion

In this study, a nonlinear deterministic mathematical model
of COVID-19 pandemic is developed and analyzed to inves-
tigate the impact of awareness and COVID-19 asymptom-

atic human immigrants in the transmission of COVID-19.
We first obtained the domain where the model gives epide-
miologically meaningful and mathematically well-posed by
the fundamental existence and uniqueness theorem. Both
positivity and invariant region of the model solutions are
shown analytically. The basic reproduction number, R0, is
computed using next generation matrix approach. The ana-
lytical analysis showed that the disease (COVID-19) free and
endemic (COVID-19 persistent) equilibrium points of the
model exist under certain conditions. We analyzed both
the local and global stability of disease-free equilibrium
point based on R0. The disease-free equilibrium point of
the model is locally as well as globally asymptotically stable
whenever R0 < 1 and unstable whenever R0 > 1. From epide-
miological point of view, the disease (COVID-19) will die
out in the population whenever <1 and persists in the pop-
ulation whenever R0 > 1. Positive endemic equilibrium point
of the model exists, and it is locally asymptotically stable
whenever R0 > 1, so that the reinvasion of COVID-19 may
possible in the population.

We performed sensitivity analysis of the basic reproduc-
tion number with respect to model parameters to identify
which parameters have a strong influence on COVID-19
transmission dynamical system. Both analytical analysis
and numerical simulation results of the model ensured that
the most sensitive parameters for the transmission of
COVID-19 are θ in which susceptible individuals will join
unaware human class and contact rate ðβÞ of those unaware
susceptible humans with exposed and infectious human
population, while the most sensitive parameter to control
COVID-19 transmission is the progression rate δh followed
by the recovery rate γh.

6. Concluding Remarks and Suggestions

It is necessary to achieve a better understanding on the
COVID-19 pandemic, taking into account awareness cam-
paign between humans and control of COVID-19 asymp-
tomatic human immigrants in order to reduce the number
of infections and mortality rates. The model developed in
the present manuscript has the advantage of describing the
best way of controlling the COVID-19 outbreak. As we dem-
onstrated in the theoretical analysis and numerical results,
reducing the values of θ (the proportion rate of susceptible
into unaware human class) and ηh (the rate of COVID-19
asymptomatic human immigrants) helps to reduce exposed
and infectious individuals. These help to control COVID-
19 outbreak. Therefore, in order to control COVID-19 out-
break, policy makers or health workers must give great
emphasis on how to further create awareness between
humans and effective mechanisms to reduce infective
COVID-19 asymptomatic human immigrants.

Data Availability

The data supporting this model are from the previous pub-
lished articles and cited on a relevant places.
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