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Abstract

Motivation: To complement experimental efforts, machine learning-based computational methods are playing an
increasingly important role to predict human-virus protein—protein interactions (PPIs). Furthermore, transfer learn-
ing can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task,
improving prediction performance.

Results: To predict interactions between human and viral proteins, we combine evolutionary sequence profile fea-
tures with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture
outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our
main contribution, we introduce two transfer learning methods (i.e. ‘frozen’ type and ‘fine-tuning’ type) that reliably
predict interactions in a target human-virus domain based on training in a source human-virus domain, by retrain-
ing CNN layers. Finally, we utilize the ‘frozen’ type transfer learning approach to predict human-SARS-CoV-2 PPls,

indicating that our predictions are topologically and functionally similar to experimentally known interactions.

Availability and implementation:
XiaodiYangCAU/TransPPI/.

The source codes and datasets are available at https:/github.com/

Contact: wuchtys@cs.miami.edu or zidingzhang@cau.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The detection of human—virus protein—protein interactions (PPIs) is
essential for our understanding of the mechanisms that allow viruses
to control cellular functions of the human host. Considerable experi-
mental efforts allow the determination of binary interactions between
viral and human proteins through yeast two-hybrid (Y2H) assays and
mass spectroscopy (MS) techniques (Gordon et al., 2020; Shah et al.,
2018). However, maps of interactions between the human host and
various viruses remain incomplete, as a consequence of experimental
cost, noise and a multitude of potential protein interactions. Although
tens of thousands of interactions have been experimentally deter-
mined, an immense need still exists for the development of reliable
computational methods to predict human—virus PPIs.

The primary amino acid sequence remains the most accessible and
complete type of protein information. As a consequence, many
sequence-based feature extraction methods have been developed, such

as Local Descriptors (LD) (Davies et al., 2008; Yang et al., 2010),
Conjoint Triads (CT) (Shen et al., 2007; Sun et al., 2017) and Auto
Covariance (AC) (Guo et al., 2008; You et al., 2013). Specifically, such
features generally represent physicochemical properties or positional in-
formation of amino acids that appear in the protein sequences. In add-
ition, other heterogeneous encoding schemes have been used as well to
supplement traditional sequence encodings, including biological func-
tions, protein interaction network properties, domain/motif informa-
tion, expression profiles, evolutionary information and natural
language processing-based sequence embedding techniques (Lian et al.,
2021). Based on these features, several traditional machine learning
algorithms (Alguwaizani et al., 2018; Cui et al., 2012; Dyer et al.,
2011; Eid er al., 2016; Emamjomeh et al., 2014; Lian et al., 2020,
Yang et al., 2020) were previously applied to predict human—virus
PPIs. Dyer et al. proposed a linear Support Vector Machine (SVM)
model to predict human-HIV PPIs based on k-mers composition, prop-
erties of human proteins in human PPI networks and domain profile

©The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1


https://orcid.org/0000-0001-5631-3549
https://orcid.org/0000-0002-3229-5865
https://orcid.org//0000-0001-7576-2198
https://orcid.org/0000-0001-8916-6522
https://orcid.org//0000-0002-9296-571X
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/

X.Yang et al.

features. Cui et al. utilized CT to encode protein sequences that were
fed to an SVM model with a radial basis function kernel to predict
human-HPV/HCYV interactions. Emamjomeh ez al. developed ensem-
ble models to predict human-HCV PPIs including four popular ma-
chine learning methods and six different encoding schemes (i.e. amino
acid composition, pseudo amino acid composition, evolutionary infor-
mation, network centrality, expression information and post-
translational modification information). Eid et al. introduced a do-
main/linear motif-based SVM approach called DeNovo to predict
human-virus PPIs (Eid et al., 2016). In (Alguwaizani et al., 2018), an
SVM model was developed to predict human-virus PPIs based on se-
quence features representing single amino acid repeats and local amino
acid composition. Recently, we proposed a sequence embedding-based
Random Forest (RF) method to predict human-virus PPIs with promis-
ing performance (Yang et al., 2020). In particular, we applied an un-
supervised sequence embedding technique (i.e. doc2vec) to represent
interacting protein sequences as low-dimensional vectors. While effect-
ively capturing amino acid-specific information to predict novel
human-virus PPIs, such machine learning methods still suffer from sev-
eral limitations, such as publicly unavailable source codes/web servers,
limited sets of virus species and unsatisfactory performance in real
applications. Therefore, further method development of human-virus
PPI predictions is still in high demand.

In the past decade, deep learning methods have demonstrated
improved performance and potential in many fields. In particular,
convolutional neural networks (CNNs) (Hashemifar et al., 2018)
and recurrent neural networks (RNNs) (Zhang et al., 2016) are
comparatively well-established approaches, where CNNs automat-
ically capture local features while RNNs preserve contextualized/
long-term ordering information. While deep learning methods
(Ahmed et al., 2018; Chen et al., 2019; Du et al., 2017; Hashemifar
et al., 2018; Sun et al., 2017) that allow the prediction of PPIs yield
excellent performance, such models usually focus on intraspecies
interactions. Very recently, Liu-Wei et al. (2021) reported a predict-
ive method called DeepViral that utilized the information of sequen-
ces, disease phenotypes and functions as input to train a CNN
model for human-virus PPI prediction.

In general, traditional machine learning/deep learning only
perform well, if training and test set were cut from the same stat-
istical distribution in the feature space (Shao et al., 2015). While
the rigid application of a trained model on testing datasets with
different distributions usually perform poorly, transfer learning
methods utilize prior knowledge from a ‘source’ to train in a ‘tar-
get’ task domain (Chang et al., 2018; Shao et al., 2015) to im-
prove performance. Effective transfer learning can improve the
generalization of models, reduce the size of labeled datasets and
save training time on the target dataset/task. With the develop-
ment of deep learning networks, a regular phenomenon appears
in various training objectives (Lee et al., 2009) in that the first
layers of deep neutral networks (DNNs) usually capture standard
features of training data, providing a foundation for transfer
learning. Specifically, a DNN can be trained on a source task,
establishing the parameters of the first layers. Subsequently,
parameters of late layers are trained on the target task, striking a
balance between the distributions of the different training
domains. Depending on the size of the target dataset and number
of parameters of the DNN, first layers of the target DNN can ei-
ther remain unchanged during training on the new dataset or fine-
tuned toward the new task, leveling specificity and generality of
derived prior knowledge (Taroni et al., 2019).

Here, we focus on the development and application of transfer
deep learning approaches to predict human—virus PPIs, an important
issue amidst the world-wide COVID-19 pandemic. In particular, we
design a deep learning framework through representing interacting pro-
tein sequences with a pre-acquired protein sequence profile module fol-
lowed by a Siamese CNN and a multi-layer perceptron (MLP) module.
Based on our deep learning framework, we propose two types of trans-
fer learning methods through freezing/fine-tuning the parameters of the
CNN layers trained with a source and retrained with a target human—
virus system, showing improved prediction performance and better
model generalization. Finally, we use the transfer learning models to

predict human-SARS-CoV-2 PPIs and conduct in-depth topological
and functional analysis of the obtained interaction network.

2 Materials and methods

2.1 Deep learning network framework

Our end-to-end DNN framework consists of a pre-acquired protein
sequence profile module, a Siamese CNN module and a prediction
module (Fig. 1). Evolutionary profile features have been used for
intraspecies PPI predictions with favorable performance (Hamp and
Rost, 2015; Hashemifar et al., 2018). In particular, we represent
interacting proteins by protein sequence profile [i.e. position-specific
scoring matrix (PSSM)], as input to the Siamese CNN module to
generate respective high-dimensional sequence embeddings that cap-
tures local features of human and viral proteins such as protein lin-
ear binding motif patterns. Finally, output embeddings of two
proteins form a sequence pair vector as the input to an MLP with an
appropriate loss function to predict the presence/absence of an inter-
action between a viral and a human protein.

2.1.1 Pre-acquired protein sequence profile module

By applying a threshold of E-value < 0.001, we performed PSI-
BLAST searches with default parameters in the UniRef50 protein se-
quence database (Suzek ez al., 2015) to discover protein sequences
that are evolutionarily linked to the search sequence (Hamp and
Rost, 2015; Hashemifar et al., 2018). Sequence profiles (i.e. PSSMs)
thus obtained for each search sequence were processed by truncating
profiles of long sequences to a fixed length 7 and zero-padding short
sequences, a method widely used for data pre-processing and effect-
ive training (Min et al., 2017). As a result, we obtained a 7 x 20 di-
mensional array S for each protein,
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where s;; denotes the probability of the /™ out of the alphabet of 20
amino acids in the i position of the sequence.
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Fig. 1. Our proposed deep learning architecture to predict human—virus PPIs com-
bines evolutionary sequence profile features of interacting human and viral proteins
with a Siamese CNN architecture and an MLP
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2.1.2 Siamese CNN module

To capture complex relationship between two proteins, we use a
Siamese CNN architecture (Chen et al., 2019; Hashemifar et al.,
2018) with two identical CNN sub-networks that share the same
parameters for a given pair of protein profiles S,S'. Each sub-
network produces a sequence embedding of a single protein profile
that are subsequently concatenated. While each single CNN module
consists of a convolution layer and a pooling layer, we leverage four
connected convolutional modules to capture the patterns in an input
sequence profile.

Specifically, we use one-dimensional (1-D) convolution in each
convolution layer. For the first convolution layer, we input a
2000 x 20 array for each protein where the array can be regarded
as a vector of length 2000 with 20 channels (i.e. 20 features in each
position). Therefore, for each convolution layer, we consider a
n x sinput array X where 7 is the length of the input vector, and s is
the number of channels. The convolution layer applies a sliding win-
dow of length w (i.e. the size of filters/kernels) to convert X into
a(n —w+1) x farray C where f represents the number of filters/
kernels. C;;, denotes the score of filter/kernel k, 1 < k < f, that
corresponds to position i of array X(1 <i<n—-w-+1).
Moreover, the convolution layer applies a parameter-sharing ker-
nelM, a f x w x s array where My ;; is the coefficient of pattern k at
position j and feature /. As a consequence, we define C as

C = Convm(S)
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Furthermore, the pooling layer immediately follows the convolu-
tion layer and further transforms Ctoa (n—w+1—p)/t +1) xf
array P where p is the size of pooling window, and ¢ is the stride of
the sliding window. Array P = Pool(C) is calculated as the max-
imum of all positions(i — 1) x t +1 < j < (i — 1) x t 4 p over each
feature k where 1 < i < (mn—w+1—-p)/t+1,

Pip = max(c(i—1)><t+'l.k7 B C(i—1)><t+p<lz)

2.1.3 Prediction module

The prediction module concatenates a pair of protein sequence
embedding vectors into a sequence pair vector as the input of fully
connected layers in an MLP and computes the probability that two
proteins interact. The MLP contains three dense layers with
leakyReLU where cross-entropy loss is optimized for the binary clas-
sification objective defined as

1 m
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where y; is numerical class label of the protein pairp. The output of
the MLP for the protein pair p is a probability vector ", whose
dimensionality is the number of classes 7. s is normalized by a soft-
max function, where the normalized probability value for the i
class is defined as s” = exp(s?)/ > exp(§;’).

2.1.4 Implementation details

As for pre-acquired sequence profile construction, we consider a
fixed sequence length of 2000. As for the construction of our learn-
ing approach, we use four 1-D convolutional modules, where the in-
put sizes (i.e. the number of channels) of these four convolution
layers for each protein sequence are 20, 64, 128 and 256, respective-
ly. As for the size of the CNN models, the numbers of filters in the
four layers are 64, 128, 256 and 512, respectively. The convolution
kernel size (i.e. the length of the convolution sliding window) is set
to 3. Both the length and the stride of the pooling window are set to
2 for three max-pooling layers while the final pooling layer adopts
global max-pooling. Each convolution layer is followed by a pooling

layer. The detailed network architecture of the deep learning model
is provided in Supplementary Figure S1. To optimize cross-entropy
loss we use AMSGrad (Reddi et al., 2018), and set the learning rate
to 0.0001. The batch size is set to 64, while the number of epochs is
100. The fully connected layers contain three dense layers with input
sizes 1024, 512 and 256, respectively, and output a two-
dimensional vector with the last softmax layer. We implemented the
proposed architecture with Keras (https://keras.io/) using the GPU
configuration. The parameter selection and optimization are
detailed in Supplementary Table S1.

2.2 Dataset construction and partition

We collected experimentally verified human-virus PPI data from
five public databases, including HPIDB (Ammari et al., 2016),
VirHostNet (Guirimand et al., 2015), VirusMentha (Calderone
et al., 2015), PHISTO (Durmus Tekir et al., 2013) and PDB
(Altunkaya et al., 2017). To obtain high-quality PPIs, we removed
interactions from large-scale MS experiments that were detected
only once, redundant interactions, non-physical interactions and
interactions between proteins without available PSSM features. By
performing the above filtering steps, we obtained 31 381 interac-
tions in all viruses, capturing 9880 interactions in HIV, 5966 in
Herpes, 5099 in Papilloma, 3044 in Influenza, 1300 in Hepatitis,
927 in Dengue and 709 in Zika (Supplementary Table S2). We took
these pre-processed experimentally verified interactions as positive
sample sets. As for human-SARS-CoV-2 PPIs, we collected experi-
mental interactions from two high-throughput MS experiments
(Gordon et al., 2020; Li et al., 2021), amounting to 568 human-
SARS-CoV-2 PPIs as positive samples.

To compile negative samples, we first randomly selected human-
virus protein pairs from human proteins in Swiss-Prot (The UniProt
Consortium, 2017) and viral proteins in positive samples except
those already reported to interact. Utilizing the ‘Dissimilarity-Based
Negative Sampling’ method (Eid ez al., 2016; Yang ez al., 2020,
2021) we further sampled negative samples that were 10 times larger
than the positive counterparts in each human-virus system
(Supplementary Table S2). As the key strategy of ‘Dissimilarity-
Based Negative Sampling’ we stipulate that if the sampled sequence
of viral protein B is similar to another viral protein A (sequence
identity > 0.3), that is found to interact with human protein C (i.e.
A-C is a positive sample), then the pair of the viral protein B and the
human protein C is not selected as a negative sample. As for the size
of training sets, we surmise that positive interaction examples are
far less abundant than negative examples, prompting us to use an
unbalanced ratio of positives/negatives (i.e. 1:10) to capture this dis-
parity. Furthermore, we mainly relied on 5-fold cross-validation for
evaluating the predictive models in all experimental settings. To this
end, all the benchmark datasets were equally divided into five non-
overlapping subgroups and each subgroup owns one chance to
train/test the model which can provide an unbiased evaluation. Note
that the dataset partition was fixed for all experiment settings, pro-
viding a reliable basis for an unbiased comparison of different
models.

2.3 Two types of transfer learning methods

To further improve the performance of our DNN especially when
dealing with smaller datasets, we propose two transfer learning
methods that keep the parameters of the CNN layers constant (i.e.
‘frozen’) or allow their fine-tuning in the early layers (i.e. ‘fine-tun-
ing’). In more detail, we used the proposed DNN architecture to
train the models based on a given source set of human—virus interac-
tions to obtain pre-trained parameters in the CNN layers that learn
the representation of the protein sequences. In subsequent transfer
learning steps, we kept the parameters of these CNN layers constant
(i.e. “frozen’) and only trained parameters of the fully connected
layers of the MLP to predict interactions in a target human-virus
interaction set. As an alternative, our ‘fine-tuning’ approach trained
parameters of the fully connected layers of the MLP and retrains the
parameters of CNN layers that we obtained from the initial training
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step and changed such parameters by learning interactions in a tar-
get set of human-virus interactions.

3 Results and discussion

3.1 Performance of the proposed deep learning method
Based on our deep learning architecture, we assessed the predicted
interactions between proteins of various viruses and the human host
through 5-fold cross-validation. While Table 1 indicates generally
high prediction performance of our deep learning approach, we
observed that small sizes of training datasets such as Dengue, Zika
and SARS-CoV-2 decreased prediction performance. As RF outper-
forms other machine learning methods when applied to binary clas-
sification problems (Chen et al., 2019; Wu et al., 2009; Yang et al.,
2020), we compared the performance of our deep learning
approaches (i.e. PSSM+CNN+MLP) to this representative state-of-
the-art classifier. Moreover, we considered three widely used encod-
ing schemes (i.e. LD, CT and AC) for feature representations as in-
put to the RF classifier (see Supplementary Methods and
Supplementary Table S1 for method details). By comparing AUPRC
(area under the precision—recall curve) values, we observed that our
deep learning method generally outperformed other encoding
schemes-based RF classifiers especially when applied to compara-
tively large datasets (Table 2).

To further assess the proposed sequence profile-based encoding
scheme, we compared the performance of our deep learning archi-
tecture based on PSSM to a different word embedding technique
called word2vec+CT one hot. Briefly, word2vec+CT one-hot is the
concatenation of two pre-trained amino acid embeddings [i.e. the
word2vec encoding method (Chen et al., 2019; Le and Mikolov,
2014) and the CT one-hot encoding scheme of the corresponding se-
quence], where each protein was represented by a 7 x 12 dimension-
al array. Training our CNN+MLP approach with word2vec+CT
one hot encodings of the corresponding protein sequences, we
observed that the representation of sequences through PSSM in our
approach provided better prediction performance especially in rela-
tively small datasets such as Dengue, Zika and SARS-CoV-2
(Supplementary Table S3).

3.2 Comparison with other existing human-virus PPI

prediction methods

We further compared the performance of our method to four exist-
ing human-virus PPI prediction approaches [i.e. our previous RF-
based method (Yang et al., 2020), DeepViral (Liu-Wei et al., 2021),
the method of (Alguwaizani et al., 2018) and the DeNovo method
(Eid et al., 2016)]. Allowing a fair comparison, we first constructed
the PSSMs of the protein sequences in DeNovo’s PPI dataset and
used their training set to retrain our Siamese-based CNN model.
Finally, we assessed the performance of our reconstructed deep
learning model on the test set provided in Eid et al. (2016) including
425 positive and 425 negative samples. Furthermore, we used
DeNovo’s PPI interaction dataset to assess the prediction

performance of our RF-based method, DeepViral and Alguwaizani
et al.’s method utilizing their corresponding performance metrics.
As shown in Supplementary Table S4, our deep learning and previ-
ously published RF-based method clearly outperformed or were
comparable with other approaches, emphasizing that our deep
learning method is fully competitive compared to the newly devel-
oped method DeepViral using sequence alone or together with
phenotype and functional features (Supplementary Table S4).

3.3 Cross-viral tests and transfer learning

To explore potential factors that affect prediction performance in a
cross-viral setting, we trained our deep learning model on four sub-
groups of one human-virus PPI dataset, predicted protein interac-
tions in one subgroup of a different human-virus system and
repeated these steps five times, implementing a S5-fold cross-
validation of a naive cross-viral test. As expected, we observed that
the prediction performance dropped considerably compared to
training and testing in the same human-virus system (Fig. 2a). To
allow reliable cross-viral predictions of PPIs, we introduced two
transfer learning methods (i.e. ‘frozen’ and ‘fine-tuning’). To com-
prehensively test our transfer learning approaches, we considered
each combination of human-virus PPI sets as source and target
domains. Similar to the previous naive 5-fold cross-validation set-
ting, we first trained the parameters of CNN layers on four random-
ly sampled subgroups of a source domain. Subsequently, we
transferred all parameters of CNN layers to initialize a new model
(‘frozen’ or ‘fine tuning’) with randomly initialized MLP layers to
train on the corresponding four subgroups of a target domain and
test the predictive model on the remaining subgroup in the target do-
main. Figure 2b indicates that a relatively rigid transfer learning
methodology by keeping the parameters of the CNN module un-
touched (i.e. ‘frozen’) and training the MLP layers strongly outper-
formed the naive baseline performance as shown in Figure 2a. In
turn, fine-tuning parameters in the CNN module and training the
MLP layers as well with a given target human—virus domain allowed
for another increase in performance (Fig. 2c). As for individual pairs
of human-virus domains, we also observed that independently from
the training domain the ‘frozen’ transfer methodology worked better
compared to the ‘fine-tuning’ approach when the target domain
dataset was extremely small (i.e. human-SARS-CoV-2). In turn, per-
formance of the ‘frozen’ transfer learning approach dropped com-
pared to ‘fine-tuning’ when the target human—virus domain datasets
of PPIs were larger such as human-Hepatitis, human-Dengue and
human-Zika.

3.4 Prediction and analysis of human-SARS-CoV-2 PPIs

based on transfer learning models

To predict a genome-wide map of potential PPIs between the human
host and SARS-CoV-2, we first trained parameters of the CNN
layers of our deep learning model utilizing all human—virus protein
interactions. Subsequently, we used our two transfer learning
approaches to train our set of interactions between proteins of

Table 1. Performance of our deep learning architecture (PSSM+CNN+MLP) using 5-fold cross-validation®

Human-virus PPI Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) Fl-score (%) AUPRC
dataset

Human-HIV 98.65 95.16 89.72 99.54 92.36 0.974
Human-Herpes 95.26 77.11 68.10 97.98 72.33 0.768
Human-Papilloma 95.98 82.70 70.48 98.53 76.10 0.818
Human-Influenza 96.10 84.22 70.30 98.68 76.63 0.834
Human-Hepatitis 93.43 69.27 49.77 97.79 57.92 0.636
Human-Dengue 93.29 70.02 45.85 98.04 55.41 0.605
Human-Zika 95.41 85.17 59.94 98.96 70.36 0.746
Human-SARS- 90.64 45.81 16.37 98.06 24.12 0.329

CoV-2

?The definitions of performance assessment metrics are available in Supplementary Materials.
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Table 2. Performance comparison of our deep learning architecture and three sequence encoding schemes-based RF methods using 5-fold

cross-validation

AUPRC
Human-virus PPI dataset Our method LD+RF CT+RF AC+RF
Human-HIV 0.974 0.972 0.970 0.972
Human-Herpes 0.768 0.741 0.737 0.699
Human-Papilloma 0.818 0.740 0.724 0.656
Human-Influenza 0.834 0.813 0.795 0.713
Human-Hepatitis 0.636 0.571 0.580 0.537
Human-Dengue 0.605 0.526 0.505 0.456
Human-Zika 0.746 0.720 0.718 0.698
Human-SARS-CoV-2 0.329 0.371 0.350 0.314
(a) CROSS-VIRAL TEST (b) FROZEN (c) FINE-TUNING

SARS-CoV-2
¢ {\e’

Fig. 2. (a) Investigating prediction performance we trained our deep learning model on one human-virus PPI dataset (rows) and predicted protein interactions in a different
human-virus system (columns). In (b) and (c) we show the corresponding performance of the ‘frozen’ and the ‘fine-tuning’ transfer learning methods

human and SARS-CoV-2. Applying 5-fold cross-validations, we
observed that the AUPRC of 0.483 with the ‘frozen’ transfer learn-
ing approach outperformed the corresponding value of 0.435
when we used the ‘fine-tuning’ method. In addition, training on all
source human-virus PPI datasets showed best performance com-
pared to separately training with virus-specific source PPI datasets
(data not shown). Therefore, we used five ‘frozen’ models in a
5-fold cross-validation setting based on human-all virus source
dataset to predict human-SARS-CoV-2 PPIs and averaged the
scores of the five models as the prediction result. At a false positive
rate control of 0.01, we identified 946 high-confidence interac-
tions between 21 SARS-CoV-2 proteins and 551 human proteins
(Supplementary Table SS5).

By analyzing the 551 targeted human proteins we found several
network patterns that are in line with previous observations
(Supplementary Fig. S2a—d). In particular, the power-law distribution
of the number of viral proteins that interact with a given human pro-
tein suggests that a majority of human proteins are targeted by one
viral protein, while a minority interacts with many viral proteins
(Wuchty et al., 2010). Collecting 365 284 human PPIs from the
HIPPIE database (Alanis-Lobato et al., 2017) we observed that tar-
geted human proteins are enriched in bins of increasing degree, a result
that is consistent with previous findings as well (Dyer ez al., 2008;
Wuchty et al., 2010). Considering 2916 human protein complexes
from the CORUM database (Giurgiu ez al., 2019) we found that viral
targets are enriched in sets of proteins that participate in an increasing
number of protein complexes (Wuchty et al., 2010). To illustrate viral
similarities, we compared the experimentally known human-SARS-
CoV-2 interactome and our predicted interactome with their counter-
parts of seven other viruses. While our predictions show similar over-
laps of viral targets with the experimentally obtained interactomes, we
further found that Dengue and Influenza had the most similar interact-
ing partners in both predictions and experimentally known interactions
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Fig. 3. (a) Overlap of experimentally observed and predicted interactions between
proteins of the human host and SARS-CoV-2. (b) In a quantitative functional ana-
lysis of targeted human host proteins, we considered the enrichment of GO terms
and KEGG pathways through a hypergeometric test (Bonferroni corrected P-value
< 0.01). We found that a relatively large share of functional terms in groups of
host proteins appearing in the experimentally known PPIs and predictions. (c) In
more detail, we observed that enriched GO BP terms in host proteins appearing in
the experimental and predicted PPIs were functionally similar
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Fig. 4. (a) Combining predictions from the transfer learning approach and known human PPIs we determined connectivity-based modules that were subjected to functional in-
terpretation. (b) Human-SARS-CoV-2 PPI network with enriched GO BP terms and KEGG pathways for each topological module. (¢) SARS-CoV-2 targets a module that
involves the centrosome, cell cycle and interferon pathway. Through multiple sequence alignment, we observed a potential conserved binding motif shared by nsp13 of SARS-
CoV-2 and proteins of other viral pathogens, suggesting that SARS-CoV-2 nsp13 protein may interfere with the regulation processes of IFN to support antiviral innate immune

response

(P-value < 0.05, hypergeometric test). Notably, the association
with Influenza is of particular interest as this virus also induces re-
spiratory disease (i.e. pneumonia).

3.5 Comparative analysis of known and our predicted
human-SARS-CoV-2 PPIs

Comparing our predicted and experimentally obtained human-SARS-
CoV-2 PPIs, we found considerable overlaps. In particular, 298 out of
946 predicted PPIs were identified through previous experimental efforts
that amount to 52.5% of known interactions in SARS-CoV-2, while
648 were specifically identified through our deep learning approach (Fig.
3a, Supplementary Table S5), indicating the reliability and specificity of
our model for the identification of novel interactions. Moreover, we per-
formed functional and pathway enrichment for experimentally known
and predicted viral targets, respectively. Considering hypergeometric

tests (Bonferroni corrected P-value < 0.01), we observed a relatively
large number of shared GO enrichment terms/KEGG enrichment path-
ways of experimentally confirmed targets and predicted targets, further
indicating the reliability of our predictions (Fig. 3b, Supplementary
Tables S6 and S7). In more detail, we found that GO BP enrichment of
experimental and predicted viral targets both point to the involvement of
viral targets in protein transport, protein import and mRNA export
from the nucleus (Fig. 3c). Notably, our predictions augment such func-
tions, indicating that the virus may also interfere with nuclear pore or-
ganization and assembly as well as protein export from the nucleus.

3.6 Modular analysis of human-SARS-CoV-2 PPI

network
To further explore potential functional modules that can reveal
SARS-CoV-2 biology, we combined our predicted 946 human—
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SARS-CoV-2 PPIs with known human-specific PPIs as of the HIPPIE
database (Alanis-Lobato et al., 2017) (Fig. 4a). Specifically, we iden-
tified nine topological modules based on connectivity between
human proteins (Fig. 4a and b; Supplementary Methods), utilizing
the MCODE algorithm (Bader and Hogue, 2003). Investigating the
enrichment of GO BP terms and KEGG pathways through hyper-
geometric  tests (Bonferroni adjusted P-value < 0.05;
Supplementary Methods), we observed that these modules largely
revolved around ribosome biogenesis, retrograde protein transport,
elastic fiber assembly, mitochondrial translation, protein processing
in endoplasmic reticulum, stress granule regulation, protein folding
in endoplasmic reticulum, centrosome and gene splicing (Fig. 4b,
Supplementary Table S8).

Considering a module that was enriched with centrosome func-
tions through interactions with nsp13 and cell cycle functions through
interactions with orf6, we also found that this module harbors human
genes that allow SARS-CoV-2 to interact with innate immune path-
ways which is consistent with previous findings (Gordon et al., 2020).
As shown in the module, the interferon (IFN) pathway is targeted
through TBK1 by nsp8, nsp13 and orf6, a serine/threonine-protein
kinase that plays an important role in the induction of the antiviral
IFN response to foreign agents such as viruses. A number of viral pro-
teins bind to TBK1 and regulate their kinase activity to reduce TBK1-
mediated secretion of IFN and induction of an antiviral state, such as
Borna disease virus (BDV) P protein (Unterstab ez al., 2005), Human
herpesvirus 1 (HSV-1) ICTP34.5 protein (Manivanh et al., 2017) and
Ebola virus (EBOV) VP35 protein (Prins ez al., 2009). BDV P protein
itself is phosphorylated by TBK1, suggesting that P functions as a
viral decoy substrate that prevents activation of cellular target pro-
teins of TBK1. Furthermore, residues from 87 to 106 in HSV-1
ICTP34.5 protein interact with TBK1 to modulate type I IFN signal-
ing (Manivanh et al., 2017; Verpooten et al., 2009). Considering the
multiple sequence alignment of these viral proteins and nsp13 of
SARS-CoV and SARS-CoV-2 we found a potential conserved binding
motif (Fig. 4c), corroborating our assumption that SARS-CoV-2
nsp13 protein may also interfere with the regulation processes of IFN
that support antiviral innate immune response.

4 Conclusion

We designed a Siamese-based multi-scale CNN architecture by using
PSSMs to represent sequences of interacting proteins, allowing us to
predict human—virus PPIs with an MLP approach. We observed that
our model outperformed previous state-of-the-art prediction methods
as well as combinations of other machine learning and pre-trained fea-
ture embeddings. Moreover, we introduced two transfer learning meth-
ods (i.e. ‘frozen’ type and “fine-tuning’ type), which allowed us to train
on a source human-virus domain and retrain the layers of CNN with
data of a target domain. Notably, our methods increased the cross-
viral prediction performance dramatically, compared to the naive base-
line model. Finally, we used our ‘frozen’ transfer learning method to
predict human-SARS-CoV-2 PPIs and performed in-depth network
analysis based on the identified interactions. Our transfer learning
model resembled closely the functions and characteristics of experimen-
tally obtained interactions and indicated novel functions that the virus
potentially targets. Taken together, our transfer learning method can
be effectively applied to predict human—virus PPIs in a cross-viral set-
ting and the study of viral infection mechanism.

Acknowledgement

The authors thank the support of the high-performance computing platform
of the State Key Laboratory of Agrobiotechnology.

Funding

This work was supported by the National Key Research and Development
Program of China [2017YFC1200205 and 2017YFD0500404].

Conflict of Interest: none declared.

References

Ahmed,l. et al. (2018) Prediction of human-Bacillus anthracis protein—protein
interactions using multi-layer neural network. Bioinformatics, 34,
4159-4164.

Alanis-Lobato,G. et al. (2017) HIPPIE v2.0: enhancing meaningfulness and re-
liability of protein—protein interaction networks. Nucleic Acids Res., 45,
D408-D414.

Alguwaizani,S. et al. (2018) Predicting interactions between virus and host
proteins using repeat patterns and composition of amino acids. J. Healthc.
Eng., 2018, 1391265.

Altunkaya,A. et al. (2017) The RCSB protein data bank: integrative view of protein,
gene and 3D structural information. Nucleic Acids Res., 45, D271-D281.

Ammari,M.G. et al. (2016) HPIDB 2.0: a curated database for host-pathogen
interactions. Database, 2016, baw103.

Bader,G.D. and Hogue,C.W.V. (2003) An automated method for finding molecu-
lar complexes in large protein interaction networks. BMC Bioinformatics, 4, 2.
Calderone,A. et al. (2015) VirusMentha: a new resource for virus-host protein

interactions. Nucleic Acids Res., 43, D588-D592.

Chang,H. et al. (2018) Unsupervised transfer learning via multi-scale convolu-
tional sparse coding for biomedical applications. IEEE Trans. Pattern Anal.
Mach. Intell., 40, 1182-1194.

Chen,M. et al. (2019) Multifaceted protein—protein interaction prediction
based on Siamese residual RCNN. Bioinformatics, 35,1305-1314.

Cui,G. et al. (2012) Prediction of protein—protein interactions between viruses
and human by an SVM model. BMC Bioinformatics, 13, S5.

Davies,M.N. et al. (2008) Optimizing amino acid groupings for GPCR classifi-
cation. Bioinformatics, 24, 1980-1986.

Du,X. et al. (2017) DeepPPI: boosting prediction of protein—protein interac-
tions with deep neural networks. J. Chem. Inf. Model., 57, 1499-1510.

Durmus Tekir,S. et al. (2013) PHISTO: pathogen-host interaction search tool.
Bioinformatics, 29,1357-1358.

Dyer,M.D. et al. (2011) Supervised learning and prediction of physical interac-
tions between human and HIV proteins. Infect. Genet. Evol., 11,917-923.
Dyer,M.D. et al. (2008) The landscape of human proteins interacting with

viruses and other pathogens. PLoS Pathog., 4, e32.

Eid,F. et al. (2016) DeNovo: virus-host sequence-based protein—protein inter-
action prediction. Bioinformatics, 32, 1144-1150.

Emamjomeh,A. et al. (2014) Predicting protein—protein interactions between
human and hepatitis C virus via an ensemble learning method. Mol.
Biosyst., 10, 3147-3154.

Giurgiu,M. et al. (2019) CORUM: the comprehensive resource of mammalian
protein complexes —2019. Nucleic Acids Res., 47,D559-D563.

Gordon,D.E. et al. (2020) A SARS-CoV-2 protein interaction map reveals tar-
gets for drug repurposing. Nature, 583, 459-468.

Guirimand,T. et al. (2015) VirHostNet 2.0: surfing on the web of virus/host
molecular interactions data. Nucleic Acids Res.,43,D583-D587.

Guo,Y. et al. (2008) Using support vector machine combined with auto covari-
ance to predict protein—protein interactions from protein sequences. Nucleic
Acids Res., 36, 3025-3030.

Hamp,T. and Rost,B. (2015) Evolutionary profiles improve protein—protein
interaction prediction from sequence. Bioinformatics, 31, 1945-1950.

Hashemifar,S. et al. (2018) Predicting protein—protein interactions through
sequence-based deep learning. Bioinformatics, 34,1802-i810.

Le,Q. and Mikolov,T. (2014) Distributed representations of sentences and
documents. Proc. Int. Conf. Mach. Learn., 14, 1188-1196.

Lee,H. et al. (2009) Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. Proc. 26th Int. Conf. Mach.
Learn., 54, 609-616.

Li,]J. et al. (2021) Virus-host interactome and proteomic survey reveal potential
virulence factors influencing SARS-CoV-2 pathogenesis. Med, 2, 99-112.

Lian,X. et al. (2021) Current status and future perspectives of computational
studies on human-virus protein—protein interactions. Brief. Bioinform., doi:
10.1093/bib/bbab029.

Lian,X. et al. (2020) Prediction and analysis of human-herpes simplex virus
type 1 protein—protein interactions by integrating multiple methods. Quant.
Biol., 8, 312-324.

Liu-Wei,W. et al. (2021) DeepViral: prediction of novel virus-host interactions
from protein sequences and infectious disease phenotypes. Bioinformatics,
doi:10.1093/bioinformatics/btab147.

Manivanh,R. et al. (2017) Role of herpes simplex virus 1 734.5 in the regula-
tion of IRF3 signaling. J. Virol., 91,e01156-17.

Min,X. et al. (2017) Chromatin accessibility prediction via convolutional long
short-term memory networks with k-mer embedding. Bioinformatics, 33,
192-1101.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data

X.Yang et al.

Prins,K.C. et al. (2009) Ebola virus protein VP35 impairs the function of inter-
feron regulatory factor-activating kinases IKKe and TBK-1. J. Virol., 83,
3069-3077.

Reddi,S.]. et al. (2018) On the convergence of Adam and Beyond. In: Int.
Conf. Learn. Represent. OpenReview, Amherst, MA, pp. 1-23.

Shah,P.S. et al. (2018) Comparative flavivirus-host protein interaction map-
ping reveals mechanisms of dengue and Zika virus pathogenesis. Cell, 175,
1931-1945.

Shao,L. et al. (2015) Transfer learning for visual categorization: a survey.
IEEE Trans. Neural Networks Learn. Syst., 26,1019-1034.

Shen,]. et al. (2007) Predicting protein—protein interactions based only on
sequences information. Proc. Natl. Acad. Sci. USA, 104, 4337-4341.

Sun,T. et al. (2017) Sequence-based prediction of protein protein interaction
using a deep-learning algorithm. BMC Bioinformatics, 18,277.

Suzek,B.E. et al. (2015) UniRef clusters: a comprehensive and scalable alterna-
tive for improving sequence similarity searches. Bioinformatics, 31,
926-932.

Taroni,].N. et al. (2019) MultiPLIER: a transfer learning framework for
transcriptomics reveals systemic features of rare disease. Cell Syst., 8,
380-394.

The UniProt Consortium. (2017) UniProt: the universal protein knowledge-
base. Nucleic Acids Res., 45,D158-D169.

Unterstab,G. et al. (2005) Viral targeting of the interferon-f-inducing Traf
family member-associated NF-«B activator (TANK)-binding kinase-1. Proc.
Natl. Acad. Sci. USA, 102, 13640-13645.

Verpooten,D. et al. (2009) Control of TANK-binding kinase 1-mediated signaling by
the y,34.5 protein of herpes simplex virus 1. J. Biol. Chem., 284, 1097-1105.

Wu,]. et al. (2009) Prediction of DNA-binding residues in proteins from amino
acid sequences using a random forest model with a hybrid feature.
Bioinformatics, 25, 30-35.

Wuchty,S. et al. (2010) Viral organization of human proteins. PLoS One, 5,
ell796.

Yang,L. et al. (2010) Prediction of protein—protein interactions from protein
sequence using local descriptors. Protein Pept. Lett., 17, 1085-1090.

Yang,X. et al. (2021) HVIDB: a comprehensive database for human-virus pro-
tein—protein interactions. Brief. Bioinform., 22, 832-844.

Yang,X. et al. (2020) Prediction of human-virus protein—protein interactions
through a sequence embedding-based machine learning method. Comput.
Struct. Biotechnol. J.,18,153-161.

You,Z.-H. et al. (2013) Prediction of protein—protein interactions from amino
acid sequences with ensemble extreme learning machines and principal com-
ponent analysis. BMC Bioinformatics, 14, S10.

Zhang,S. et al. (2016) A deep learning framework for modeling structural fea-
tures of RNA-binding protein targets. Nucleic Acids Res., 44, €32.



	l
	l
	tblfn1

