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Although cerebral edema is amajor cause of death and deterioration following hemispheric stroke, there remains
no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated
that reduction in intracranial cerebrospinal fluid (CSF) volume (ΔCSF) on serial computed tomography (CT)
scans provides an accuratemeasure of cerebral edema severity, whichmay aid in early triaging of stroke patients
for craniectomy. However, application of such a volumetric approachwould be too cumbersome to performman-
ually on serial scans in a real-world setting. We developed and validated an automated technique for CSF seg-
mentation via integration of random forest (RF) based machine learning with geodesic active contour (GAC)
segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU)
thresholding and RF segmentation methods using Dice similarity coefficient (DSC) and the correlation of volu-
metric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans
performed at baseline (b6 h after stroke onset) and early follow-up (FU) (closest to 24 h) in 38 acute ischemic
stroke patients. RF performed significantly better than optimized HU thresholding (p b 10−4 in baseline and
p b 10−5 in FU) and RF + GAC performed significantly better than RF (p b 10−3 in baseline and p b 10−5 in
FU). Pearson correlation coefficients between the automatically detected ΔCSF and the ground truth were r =
0.178 (p=0.285), r=0.876 (p b 10−6) and r=0.879 (p b 10−6) for thresholding, RF and RF+GAC, respective-
ly, with a slope closer to the line of identity in RF+ GAC.Whenwe applied the algorithm trained from images of
one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed
and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans. This al-
gorithm will allow us to efficiently and accurately measure the evolution of cerebral edema in future studies in-
cluding large multi-site patient populations.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cerebral edema, the pathologic accumulation of excess water inside
brain tissue, is amajor cause of death and deterioration following ische-
mic stroke and other brain injuries (Krieger et al., 1999; Rosenberg,
ashington University School of
O 63110, USA.

. This is an open access article under
1999, 2000). Under the Monro-Kellie doctrine, compensation for this
swellingmust occur given the rigid confines of the cranium, with paral-
lel reductions in the volume of other intracranial compartments such as
blood and cerebrospinal fluid (CSF). If cerebral edema progresses be-
yond the point where compensation has been exhausted, then intracra-
nial compartmental pressure will rise, leading to brain herniation
(Hacke et al., 1996). By opening the cranial vault (hence bypassing the
restrictions of the Monro-Kellie doctrine), decompressive
hemicraniectomy (DHC) is effective in preventing herniation and
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death in patients withmalignant cerebral edema after large hemispher-
ic infarction (LHI) (Vahedi et al., 2007). This benefit requires early selec-
tion of patients with malignant edema for DHC, ideally prior to
development of herniation and within 48 h. Current approaches to sur-
gical triage require high stroke severity coupled with large infarct seen
either on delayed CT images or acute MRI (Thomalla et al., 2010). How-
ever, neither NIHSS nor infarct volume is a direct measure of cerebral
edema, leading tomisclassification of patients for an invasive neurosur-
gical procedure or delayed diagnosis until herniation occurs.

We have recently proposed that measuring reduction in CSF volume
can provide amore direct and sensitive biomarker of edema. This can be
accurately measured after volumetric segmentation of CSF from serial
CT scans acquired at baseline and follow-up (FU) in patients with hemi-
spheric infarction (Dhar et al., 2016). This CT-based approachmay allow
early and accurate identification of those at risk for developing malig-
nant cerebral edema. However, manual segmentation of hemispheric
CSF on two or more CT scans is time-consuming and impractical to
apply to widespread rapid stroke triage decision-making. It is also im-
possible for manual delineation to analyze the large datasets from
multi-center stroke cohorts required to study the kinetics, predictive
factors and genetic underpinnings of cerebral edema formation. Simple
threshold-based approaches (as have been used to segment CSF on
baseline stroke scans) may not accurately delineate CSF on FU CT
scanswhere hypodense evolving infarct is hard to distinguish from sur-
rounding CSF (Minnerup et al., 2011). The objective of this study was to
develop an automated advanced CSF segmentation approach that is able
to accurately quantify CSF volumetric changes from serial CT scans in
the acute phase of ischemic stroke.
2. Materials and methods

2.1. Patients

We retrospectively identified patients with hemispheric infarction
and cerebral edema of varying degrees from a stroke cohort enrolled
in a prospective stroke study at two institutions. Eligibility criteria in-
cluded: 1) baseline NIHSS ≥8; 2) baseline head CT obtained within 6 h
of stroke onset; 3) FU CT obtained at 6–48 h after stroke onset; 4) FU
CT confirming hemispheric infarction and some degree of edema (i.e.,
sulcal and/or ventricular effacement with or without midline shift,
MLS); 5) no parenchymal hematoma on FU CT. If more than one FU CT
was performed, the scan closest to 24-hours was selected for analysis,
as long as it was performed prior to any decompressive surgery. We
have included 38 patients with hemispheric infarction, with 26 patients
from Washington University/Barnes-Jewish Hospital, St. Louis, MO
(center A) and 12 patients from Vall d'Hebron Hospital, Barcelona,
Spain (center B). All subjects (or their proxy) provided informed con-
sent and the study was approved by institutional review boards at
Table 1
Demographic and clinical characteristics of the study population.

Variable/center Washington University, St.
Louis

Vall d'Hebron,
Barcelona

Number of subjects 26 12
Age, years 61 (52–80) 74 (56–82)
Gender, female 11 (42%) 5 (42%)
Race, white 18 (69%) 12 (100%)
Admission NIHSS 15 (10–19) 17 (11−21)
Treated with tPA 21 (81%) 12 (100%)
ASPECTS on baseline CT 9 (8–10) 9 (8–10)
Time between baseline and FU,
hours

18 (13–34) 24 (18–27)

Midline shift, mla 0 (0–2.4) 0.5 (0–1.4)

Notes. Categorical variables are present as n (%); continuous variables are presented as
medians (interquartile range).

a Infarct volume and midline shift were assessed as visible on early FU CT scans.
each center. Demographic and clinical characteristics of the study pop-
ulation are given in Table 1.

2.2. Manual delineation

CSF was outlined using theMIPAV (Medical Image Processing, Anal-
ysis, and Visualization) software package, as has been previously de-
scribed (Dhar et al., 2016). CSF volume was segregated into
compartments including hemispheric sulci and lateral ventricles, both
ipsilateral (IL) and contralateral (CL) to the side of infarction. The
third ventricle and the perimesencephalic and suprasellar cisterns
were also outlined and included in total CSF volume. Total hemispheric
CSF volumewas quantified on each CT scan as the sum of all CSF spaces
and change in volume (ΔCSF)was calculated as the reduction in volume
between these two scans (i.e., FU vs. baseline volume). Two raters sep-
arately segmented CSF on a subset of scans and inter-rater reliability for
manual volumetric segmentation of CSF was found to be 0.92. Manual
CSF delineation was saved as image masks for comparison with auto-
mated segmentation.

2.3. Pseudo-affine image registration

CT images consist of stacks of axial images with a thick slice separa-
tion of 5mm. In order to align CTs fromdifferent patients (with different
orientation and head size) to a normalized frame to reduce geometrical
variability, we adopted a pseudo affine registration to co-register all the
CT images to a pre-chosenwell-positioned template. In the affine trans-
formation matrix, we restricted shears and rotations involving the foot
to headdirection, so that a 2D image slice remains a plane after transfor-
mation. This warping process only allows 3D translation, in-plane rota-
tion, scaling and shear. Following this registration step, the ground truth
(i.e. manual) CSF segmentation masks were also transformed towards
the template with the same transformation matrix. Besides making
the sulci more consistently oriented, this warping process also allowed
us to perform training of one random forest in this template frame for
future deployment.

2.4. Random forest CSF classification

Our training-based CSF segmentation is a supervised learning pro-
cess. Random forests (RF) (Breiman, 2001) has recently been applied
to medical image segmentation with promising results (Geremia et al.,
2011; Mitra et al., 2014). This hierarchical approach learns how to effi-
ciently classify brain voxels by creating a large forest of multiple inde-
pendent decision-trees derived from random subsets of the sample of
CT scans provided (e.g. sets 1 through N, in Fig. 1A). Initially, all samples
in a subset (e.g. set 1 in Fig. 1A) are pushed down from the root node of a
tree to either the left or right branches (subsets S1 and S2) depending
upon which route will achieve more ordered organization. Data is suc-
cessively partitioned to optimize discrimination or until: 1) maximal
tree depth is reached; 2) theminimal number of samples being divided
is reached; or 3) all samples belong to the same class. RF then leverages
this cluster of derivedmodels to optimally segment each voxel (i.e. into
CSF or other). To optimize classification, the Gini impurity index is re-
duced through the splitting process. The calculation of this index is
given in Eq. (1), with pk as the fraction of items labeled with value k
and the total cluster number K. Gini impurity is a measure of how
often an element is incorrectly labeled and it reaches zero when all
the cases within a node all belong to a single class.

Gini ¼ ∑K
k¼1pk 1−pkð Þ ð1Þ

At each node split, the sum of Gini impurity from the two descen-
dent nodes is less than the parent node. Finally, random forest takes ad-
vantage of the concept of ensemble by training multiple trees with the
repeated sampling of the training set. As a result, this supervised



Fig. 2. Demonstration of CSF segmentation results using Hounsfield Unit thresholding (A), RF (B) and RF + GAC (C) methods. Yellow regions represent the overlap between automated
segmentation and ground truth (manual segmentation). Red and green regions represent under- and over-segmented CSF regions, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. The illustration of workingmechanism of random forest (A) and calculation of 2D 1-, 2- and 3-rectangleHaar-like features (B). 1-RectangleHaar-like feature is the average of the CT
density within the box. 2- and 3-rectangle Haar-like features are computed as the difference between the averages of the CT densities inside the white and black boxes.
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Fig. 3. The CSF segmentation results in an example FU scan using HU thresholding (A), RF (B) and RF + GAC (C).
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learning method is able to cluster complex patterns within the sample
while not over-fitting the data. An illustration of this machine learning
method is given in Fig. 1A.

Another advantage of RF classifier is that the prediction step is very
efficient. The prediction of the class that one sample belongs to only in-
volves pushing down the sample in each tree from the root node, and
comparing one feature value with the stored threshold at the node to
decide to travel either to the left or to the right descendant branch
until a leaf node is reached. The calculation roughly takes the same
amount of time as performing subtractions multiple times (depth of
the tree ∗ number of trees).

In this study, we trained two random forest classifiers for baseline
and FU scans, respectively. We utilized 1-, 2- and 3-rectangle Haar-like
features (features in a digital image used for object recognition) in our
application computed through moving 1, 2 and 3 neighboring small
squares (of size 5 × 5) in both horizontal and vertical directions one
pixel at a time to span all the possible locations within a larger
11 × 11 window (Fig. 1B). The 1-rectagle Haar-like features were com-
puted as the average of the CT intensity inside the small square. The 2-
rectangle Haar-like features were computed as the difference between
Fig. 4. The Dice similarity coefficients for CSF segmentation results with thresholding, RF, RF +
statistically significant difference). In baseline, the means and standard deviations of the DS
RF + GAC, respectively. These values in FU were 0.584 ± 0.151, 0.691 ± 0.077, 0.721 ± 0
approach (p b 10−5 at baseline and p b 10−6 at FU) and RF + GAC performed significantly bet
the averaged CT intensities from the two neighboring squares. The 3-
rectangle Haar-like features were computed by subtracting the aver-
aged CT intensity inside the center window from the summation of
the average CT values inside the two outside squares. The training sam-
ples were extracted from random locations from both CSF and non-CSF
brain regions in a balancedmanner.We empirically choose 100 trees for
the random forest classifier and the training will converge when no
more reduction in Gini index or until each leaf node of the tree
containing b10 samples.

2.5. Geodesic active contour CSF segmentation

Active contour is a technique derived to aid in boundary detection. It
deforms the initial segmentation contour to more precisely capture the
region boundary, by optimization of a cost function incorporating edge
information while maintaining smooth geometry. However, it requires
the model to be initialized close enough to the region-of-interest and
is therefore ideally incorporated (as we did here) as a sequential step
to refine segmentation after the RF algorithm has initially defined the
CSF regions. In this case, we employed the geodesic active contour
GAC in both baseline (A) and FU (B) scans from the 10-fold cross validation (* indicating
C were 0.676 ± 0.086, 0.728 ± 0.062, 0.751 ± 0.059 for thresholding approach, RF and
.064 for these three methods. RF performed significantly better than the thresholding
ter than RF (p b 10−3 at baseline and p b 10−5 at FU).



Fig. 5. The correlation between automatically detected CSF volumes and the ground truth with thresholding (A, D), RF (B, E) and RF + GAC (C, F) in both baseline (A–C) and FU (D–F). In
baseline, the Pearson correlation coefficients of the automatically detectedCSF volumeswith the ground truthwere r=0.745 (pb 10−6), r=0.946 (pb 10−6) and r=0.952 (p b 10−6) for
thresholding, RF and RF + GAC, respectively. In FU, these values were r = 0.348 (p = 0.032), r = 0.952 (p b 10−6) and r = 0.951 (p b 10−6).
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(GAC) approach, as developed by Caselles et al. (1997). The evolution of
the curve is destined to a minimal distance Riemannian curve given the
image to be segmented. Through the implementation of the level-set
method, this approach is able to change topology automatically. This
natural split and merging of the curves allow simultaneous segmenta-
tion of multiple regions in the image.
2.6. Validation

The proposed approachwas validated for both volumetric analysis of
single and serial CT scans. As a background reference, we also included a
Hounsfield Unit threshold-based CSF segmentation approach
(Minnerup et al., 2011) to demonstrate the advantage ofmachine learn-
ingmethods for this task. The optimal HU threshold was found through
an exhaustive search of the optimal value to maximize the averaged
overlapping ratios between segmented CSF and the ground truth in all
patients, and we performed this exhaustive search for both baseline
Fig. 6. The correlation between the automatically detectedΔCSF and the ground truthwith thre
(p=0.285), r=0.876 (p b 10−6) and r=0.879 (p b 10−6) for thresholding, RF and RF+GAC, r
identity.
and FU scans separately. The thresholding approach has been applied
previously for CSF volume calculation in baseline stroke CT images
(Minnerup et al., 2011). The overlapping ratio is quantified as Dice sim-
ilarity coefficient (DSC) as given in Eq. (2).

DSC ¼ 2 X∩Yj j
Xj j þ Yj j ; ð2Þ

in which X and Y represent the automatically segmented CSF space and
the ground truth, respectively.

Validation was performed in two parts. First, we pooled all the sub-
jects from the two centers into a 10-fold cross validation for both base-
line and FU scans. In the second validation, we used images from center
A as the training set to segment the images from center B. The purpose
of this validation was to demonstrate that our approachwas able to an-
alyze large datasets frommultiple imaging sites accurately (i.e., external
validation). We employed DSC (Eq. (2)) as the metric to measure the
similarity between the automatically segmented CSF spaces with the
sholding (A), RF (B) and RF+GAC (C). The Pearson correlation coefficientswere r=0.178
espectively. Compared to RF, the regression result of RF+GAC result is closer to the line of



Fig. 7. One example of using the training samples from center A to segment the CSF space of one patient CT from center B in baseline (A) and FU (B).
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ground truth, with 1 indicating perfect similarity/overlap of the two
techniques, and 0 indicating no overlap. We also calculated the Pearson
correlation coefficients between the automatically detected CSF vol-
umes, ΔCSF (between baseline and FU CT scan) with their correspond-
ing ground truth (from manual delineation). The purpose is to
evaluate the applicability of the proposed approach in processing both
single scan and serial scans from the same patient.

3. Experiments and results

3.1. 10 fold cross-validation

We randomly divided the 38 subjects (26 from center A and 12 from
center B) into 10 groups (2 groups having 3 subjects and 8 groups hav-
ing 4 subjects) at baseline and FU separately. The randomly sampled
Haar-like features from the training set were used to train the 10 RF
classifiers (one for each group) in both baseline and FU. Exhaustive
searches were performed to find the optimal HU threshold to achieve
the largest average DSC for baseline and FU scans, which were 25 and
23, respectively. Examples of automatically segmented CSF spaces by
the HU thresholding, RF and the combined (RF + GAC) approaches on
baseline and FU were given in Figs. 2 and 3, respectively. Qualitatively,
the HU thresholding approach for CSF segmentation performed reason-
ably well in baseline but poorly in FU scans when infarct-related
hypodensity was present as a confounder. In baseline scans, the
means and standard deviations of the DSCs were 0.676 ± 0.086,
0.728 ± 0.062, and 0.751 ± 0.059 for HU thresholding, RF and
RF + GAC, respectively (Fig. 4A). The values in FU scans were
Fig. 8. TheDice similarity coefficients from thresholding, RF and RF+GAC from the cross-center
baseline, the means and standard deviations were 0.673 ± 0.096, 0.730 ± 0.061, 0.758 ± 0.05
0.696 ± 0.072, 0.731 ± 0.061 for these three methods, respectively. RF performed significan
performed significantly better than RF (p = 0.027 in baseline and p = 0.008 in FU).
0.584 ± 0.151, 0.691 ± 0.077, and 0.721 ± 0.064 respectively for the
three methods (Fig. 4B). With paired t-tests, RF performed significantly
better than HU thresholding in both baseline (p b 10−4) and FU (p b

10−5). RF+GACperformed significantly better thanRF in both baseline
(p b 10−3) and FU (p b 10−5). The Pearson correlations between the au-
tomatically detected CSF volumes with the corresponding ground truth
are shown in Fig. 5 for these threemethods. In baseline scans, the corre-
lation coefficients were r=0.774 (p b 10−6), r=0.946 (p b 10−6) and
r = 0.952 (p b 10−6) for thresholding, RF and RF + GAC, respectively
(Fig. 5A to C). In FU scans, the correlation coefficients were r = 0.447
(p=0.005), r=0.952 (p b 10−6) and r=0.951 (p b 10−6) respectively
for these three methods (Fig. 5D to F). The automatically detected CSF
volumes from the two machine learning methods (RF and RF + GAC)
had good correlations with ground-truth measures in both baseline
and FU, but RF + GAC produced a slope closer to 1. For the analysis of
changes in CSF volume in sequential scans, the Pearson correlation coef-
ficients between the automatically detected ΔCSF and the ground truth
were r = 0.178 (p = 0.285), r = 0.876 (p b 10−6) and r = 0.879 (p b

10−6) for these three methods, respectively (Fig. 6A to C). As in the
analysis of CSF volumes from single CT scans, the correlation of
RF + GAC with the ground truth was closer to the line of identity than
the one from RF alone.

3.2. Across center segmentation study

In order to demonstrate that our approach for edema quantification
supports cross-center application, we used the 26 patients' CT scans ac-
quired from center A as the training set and the CT scans of the
analysis in baseline (A) and FU (B) scans (* indicating statistically significant difference). In
1 for thresholding, RF and RF + GAC, respectively. In FU, these values were 0.621 ± 0.102,
tly better than thresholding (p = 0.038 in baseline and p = 0.003 in FU) and RF + GAC



Fig. 9. The correlations between CSF volumes detected with RF + GAC with ground truth in baseline (A), FU (B) and correlation between automatically detected ΔCSF with the ground
truth (C) from the cross-center analysis.
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remaining 12 patients from center B as the testing set. One example of
automatically detected CSF space in baseline and FU with the proposed
approach (RF + GAC) is shown in Fig. 7. The means and standard devi-
ations of DSC are shown in Fig. 8, and the correlation between automat-
ically detected CSF volume and ΔCSF with the ground truth from
RF+GAC are shown in Fig. 9. In baseline scans, themeans and standard
deviations of DSCwere 0.663±0.107, 0.730±0.061, and 0.758±0.051
for HU thresholding, RF and RF + GAC, respectively (Fig. 8A). In FU, the
means and standard deviationswere 0.621± 0.102, 0.696± 0.072, and
0.731± 0.061 for these threemethods (Fig. 8B).We found again that RF
outperformed HU thresholding segmentation (p = 0.033 in baseline
and p = 0.037 in FU) and RF + GAC outperformed RF (p = 0.027 in
baseline and p = 0.008 in FU). The CSF volumes detected with
RF+GACwere also significantly correlatedwith the ground truthmea-
sures in baseline (r = 0.891, p b 10−3), FU (r = 0.909, p b 10−4), and
ΔCSF (r = 0.844, p b 10−3) (Fig. 9).

4. Discussion

In this study, we have developed and validated an automated ma-
chine learning based approach for segmentation of CSF on serial CT im-
ages of patients with hemispheric stroke. This approach allows accurate
and rapid calculation of ΔCSF, a dynamic metric of cerebral edema. We
have also demonstrated that our approach is versatile for the analysis of
both single and serial CT scans from multiple stroke centers.

Ourmethods are different fromprevious image processing studies in
stroke, which have largely focused on lesion segmentation using MRI
during sub-acute or chronic stages. This study aimed to quantify the
time-dependent evolution of cerebral edema by taking advantage of
contrast providedby CSF as it shiftswith increased intracranial pressure.
Even though there are some lesion segmentation approaches using CT,
which can be potentially adapted to our application, the lack of rigorous
validation makes it difficult to predict the likelihood for success
(Gillebert et al., 2014). Our approach shares some similarity to the pre-
vious approaches which have utilized certain rules or features extracted
from the image instead of relying solely on image intensity to perform
segmentation (Matesin et al., 2001; Usinsskas et al., 2004, 2002).
Some of these approaches might be incorporated into our learning
based framework to unify the segmentation of edema and CSF, includ-
ing the six Haralick features best describing stroke and brain textures
(Usinsskas et al., 2004) and histogram asymmetry between hemi-
spheres (Maldjian et al., 2001). Likewise, we also adopted a machine
learning approach for our task because we have demonstrated that
CSF segmentation in CT scans of acute ischemic stroke patients is a
more complex problem than finding an optimal threshold (even though
head CT HU is an absolute measurement of the physical attenuation of a
brain structure). RF has been demonstrated to be powerful in
segmenting brain lesions with multimodal MRI images including T1,
T2, FLAIR and ADC at 3months after stroke, which achieved a promising
DSC of 0.60 ± 0.12 and significant correlation between segmented le-
sion volume and the ground truth (Pearson correlation coefficient
r=0.76, p b 10−4) (Mitra et al., 2014). In this study, we found that ad-
dition of a GAC algorithm significantly improved overlap with ground
truth CSF delineation comparedwith RF segmentation alone (i.e. higher
DSC). RF and geodesic active contour complement each other well in
CSF space segmentation. RF segmentation alone, though it can capture
the CSF space globally, tends to over-segment CSF areas, which was se-
quentially corrected by the geodesic active contour through locating
nearby edges and removing false positive regions. As a result, we are
able to achieve an average DSC N0.7 and close to line of identity in the
correlation analysis of CSF volume andΔCSF. However, for practical pur-
poses, the volumetricmeasurements of CSF obtained from theHaar-like
feature based RF segmentation provided effectively as accurate quanti-
tative results as those from themore computationally intensive sequen-
tial GAC algorithm and may be adequate for analysis of cerebral edema
from serial CT scans. GAC was able to further reduce false positive CSF
regions as evidenced by improved DSC and a closer CSF volume to the
line of identity when compared with the ground truth from manual
delineation.

In this work, we chose to utilize CT instead of MRI for several rea-
sons. CT's availability and imaging speedmake it the ideal choice for ini-
tial evaluation of stroke patients and detection of intracranial
hemorrhage. CT also has less restrictive exclusion criteria compared to
MRI, making it widely available (Rorden et al., 2012). CT has a much
higher likelihood of serial imaging than MRI. The sequential CT changes
after acute stroke reflects the underlying pathophysiological progres-
sion from ischemic injury to infarction. Non-contrast CT follow-up re-
veals infarct evolution, hemorrhagic transformation, cerebral edema
and brain herniation (Nguyen and Mullins, 2006). By developing a reli-
able automated segmentation tool, we can now perform large-scale
studies to examine the dynamics of edema formation following ische-
mic stroke, collected at multiple imaging centers. Indeed, we are plan-
ning a large-scale study to examine genome-wide associations with
our metrics of cerebral edema to discover novel genetic variants,
genes and pathways that influence the formation of edema.

In this study, we focused on segmentation of CSF rather than edema
due to several complexities associatedwith the evolving hypodensity in
brain CTs following ischemic stroke. Each 1% increase in tissue water
leads to a decrease of 3 to 5% in X-ray attenuation and a decrease of
2.5 HU in CT, and hence edema contributes to hypodensity (Unger et
al., 1988). However, infarcted brain tissue also becomes steadily more
hypodense on CT (Vu and Lev, 2005). As a result, hypodensity results
from a multitude of underlying causes, including edema, evolving in-
farct, old lesions and leukoaraiosis, commonly seen in elderly patients
(Vermeer et al., 2003). Therefore, CT hypodensity is a poor approxima-
tion of edema, contaminated by infarction and older lesions. It is known
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that CT has limited ability tomeasure the size of early infarct (Saur et al.,
2003) and CT hypodensity is insufficiently sensitive to quantify edema
(Yoo et al., 2013).

In conclusion, we have validated an automated CSF quantification
approach which is accurate and reliable, and can be applied to scans
from multiple centers. CSF volume reduction may be a promising indi-
cator of cerebral edema, because the CSF volume reduction is directly
related to the increase in brain water resulting from cerebral edema,
as described by the Monro-Kellie doctrine (Mokri, 2001).
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