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Abstract
Background  Current advances in the molecular biology of multiple myeloma (MM) are not sufficient to fully delineate the 
genesis and development of this disease.
Objective  This study aimed to identify molecular targets underlying MM pathogenesis.
Methods  mRNA expression profiling for 29 samples (19 MM samples, 7 MM cell lines and 3 controls) were obtained 
using microarray. We evaluated the in vitro effects of RAD54L gene silencing on the proliferation, apoptosis and cell cycle 
distribution in KMS-28BM human MM cells using siRNA approach. Cell proliferation was determined by MTS assay while 
apoptosis and cell cycle distribution were analysed with flow cytometry. Gene and protein expression was evaluated using 
RT-qPCR and ELISA, respectively.
Results  Microarray results revealed a total of 5124 differentially expressed genes (DEGs), in which 2696 and 2428 genes were 
up-regulated and down-regulated in MM compared to the normal controls, respectively (fold change ≥ 2.0; P < 0.05). Up-
regulated genes (RAD54L, DIAPH3, SHCBP1, SKA3 and ANLN) and down-regulated genes (HKDC1, RASGRF2, CYSLTR2) 
have never been reported in association with MM. Up-regulation of RAD54L was further verified by RT-qPCR (P < 0.001). 
In vitro functional studies revealed that RAD54L gene silencing significantly induced growth inhibition, apoptosis (small 
changes) and cell cycle arrest in G0/G1 phase in KMS-28BM (P < 0.05). Silencing of RAD54L also decreased its protein 
level (P < 0.05).
Conclusions  This study has identified possible molecular targets underlying the pathogenesis of MM. For the first time, 
we reveal RAD54L as a potential therapeutic target in MM, possibly functioning in the cell cycle and checkpoint control.
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Introduction

Multiple myeloma (MM) is a cancer of plasma cells. It is 
a highly heterogeneous and genetically complex form of 
blood cancer (Corre et al. 2015). MM is the second leading 
cause of haematological malignancy in the world (de Mel 
et al. 2014). Development and progression of MM required 
multiple primary and secondary oncogenic events. Hyper-
diploidy and translocations concerning the IgH locus are 

frequent primary genetic events in the initiation of MM 
disease. IgH translocations frequently lead to the activation 
of proto-oncogenes for instance FGFR3/MMSET/t(4;14), 
CCND1/t(11;14), c-MAF/CCND2/t(14;16), MAF-B/t(14;20) 
and CCND3/t(6;14) (Colombo et al. 2015; Pinto et al. 2020). 
Acquired mutations (K-RAS, N-RAS, BRAF, DIS3, FAM46C 
and TP53 genes), copy number aberrations (del(17p)/TP53, 
del(13) and 1q gain), NF-κB pathway mutation and MYC 
aberrations are recurrent secondary oncogenic events 
in MM, which are associated with disease progression 
(Colombo et al. 2015; Roy et al. 2018; Pinto et al. 2020).

Current advances in research have dramatically expanded 
our understanding of the genomic landscape, tumour het-
erogeneity and clonal evolution in MM (Furukawa and 
Kikuchi 2020). However, MM remains incurable with a 
poor prognosis due to a lack of suitable tumour markers for 
early diagnosis and treatment. Therefore, identifying new 
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tumour biomarkers and therapeutic targets are essential steps 
to improve the prognostic and outcomes of patients. The 
aims of this study are to identify molecular targets underly-
ing the pathogenesis of MM by mRNA expression profiling 
and functional target validation by using siRNA and cell-
based assays.

Materials and methods

Patient samples

Bone marrow or whole blood were taken from MM patients 
(N = 19: MM1-MM19) and healthy donors (N = 3: NB1, 
NB2, and NB3) and stored at − 80 °C. The average age of 
the patient was 57 years while the median age was 61 years. 
The age of the patients was in the range of 28–74 years. 
Seventeen patients were newly diagnosed MM (NDMM), 
2 were from relapsed MM cases. Patients were with > 10% 
plasma cell infiltration at the time of sample recruitment. 
Cytogenetic analysis indicated 13 patients with normal 
karyotype, 1 patient with hypodiploidy and 5 patients with 
unknown karyotype. Patients’ clinical parameters are shown 
in Table 1.

Cell lines

The U-266, RPMI-8226, IM-9 and MM.1S cells were 
obtained from American Type Culture Collection (ATCC, 
USA). The KMS-28BM, KMS-12BM and KMS-20 were 
purchased from the Japanese Collection of Research Biore-
sources (JCRB) cell bank. Multiple myeloma cells were cul-
tured and maintained in RPMI-1640 medium (PAN-Biotech, 
Germany) with 10% fetal bovine serum (Sigma-Aldrich, 
Germany) in an incubator at 37 ℃ with 5% CO2. Cells were 
sub-cultured when achieved 70–75% confluence. Cells at the 
logarithmic phase were used for transfection.

Isolation of total RNAs

Total RNAs were isolated from the bone marrow/peripheral 
blood/cells according to manufacturer’s recommendation 
(Qiagen RNeasy mini kit). DNA digestion was performed to 
ensure that the RNA was free of DNA contamination (Qia-
gen DNase I, Hilden, Germany). The integrity of the total 
RNAs used for gene expression microarray were checked 
with Bioanalyser (RNA Nano Chip, Agilent 2100 Bioana-
lyser). All samples included in the gene expression microar-
ray had an RNA integrity number (RIN) of at least 8.0. The 
purity of the isolated Total RNAs was also checked with 
NanoDrop ND-1000 UV–VIS spectrophotometer to ensure 
that the purity was within the range of 1.80–2.10.

Table 1   Clinical parameters for 
19 multiple myeloma patients

MM multiple myeloma, NDMM newly diagnosed multiple myeloma

Patient ID Age at 
diagnosis

Race Gender Cytogenetic analysis NDMM/
relapsed MM

MM1 68 Malay F No chromosomal abnormality observed NDMM
MM2 30 Others M No chromosomal abnormality observed NDMM
MM3 64 Malay F No chromosomal abnormality observed NDMM
MM4 74 Chinese M No chromosomal abnormality observed NDMM
MM5 59 Malay M No chromosomal abnormality observed NDMM
MM6 48 Others M No chromosomal abnormality observed NDMM
MM7 28 Malay M No chromosomal abnormality observed NDMM
MM8 48 Malay F Unknown NDMM
MM9 62 Malay F Unknown NDMM
MM10 64 Malay F No chromosomal abnormality observed Relapsed MM
MM11 61 Chinese M Unknown Relapsed MM
MM12 70 Malay F No chromosomal abnormality observed NDMM
MM13 72 Others M No chromosomal abnormality observed NDMM
MM14 51 Others F No chromosomal abnormality observed NDMM
MM15 65 Malay F Hypodiploidy with multiple abnormalities NDMM
MM16 61 Chinese M No chromosomal abnormality observed NDMM
MM17 51 Others M Unknown NDMM
MM18 48 Malay M Unknown NDMM
MM19 62 Malay F No chromosomal abnormality observed NDMM
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Gene expression microarray assay

Sample processing, labelling, and hybridisation were per-
formed following the standard protocol recommended by 
Agilent’s manufacturer. Approximately 60,000 probes were 
contained on each array. Briefly, 100 ng of total RNAs were 
labelled using one colour Agilent’s Low Input Quick Amp 
Labelling kit and purified with spin column (Qiagen RNeasy 
mini kit, Hilden, Germany). Hybridisation was performed 
using 600 ng of labelled cRNAs onto SurePrint G3 Human 
GE 8 × 60 K V2 Microarray Kit (Agilent Technologies, 
USA). The microarray slide was then put into an incubator 
with rotation at 65 °C for 17 h. Microarray images were 
scanned and data from raw microarray image files were 
extracted with Agilent Feature Extraction Software Version 
10.7.3.1 to prepare for analysis. Only samples that passed the 
raw data quality control metrics as described by Agilent’s 
recommended procedure were proceeded to data analysis. 
Pre-processing of the data files in this study was performed 
by using GeneSpring software version 14.9. All the raw data 
were thresholded to 1 and normalised to the 75th percentile. 
This was followed by a baseline transformation set to the 
median of all samples.

Significantly differentially expressed probes in MM vs. 
normal controls were identified by unpaired unequal vari-
ance t-test (Welch) (P < 0.05). The Benjamini Hochberg 
false discovery rate (FDR) multiple testing corrections was 
used to identify differentially expressed probes. The result-
ing list was further refined by analysing it to a second filter, 
which specified a 2.0-fold change between MM vs. controls. 
Only probes that passed a p-value cut-off of 0.05 and fold 
change ≥ 2.0 were considered significant. Unsupervised 
hierarchical clustering analysis was carried out for the up-
regulated and down-regulated probes, respectively, with a 
p-value cut-off of 0.05 and fold change ≥ 2.0. Unsupervised 
hierarchical clustering was generated using Euclidean dis-
tance metric and average linkage statistical methods.

In vitro functional study of RAD54L 
in KMS‑28BM human MM cell line

siRNA transfection

Three target-specific siRNA oligo duplexes (Cohesion Bio-
sciences, Catalog No.: CRH5528) of the human RAD54L 
gene were pooled together to knockdown the target gene 
in KMS-28BM MM cells. Briefly, 2 × 106 cells were resus-
pended in 100 μl of 4D-Nucleofector™ solution (Lonza, 
USA) and mixed with 500 nM of RAD54L siRNA or nega-
tive control siRNA. The mixture was transferred to a cuvette. 
Transfection was then carried out using program DY-100 
in a 4D-Nucleofector™ system (Lonza, USA). Then, cells 

in the cuvette were gently transferred to warm medium in 
24 well plates. Two or three independent experiments were 
carried out for each transfection.

RT‑qPCR analysis

Total RNAs were converted to first strand cDNA following 
manufacturer’s protocol (High Capacity RNA-to-cDNA kit, 
Applied Biosystems, USA). The RT-qPCR was performed 
using the TaqMan gene expression assay (Applied Biosys-
tems, USA) in the StepOnePlus™ Real-time PCR System 
(Applied Biosystems, USA). Pre-designed TaqMan gene 
expression assays for RAD54L (Hs00936473_m1, Ther-
moFisher Scientific, USA) and internal control GAPDH 
(Hs02758991-g1, ThermoFisher Scientific, USA) were used. 
Thermal cycling conditions consisted of the following: ini-
tial denaturation at 95 °C for 20 s, followed by 40 cycles of 
95 °C for 1 s and 60 °C for 20 s. The relative expression of 
genes was calculated and quantified based on 2−ΔΔCt method.

MTS assay

RAD54L siRNA or negative control siRNA was transfected 
into KMS-28BM. Cells were seeded onto 96-well plates at 
a density of 2.0 × 104 cells/well in 100 μl of culture medium. 
Cells were cultured for 24 h, 48 h and 72 h. At 0 h and after 
24 h, 48 h and 72 h post-transfection, 20 μl of CellTiter 96 
AQueous One Solution Reagent (Promega, USA) was added 
into each sample well. The plate was then incubated at 37 ℃ 
for 3–4 h in a humidified 5% CO2 incubator. Subsequently, 
the plate was measured at absorbances of 490  nm and 
630 nm using Synergy HTX microplate reader (BioTek®, 
USA). The 630 nm reading was then subtracted from the 
490 nm reading.

Apoptosis assay

After 48 h of transfection, RAD54L siRNA and control 
siRNA-treated cells were harvested by centrifugation at 
1000 rpm. Cells were washed with ice-cold PBS and then 
resuspended in Annexin binding buffer at 5.0 × 105 cells/
mL. This was followed by staining the cells with 5 μl of 
Annexin-V-FITC and 5 μl of propidium iodide (PI) (Elabsci-
ence, USA). Finally, the cells were analysed with the FACS-
CANTO II flow cytometer (BD BioScience, USA) in which 
10,000 events were recorded for each analysis.

Cell‑cycle analysis

Briefly, transfection was performed according to the proce-
dure described above. Cells transfected with RAD54L siRNA 
or control siRNA were then transferred to a 24-well cell cul-
ture plate containing pre-warm medium. The plate was then 
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incubated at 37 °C CO2 cell incubator for 48 h. After 48 h of 
transfection, cells were harvested and washed with ice-cold 
PBS. This was followed by fixing the cells with 70% etha-
nol overnight. Approximately 1 × 105 cells were stained with 
500 μl of PI solution (BD BioScience, USA). The mixture 
was incubated for 15 min at room temperature. Cell cycle 
distribution was then analysed with FACSCANTO II flow 
cytometer (BD BioScience, USA) and ModFit LT (Verity 
Software House).

The determination of RAD54L protein level 
with ELISA

Standards were diluted and prepared according to manu-
facturer’s protocol (SUNLONG Human RAD54L ELISA 
kit). Forty microliters of sample dilution buffer and 10 μl of 
sample were added into sample wells and then incubated for 
30 min at 37 °C. Then, the wash buffer stock solution was 
diluted 1:30 in distilled water. Microtiter plate was washed 
for 30 s, repeatedly for 5 times. This was followed by add-
ing 50 μl of HRP-conjugate reagent to each sample well. 
The mixture was then incubated and washed as described 
above. Then, 50 μl of each Chromogen Solution A and B 
were added into the sample well. Subsequently, the plate was 
incubated for 15 min at 37 °C. This was followed by add-
ing 50 μl of stop solution to terminate the reaction. Lastly, 
absorbance was measured at 450 nm with a microplate 
reader (Tecan Infinite® M1000).

Statistical analysis

Student’s t-test was used to assess statistical significance 
between the means of the 2 groups. Those having P-value 
lower than 0.05 were considered significant.

Results

mRNA expression profiling and RT‑qPCR verification

mRNA expression profiling was performed for 19 MM 
samples, 7 MM cell lines and 3 normal controls. A total of 
50739 probes were retained after normalising and filtering 
at selected thresholds. Out of 50739 probes, 5888 probes 
were significantly differentially expressed (P < 0.05; fold 
change ≥ 2.0). The results are depicted in a volcano plot 
(Fig. 1A). These 5888 probes were consisted of 5124 genes 
(including long intergenic non-protein coding RNAs, lin-
cRNAs and novel transcripts). Among 5124 genes, 2696 
and 2428 genes were up-regulated and down-regulated in 
MM vs. the control group, respectively. Genes showing up-
regulation and down-regulation in MM vs. controls are listed 
in Online Resource 1 and Online Resource 2, respectively. 

Unsupervised hierarchical clustering was performed on 
up-regulated and down-regulated genes for all samples, 
respectively. Genes which expressed at similar patterns were 
clustered together and joined by a sequence of branches or 
dendrogram. The genes input list contained DEGs with 

Fig. 1   A Volcano plot identified 5888 differentially expressed 
probes in multiple myeloma vs. normal controls (fold change ≥ 2.0; 
P < 0.05). The x-axis represents the log2-fold change of probes, while 
the y-axis represents the −  log10 of the corrected P values for each 
probe. Each dot represents a probe and the red- and blue-coloured 
areas represent the up-regulated and down-regulated probes, respec-
tively, that met the selection criteria of a fold change of at least 2 
(fold change ≥ 2.0 or ≤ 2.0) and a P < 0.05. Orange and light blue 
dots represent up-regulated and down-regulated probes that failed to 
pass the fold change cut-off, respectively. Green dots represent probes 
for RAD54L, DIAPH3, SHCBP1, SKA3, ANLN, HKDC1, RASGRF2 
and CYSLTR2. B Graph showing the mean expression of RAD54L 
detected in microarray and RT-qPCR. RAD54L is up-regulated in 23 
MM samples as measured by RT-qPCR, consistent with microarray 
findings. C Graph showing mean expression of RAD54L in relapsed 
MM (N = 14) is higher than NDMM (N = 2) as determined by RT-
qPCR. ***P < 0.001
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a corrected P < 0.05 and a fold change of ≥ 2.0. Online 
Resources 3 & 4 showing the heatmaps of three distinct 
sub-clusters classified according to the degree of similarity 
in gene expression: MM cell lines, MM clinical samples 
(except MM9 for Online Resource 3; MM5 and MM9 for 
Online Resource 4) and controls.

The up-regulation of RAD54L as detected with microar-
ray analysis was further verified by using RT-qPCR in 23 
MM samples from the same cohort (except MM2, MM5 
and MM9, where the RNA concentration was insufficient 
for RT-qPCR). The RT-qPCR results showed that RAD54L 
was significantly up-regulated in the MM vs. control group, 
consistent with microarray findings (P < 0.001) (Fig. 1B). 
Additionally, when we compared the relative expression of 
RAD54L in NDMM (N = 14) with the relapsed MM (N = 2), 
the RT-qPCR findings showed that RAD54L expression in 
relapsed MM was higher than NDMM, although the result 
was not significant (Fig. 1C).

The effects of RAD54L gene silencing on cell 
proliferation, apoptosis, cell cycle distribution 
and protein level in KMS‑28BM MM cells

We have previously integrated the gene expression profiles 
with the miRNA expression profiles from the matched MM 
samples and revealed an inverse correlation between 5 puta-
tive target genes (RAD54L, CCNA2, CYSLTR2, HKDC1 and 
RASGRF2) and 15 dysregulated miRNAs (Bong et al. 2017). 
Among the 5 genes listed, RAD54L is one of the new genes 
that has never been reported in association with MM. This 
prompted us to explore the in vitro function of RAD54L in 
MM cells. Since the MM clinical samples used in this study 
were derived from the Asian population, we would like to 
study the function of RAD54L in MM cell lines derived from 
the same origin. Thus, we have selected KMS-28BM as a 
model for functional analysis: a cell line which showed the 
highest RAD54L expression level among the 3 cell lines 
derived from Asian patients included for the gene expres-
sion profiling (Fig. 2A).

Silencing of RAD54L gene with siRNA duplexes suc-
cessfully knockdown RAD54L expression in KMS-28BM 
by 71% at 24 h post-transfection as measured by RT-qPCR 
(P < 0.05) (Fig. 2B). The MTS assay revealed significant 
decreased in proliferation of MM cells treated with RAD54L 
siRNA compared to the control siRNA at 48 h (P < 0.01) and 
72 h (P < 0.05) post-transfection (Fig. 2C). Flow cytometry 
results showed that silencing of RAD54L led to a small but 
significant increase in the numbers of early apoptotic cells in 
siRNA-treated cells compared to the control siRNA-treated 
cells (P < 0.01) (Fig. 2D). Additionally, cell cycle analysis 
showed that gene silencing of RAD54L significantly induced 
cell cycle arrest at G0/G1 phase (P < 0.01) while reduced S 
phase (P < 0.05) in KMS-28BM (Fig. 2E). ELISA results 

showed that RAD54L protein expression diminished by 
approximately 19% with RAD54L knockdown at 48 h post-
transfection (P < 0.05) (Fig. 2F).

Discussion

MM is a highly heterogeneous and complex disease which 
develops via a stepwise process involving multiple genetic 
aberrations. Numerous genetic aberrations have been identi-
fied in association with MM development and malignancy. 
However, to date MM is still an incurable disease mainly 
because most of the patients eventually relapse or are refrac-
tory to the available treatments (Davis and Sherbenou 2021). 
Thus, identification of new molecular targets is urgently 
needed to solve this problem.

Herein, we used mRNA expression profiling to identify 
potential genes involved in the molecular pathogenesis of 
MM. Unsupervised hierarchical clustering analysis of the 
up-regulated and down-regulated probes clearly clustered 
the samples into MM cell lines, MM clinical samples (except 
MM9 for the up-regulated probes and MM5 & MM9 for 
the down-regulated probes) and control groups (Online 
Resources 3 & 4). This scenario depicts that gene expression 
changes occur during the transition from normal to malig-
nant plasma cells (Szalat et al. 2016). This study identified a 
total of 5124 DEGs in the MM vs. control group. Our find-
ings revealed up-regulation of recurrent genes involved in 
primary oncogenic events: CCND1 and FGFR3 (Kuehl and 
Bergsagel 2012). Prominent and potential genes involved 
in the secondary oncogenic event such as NRAS, IRF4, 
IDH2, PSMB5 and APOBEC2 were found to be up-regu-
lated whereas SP140, LTB and ATM were down-regulated 
in MM (Kuehl and Bergsagel 2012; Bolli et al. 2014; Walker 
et al. 2018; Allmeroth et al. 2021). Apart from that, dif-
ferential expression of genes involved in NF-κB pathway 
were identified (NFKBIB, IKBKB, CARD11, TNFRSF1A, 
MAP3K1, MAP3K14 and TLR4) suggesting the important 
role of NF-κB pathway in myelomagenesis (Chapman et al. 
2011). Aberrant expression of apoptosis-related genes such 
as BCL2, BIK and BAX were also detected in the current 
study (Gupta et al. 2021). Additionally, the most established 
growth factors and cytokines involved in bone marrow 
microenvironment, namely IL6 and IGF1, were found to be 
over-expressed in the MM vs. control group in this study 
(Birmann et al. 2009). Other DEGs, namely BIRC5, CENPA, 
CCNB1, CHEK1, AURKB, BUB1, BUB1B, NEK2, ASPM, 
TOP2A and EZH2 have been described elsewhere and they 
play a role, at least in part, in the molecular pathogenesis 
of MM (Chng and Fonseca 2009; Broyl et al. 2010; Chung 
et al. 2013). Our findings revealed that most of the DEGs 
are involved in DNA repair, cell proliferation, cell cycle 
and mitotic/spindle checkpoints, mismatch repair pathway, 
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kinetochore and microtubule attachment and NF-κB path-
way (Chng et al. 2006; Ueki et al. 2008; Chng and Fonseca 
2009; Ruiz et al. 2009; Broyl et al. 2010; Agarwal et al. 
2011; Chapman et al. 2011; Asano et al. 2013; Bengtsson 
et al. 2013; Chung et al. 2013; Jiao et al. 2013; Li and Huang 
2013; Chuang and Ou 2014; Morley et al. 2015; Perez-Peña 
et al. 2017; Contreras et al. 2019; Ji et al. 2019; Xia et al. 
2020; Borah and Reddy 2021; Li et al. 2021). DEGs and 
their functions are shown in Table 2.

Interestingly, our study reveals significant DEGs, which 
have never been reported in association with myelomagen-
esis. They are RAD54L, DIAPH3, SHCBP1, SKA3, ANLN, 
HKDC1, RASGRF2 and CYSLTR2. The RAD54L, DIAPH3, 
SHCBP1, SKA3 and ANLN were up-regulated while 
HKDC1, RASGRF2 and CYSLTR2 were down-regulated in 
MM vs. controls. Over-expression of RAD54L was detected 
in the MM vs. control group in this study by 18.3-folds. We 
then verified the expression of RAD54L in 23 samples by 
using RT-qPCR and the results are consistent with microar-
ray analysis. RAD54L is involved in homologous recombi-
nation repairing of DNA double-strand breaks to facilitate 
human genomic integrity and genetic diversity (Andriusk-
evicius et al. 2018). Defects in homologous recombination 
pathway-related genes RAD54, RAD51 and RAD52 could 
lead to tumour development (Mun et al. 2020). RAD54 inter-
acts with RAD51 nucleoprotein filament to form RAD54-
RAD51-ssDNA nucleoprotein complex to stimulate homol-
ogy search and DNA strand exchange (Zohud et al. 2020). 
RAD54 also removes RAD51 from heterodimeric DNA 
in an ATP-dependent manner after DNA strand exchange 
(Andriuskevicius et al. 2018; Rosenbaum et al. 2019). In G2 
phase of the cell cycle, RAD54 is phosphorylated to remove 
RAD51 to facilitate homologous recombination while it is 
not phosphorylated in S phase to allow RAD51 stabilizing 
and protecting the stalled replication forks from nucleolytic 
degradation (Spies et al. 2016). Thus, RAD54 deficiency 
reduces homologous recombination efficiency. In addition 

to RAD54L, our results revealed up-regulation of RAD51 
(13.8-folds), implicating that the deficiency in the homolo-
gous recombination pathway plays a critical role, at least in 
part, in the pathogenesis of MM.

Elevated expression of RAD54L is detected in carcinomas 
of the breast, colon, lymphoma and meningioma; however, 
its role in MM pathogenesis is unknown (Leone et al. 2003). 
In colorectal carcinoma, RAD54L taking part in maintain-
ing chromosomal stability via DNA homologous recombina-
tion and p53 signalling pathway by interacting with POLE 
(Zohud et al. 2020). Apart from p53 pathway, RAD54L also 
interacting with other genes such as E2F1 and NEK2 in 
tumourigenesis (Mun et al. 2020; Pavan et al. 2021). Inter-
estingly, E2F1 and NEK2 were found to be up-regulated in 
the MM vs. control group in this study by 14.2 and 21.8-
folds, respectively. E2F1 is a well-recognized transcription 
factor that regulates cell cycle progression in the suppression 
of tumourigenesis, whereas NEK2 is involved in maintaining 
the stability of replication forks (Karras et al. 2016; Pavan 
et al. 2021).

The p53-DREAM pathway is a newly described 
p53-mediated cell cycle arrest pathway. The p53-DREAM 
pathway regulates not only cell cycle associated genes 
essential for cell cycle progression from G1 phase to the 
end of mitosis, but also DNA repair and telomere main-
tenance genes (Fischer et al. 2014; Engeland 2018). Thus, 
defects in this pathway lead to the loss of checkpoint con-
trol and uncontrolled cell division (Engeland 2018). Apart 
from that, aberrant expression of genes in this pathway 
induces chromosomal instability and aneuploidy in cancer 
cells (Thompson and Compton 2010). To date, almost 250 
target genes regulated by the p53-DREAM pathway have 
been identified (Fischer et al. 2014; Engeland 2018). Inter-
estingly, RAD54L and many other DEGs that function in cell 
cycle or checkpoint control identified in the current study are 
components of the p53-DREAM pathway (CCNA2, BIRC5, 
CENPA, CENPF, CCNB1, CCNB2, CDC25C, KIF14, 
DEPDC1 and CDK1) (Table 2) (Fischer et al. 2014; Enge-
land 2018). CCNA2, BIRC5, CCNB1, CCNB2, CDC25C 
and CDK1 are key regulators in the p53-DREAM pathway 
(Fischer et al. 2015, 2016). It was postulated that RAD54L, 
CCNA2 and CCNB1 are p53-dependent repression of the 
cell cycle genes, in which they contain cell cycle genes 
homology region (CHR) elements that allow them to bind 
with DREAM transcriptional repressor (Fischer et al. 2014, 
2016). Most of these target genes are involved in G2/M 
checkpoint control and progression through mitosis (Fischer 
et al. 2016). Our results indicate that disruption of the p53-
DREAM pathway plays a critical role in MM pathogenesis 
as many genes involved in this pathway were differentially 
expressed in MM.

In terms of epigenetic aspect, our previous findings on the 
integrative analysis of the mRNA and miRNA expression 

Fig. 2   A Graph showing relative RAD54L expression in KMS-
20, KMS-12BM and KMS-28BM MM cell lines as measured by 
RT-qPCR. B Relative RAD54L expression was reduced by 71% in 
RAD54L siRNA-treated vs. control siRNA-treated KMS-28BM cells 
at 24 h post-transfection as measured by RT-qPCR. C Cell prolifera-
tion was decreased in KMS-28BM cells transfected with RAD54L 
siRNA compared to control siRNA at 48 h and 72 h post-transfection 
as analysed by MTS assay. D Number of early apoptotic cells show-
ing small but significant increase in KMS-28BM cells transfected 
with RAD54L siRNA compared to control siRNA at 48 h post-trans-
fection as analysed by flow cytometry. E RAD54L gene silencing sig-
nificantly induced cell cycle arrest at G0/G1 phase while reduced S 
phase in RAD54L siRNA-treated cells compared to control at 48  h 
post-transfection as determined by flow cytometry. F RAD54L pro-
tein expression level was decreased by approximately 19% in KMS-
28BM cells transfected with RAD54L siRNA compared to con-
trol siRNA at 48  h post-transfection as measured by ELISA assay. 
*P < 0.05; **P < 0.01

◂
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profiling for matched samples revealed an inverse correlation 
between RAD54L and cancer-associated miR-150 (Bong et al. 
2017). Based on computational predictions, our previous find-
ings revealed that differential expression of RAD54L might be 
correlated with aberrant expression of miR-150-5p, which regu-
lates the gene. Thus, according to our observation, we suggest 
that RAD54L possibly triggers MM either independently or by 
interacting with other genes/miRNA via impairing DNA repair 
mechanism and cell cycle progression.

To validate the function of RAD54L in MM, we transiently 
knockdown RAD54L in KMS-28BM human MM cell line 
using siRNA method. The effects of RAD54L-mediated gene 
silencing on cell proliferation, apoptosis and cell cycle distri-
bution in KMS-28BM were determined. Our results reveal that 
gene silencing of RAD54L inhibits cell proliferation in KMS-
28BM (Fig. 2C). In addition, RAD54L knockdown induces 
small but significant changes in early apoptotic cells (Fig. 2D). 
Moreover, cell cycle analysis demonstrates that depletion of 
RAD54L induces cell cycle arrest at G0/G1 phase and inhibits 
cells at S phase suggesting that RAD54L is involved in cell 

cycle progression (Fig. 2E). The ELISA assay shows that 
silencing of RAD54L not only knockdown the gene expres-
sion at the mRNA level but also decreases its protein expres-
sion level (Fig. 2F). For the first time, our results demonstrate 
that up-regulation of RAD54L might play a key role, at least in 
part, in MM pathogenesis by activating myeloma cell growth, 
inhibiting apoptosis and impairing cell cycle progression.

The limitation of the present study is the small number of 
samples used for gene expression profiling, which may reduce 
the statistical power of the study. Our future direction is to 
validate the results with larger sample sizes by using a more 
advanced technology such as RNA-sequencing (RNA-seq).

Conclusions

This study has identified possible molecular targets underly-
ing MM pathogenesis. RAD54L might be a potential thera-
peutic target in MM, possibly functioning in the cell cycle 
and checkpoint control.

Table 2   Functions and fold changes of differentially expressed genes (DEGs)

Function Gene symbol (fold change)

Cell cycle and cell cycle checkpoint CCNA2 (20.6), BIRC5 (32.0), CENPA (39.0), CENPF (18.4), CCNB1 (10.5), CCNB2 (33.0), 
CDC25C (19.0), KIF14 (29.1), DEPDC1 (13.3), CDK1 (18.7), CCND1 (7.8)

DNA repair RAD54L (18.3), RAD51AP1 (26.0), RAD51 (13.8), CHEK1 (11.2), ATM (-3.5)
Mitotic/spindle checkpoints PLK1 (17.1), NUF2 (17.7), AURKB (20.9), CDC20 (11.8), BUB1 (18.7), BUB1B (24.0), CENPA 

(39.0), NEK2 (21.8), TTK (41.1), TK1 (23.2), CKAP2L (43.0), KIF11 (14.7), KIF20A (35.0), SKA1 
(40.8), TPX2 (22.3), DTL (33.1)

Cell proliferation ASPM (27.2), TOP2A (23.8), TTK (41.1), E2F1 (14.2), E2F7 (18.5), E2F8 (33.4), CDCA8 (13.4), 
SHCBP1 (19.6), FGFR3 (20.2), PSMB5 (2.2), ATM (-3.6)

Kinetochore and microtubule attachment ZWINT (13.6), AURKB (20.9), BIRC5 (32.0), CENPA (39.0), TTK (41.1), KIF2C (27.0), SKA3 (20.2)
Apoptosis BCL2 (− 2.9), BIK (3.6), BAX (2.2)
Growth factor IL6 (15.6), IGF1 (9.2), IGF2 (18.6)
Mismatch repair pathway PCNA (5.9)
Centrosome KIF11 (14.7), KIF15 (20.2), AURKB (20.9)
Chromatin regulator SP140 (− 3.1)
Ubiquitin proteasome UBE2S (6.1), UBE2T (11.5)
Cytokine IRF4 (3.3)
Metabolism HKDC1 (− 9.3), IDH2 (2.2)
Cytoskeleton DIAPH3 (19.6), ANLN (44.1)
TNF-associated gene LTB (− 9.6)
Polycomb EZH2 (5.6)
NFκB pathway IKBKB (− 3.1), NFKBIB (2.0), CARD11 (− 2.9), TNFRSF1A (− 4.5), MAP3K1 (− 2.0), MAP3K14 

(− 2.3), TLR4 (− 6.8)
RAS related pathway NRAS (2.3), RASGRF2 (− 5.5)
CysLT signaling CYSLTR2 (− 7.3)
APOBEC-associated genes APOBEC2 (2.6), APOBEC3G (− 2.1)
Histone HIST1H2BI (2.3), HIST1H2BK (2.1), HIST1H2BL (2.1), HIST1H2BM (2.1), HIST1H2BB (2.8), 

HIST1H2BD (2.1), HIST1H2BE (3.1), HIST1H2BF (5.4), HIST1H2BG (2.5), HIST1H2BH 
(2.1), HIST3H2BB (2.8), HIST1H3H (3.5), HIST2H3A (42.6), HIST1H3B (9.6), HIST1H3D 
(4.0), HIST1H3F (4.3), HIST1H3G (2.4), HIST1H4A (3.6), HIST1H4K (2.3), HIST1H4L (3.7), 
HIST1H4B (3.5), HIST1H4C (3.1), HIST1H4D (3.9)
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