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Abstract

ATP6V1H is a component of a large protein complex with vacuolar ATPase (V-ATPase)

activity. We identified two generations of individuals in which short stature and osteoporosis

co-segregated with a mutation in ATP6V1H. Since V-ATPases are highly conserved be-

tween human and zebrafish, we generated loss-of-function mutants in atp6v1h in zebrafish

through CRISPR/Cas9-mediated gene knockout. Homozygous mutant atp6v1h zebrafish

exhibited a severe reduction in the number of mature calcified bone cells and a dramatic

increase in the expression of mmp9 and mmp13. Heterozygous adults showed curved ver-

tebra that lack calcified centrum structure and reduced bone mass and density. Treatment

of mutant embryos with small molecule inhibitors of MMP9 and MMP13 significantly re-

stored bone mass in the atp6v1h mutants. These studies have uncovered a new, ATP6V1H-

mediated pathway that regulates bone formation, and defines a new mechanism of disease

that leads to bone loss. We propose that MMP9/MMP13 could be therapeutic targets for

patients with this rare genetic disease.
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Author Summary

Osteoporosis, a major health problem worldwide, is characterized by low bone mineral

density (BMD) and a propensity to fracture. Genetic factors are clearly the major determi-

nants of BMD, but their identification and contribution to osteoporosis risk have been dif-

ficult to assess in humans. Genome-wide association studies (GWAS) have identified

numerous sequence variants that influence BMD. The loci identified to date, however,

account for only a small fraction of the total variation in BMD. Through analysis of a pedi-

gree with an undiagnosed disease in which affected members have markedly low bone

mass, we identify a novel and critical bone formation pathway, mediated through the gene

ATP6V1H. Zebrafish lacking apt6vh1 demonstrate loss of bone mass, and exhibit

increased mmp9 and mmp13 levels; inhibition of mmp9 and mmp13 led to the rescue of

bone density defects. Here we show that happloinsufficiency of ATP6V1H is associated

with osteoporosis in both humans and zebrafish. This study exemplifies the value of study-

ing rare diseases to understand prevalent ones.

Introduction

ATP6V1H is a member of the family of vacuolar ATPases (V-ATPases), and a component of

protein complexes responsible for acidification of intracellular compartments in all eukaryotic

cells [1]. Specifically, V-ATPases regulate protein degradation, mediate pH homeostasis, and

facilitate cellular function and development through acidification. In human, mutations in

ATP6B1, which encodes the β-subunit of the apical proton pump mediating distal nephron

acid secretion, cause distal renal tubular acidosis, a condition characterized by impaired renal

acid secretion, resulting in metabolic acidosis [2]. In osteoclasts, V-ATPases acidify the space

that is in contact with the bone surface; this process is essential for bone resorption. Conse-

quently, components of V-ATPases are potential therapeutic targets for the treatment of osteo-

lysis [3]. Moreover, Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-

mediated extracellular acidification; the osteopetrotic phenotype may be due to failure of oste-

oclast formation during development [4]. Using zebrafish model and patient phenotypic data,

we show that haploinsufficiency of the V1H subunit of V-ATPases can result to osteoporosis.

Through the NIH Undiagnosed Diseases Program (UDP) [5–7], we identified a 48-year old

woman and her 24-year old son who exhibited markedly low bone density. This phenotype

segregated with a monoallelic mutation in ATP6V1H. Since osteoporosis is the opposite of the

osteopetrosis seen in Atp6i-deficient mice and expected for reduced V-ATPase activity, we

studied the phenotype of zebrafish harboring a null mutation in atp6v1h. Indeed, this animal

model displayed reduced bone mass, and we demonstrated that the bone defect was mediated

by increased activity of mmp9 and mmp13. Small molecule inhibitors of both proteins notably

restored bone volume, suggesting that MMP9 and MMP13 could be therapeutic targets for

treatment.

Results

Patients

Patient 1 (P1; II.1 in Fig 1A) is a 48-year old woman and Patient 2 (P2; III.1 in Fig 1A) is her

24-year old son. Both exhibited short stature, bone pain and decreased bone density (Fig 1C,

1–5 and S1A Fig). The father of P1 (I.2 in Fig 1C) reportedly had the same features, with

dilated frontal sinuses and decreased bone density (S1B and S1C Fig). Exome sequencing
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Fig 1. Clinical features of patients with ATP6V1H mutations. The family comes from a three-generation pedigree; affected members are shaded in

black (A); Chromatograms showing that the ATP6V1H mutation is present in affected family members, (II.1 and III.1 (B); DNA from I.1 is not available;

(C) Radiographs (C) from Patient 1 (P1) (1, 2, and 3) and Patient 2 (P2) (4, and 5) reveal that P1 has scoliosis (C1) and increased radiolucency in tibia

(C2). Bone scan shows multiple sites of increased bone mineral density uptake–tip of right scapula and multiple areas of thoracic and lumbar spine,

sacrum, both sacroiliac joints, left humeral head, shaft of left femur, right tibia and right ribs (C3). Some increase in radiolucency especially in the lumbar

spine (C4), is seen in P2.

doi:10.1371/journal.pgen.1006481.g001
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revealed NM_015941.2:c.1158_1159delinsTT (p.Lys386_Asn387delinsAsnTyr, named K386N/

N387Y hereafter) in ATP6V1H that segregated with the osteoporotic phenotype (Fig 1B). In sil-
ico analysis for protein stability predicted that both amino acid changes due to the mutation

(K386N and N387Y) can alter protein stability (I-Mutant2.0). To confirm this finding, we gen-

erated a stable cell line expressing K386N/N387Y and measured protein half-life. After protein

synthesis inhibition by cycloheximide treatment, the mutant protein decayed rapidly com-

pared to the wild-type protein, suggesting that the mutation produced an unstable protein

(S2 Fig).

Bone but not cartilage is defective in atp6v1h-deficient zebrafish

Based on the finding that K386N/N387Y mutant protein was unstable, we reasoned that loss of

function mutation in an animal model could address the function of ATP6V1H. We obtained

a null mutation of atp6v1h in zebrafish through CRISPR/Cas9 mediated gene knockout (S3

Fig and supplementary information, designated as atp6v1hla439). Homozygous mutants died at

10–11 days post fertilization (dpf). Up to dpf 6, the mutant embryos did not appear to have

major abnormalities in morphology, but they failed to inflate their swim bladders (Fig 2).

Although a retrovirus-induced insertional mutation of atp6v1h has been previously reported

for zebrafish, no bone related phenotypes were analyzed [8]. In this study we showed that

atp6v1h expression was largely confined to the head region, where cartilage and bone cells first

develop, and this expression was completely lost in our mutant (S3 Fig), suggesting true loss of

function. Analysis by calcein staining indicated that atp6v1h -/- embryos had greatly reduced

or absent calcification of bone cells (Fig 2). Co-staining of bone and cartilage cells showed that

cartilage cells were largely unaffected, while mineralized bone was nearly absent (Fig 2). We

did not observe any obvious skeletal defects in wild type (+/+) or heterozygous (+/-) embryos,

suggesting that complete loss of function for atp6v1h is required to produce the observed

embryonic phenotype.

We next determined if the ATP6V1H K386N/N387Y mutation had a dominant effect on

zebrafish development. The affected region of the protein is fully conserved in zebrafish

atp6v1h (S3 Fig). We generated cDNA constructs containing the same mutation or the wild

type sequence as a control to evaluate the effects of the mutation. We next restored bone min-

eralization in the mutant zebrafish by injecting with wild type mRNA; injecting K386N/

N387Y mutant mRNA did not restore mineralization (S5 Fig), suggesting that the change

leads to a loss-of-function mutation. Additionally, injection of wild-type embryos with

K3866N/N387Y mRNA had no obvious effect on embryonic development, suggesting that this

mutation did not result in gain-of-function S5 Fig).

We then analyzed the phenotype of adult fishes that lacked atp6V1h in one allele (heterozy-

gous, +/-). By eight months after birth, over 50% of the heterozygous adults showed a curved

body (Fig 3). X-ray and micro-CT studies revealed that bone mineral density, bone volume

and bone surface were all reduced but the later two reductions were more dramatic (S6 Fig).

The most remarkable discover is that the vertebrae of heterozygous fish completely lacked

calcified structure in the centrum cavity (Fig 3). Additionally, overall skeleton structures

appeared smaller and had subtle but notable abnormalities. Furthermore, this adult phenotype

was observed in the previously reported retroviral insertion mutant allele of zebrafish atp6v1h
gene (S6 Fig) [8].

mmp9 and mmp13 are highly induced by atp6v1h-deficiency

To determine the molecular mechanism underlying the bone abnormalities associated with

atp6v1h deficiency, we analyzed lineage-specific markers involved in different stages of
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osteoblast and osteoclast development. First, we determined if atp6v1hwas expressed in osteo-

blast or osteoclast cells of zebrafish by performing high resolution double fluorescent in situ
hybridization using atp6v1h probe with the osteoblast marker runx2a or osteoclast marker

rank. This analysis showed that atp6v1h had broader co-expression with osteoclast marker

rank but less with osteoblast marker runx2a (S4 Fig), which is consistent with the previous

report that V-ATPase is enriched in osteoclast cells [1]. Quantitative PCR (qPCR) analysis

was further performed to determine mRNA expression of major bone-specific marker genes,

including runx2, osx, col1a2, osc, osn and alp for osteoblasts and rank, cstk andmmp9 for osteo-

clasts between homozygous mutant and sibling embryos. The expression of intermediate and

late osteoblast genes in the atp6v1h-deficient zebrafish was marginally reduced (Fig 4A). RNA

in situ hybridization (S7 Fig), showing a slight reduction in the expression of the osteoblast

genes, confirmed the qPCR data. The expression of the osteoclast genes rank and cstk did not

Fig 2. Bone but not cartilage cells are defective in atp6v1h-deficient zebrafish. (A-B) shows an image of a 6 days post fertilization (dpf) wild type

and mutant embryo with relatively normal gross morphology. (C-F) Day 6 and 8 wild type and mutant embryos showing reduction in bone detected by

calcein staining (ventral view, bright fluorescent stains indicate calcified bone). In (G-H), double staining for cartilage and bone demonstrate reduction

of mineralized bone (dark purple, arrows) but not cartilage (blue). A, C, E and G are wild type. B, D, F, and H are mutant.

doi:10.1371/journal.pgen.1006481.g002
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obviously differ from wild type, butmmp9mRNA levels were vastly elevated in the atp6v1h-

deficient zebrafish (Fig 4A). In situ hybridization demonstrated that the pattern and level of

expression of the osteoclast marker rank were similar in the mutant and wild type zebrafish,

and that the increasedmmp9mRNA expression occurred primarily in the head region of the

zebrafish (Fig 4B), wheremmp9 was previously identified to be expressed as an osteoclast

marker [9,10]. Considering that we mainly detectedmmp9 up-regulation in ATP6V1H-deffi-

cient mammalian osteoclast but not in osteoblast and chondrocytes (Fig 4C and S8 Fig), we

hypothesize thatmmp9 is mainly up-regulated in zebrafish osteoclasts. It remains to be deter-

mined if other cell types are also induced to express excess amount ofmmp9.
The finding thatmmp9 was up-regulated prompted us to analyzemmp2 andmmp13,

previously reported to be involved inmmp9 related bone homeostasis [9,10]. Expression of

mmp13amRNA was significantly increased in atp6v1h-deficient zebrafish embryos, but that

ofmmp2 was not (Fig 4A). Zebrafish also have a gene namedmmp13b that appears to be a

pseudogene since there was no detectable expression by qPCR either in the wild type or atp6v1h-

deficient embryos. Further analysis ofmmp13a expression by RNA in situ hybridization revealed

a pattern and intensity that was very similar to that ofmmp9 (Fig 4B).

To determine ifMmp9 andMmp13 expression was similarly induced in mammalian cells

deficient of Atp6v1h, we performed siRNA knockdown experiments in mouse osteoclast,

osteoblast and chondrocyte cell types. We found that bothMmp9 andMmp13 were induced

when Atp6v1h was knocked down in mouse osteoclast cells, but reduced in osteoblast and

Fig 3. Micro-computed tomography scan of adult zebrafish. Adult zebrafish heterozygous for atp6V1h mutation (+/-) show curved body, compared

to the wild type (+/+) sibling (A). X-ray of the same +/- fish shows curved spine compared to the +/+ sibling (B). Vertebra of +/- fish has bristlier surface

and smaller size (C). Vertebra of +/- fish lacks calcified structure in the centrum cavity (D). Individual vertebra of +/- fish shows bristlier surface and

smaller size with a hollow centrum (E) (n = 3 each).

doi:10.1371/journal.pgen.1006481.g003
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chondrocyte (Fig 4C and S8 Fig), suggesting a conserved action of Atp6v1h deficiency. To

study if maturation was affected we performed TRAP staining on these osteoclast cells. This

study revealed more TRAP staining in ATP6V1H deficient cells (S9 Fig). ATP6V1H siRNA

groups have 0.41%±0.07 TRAP positive cells whereas scrambled controls have 0.13%±0.01 (S2

Table). Consistent to this finding, we found adult zebrafish +/- for atp6v1h appeared to have

more TRAP staining in bone sections (S10 Fig). Overall, these data suggest that a higher osteo-

clast activity is induced by atp6v1h deficiency.

MMP9 and MMP13 inhibitors rescue bone abnormalities in atp6v1h

mutants

Because abnormal expression ofmmp9 andmmp13 occurs in human diseases such as cancer,

arthritis and cardiovascular disorders, small molecule inhibitors specific to MMP9 and

MMP13, respectively, or to both MMP9 and MMP13 were available [11,12]. We treated

Fig 4. Induction of mmp9/mmp13 and rescue of atp6v1h-deficient phenotype. In (A), qPCR analysis of designated

marker genes showing significant induction of mmp9 and mmp13 mRNA expression in atp6v1h mutant. Analysis of

osteoclast cells by RNA whole mount in situ hybridization. atp6v1h mutant embryos showing significant increases of mmp9

and mmp13a signals in embryonic head skeleton (e/f/i/j wild type, g/h/k/l mutant), but osteoclast marker rank pattern is not

changed (a/b wild type, c/d mutant) (B). In (C), analysis of Mmp9/Mmp13 expression in mouse osteoclast Raw264.7 cells

after knockdown of Atp6v1h by siRNA is shown. When Atp6v1h expression was knocked down by siRNA (a), the

expression of Mmp9 (b) and Mmp13 (c) were induced. Similarly, the induction of Mmp9 (d) and Mmp13 (e) was also

observed in RANKL-induced differentiated mouse osteoclast Raw264.7 cells. In (D), MMP inhibition rescues the bone

phenotype in Atp16V1h mutant fish as detected by calcein staining; a, wild type, 0.5% DMSO; b, mutant, 0.5% DMSO; c,

mutant treated with 200uM MMP9 inhibitor II in 0.5% DMSO; d, mutant treated with 20uM MMP13 inhibitor in 0.5% DMSO;

e, mutant treated with 50uM MMP9/13 inhibitor I in 0.5% DMSO. Images are ventral views of 6 dpf embryos.

doi:10.1371/journal.pgen.1006481.g004
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atp6v1hmutant zebrafish embryos with these inhibitors and found that an MMP13 inhibitor

restored bone formation nearly toward normal while an MMP9 inhibitor had a reduced rescue

effect (Fig 4D). Treatment with an inhibitor that has dual activity on both MMP9 and MMP13

rescued the bone phenotype to an extent similar to the inhibitor of MMP13 (Fig 4D). These

findings suggest that increasedmmp9 andmmp13 expression contribute significantly to the

bone defect, and targeting MMP13 would likely alleviate this problem.

Discussion

We describe the consequences of atp6v1hmutation in zebrafish, based upon the ascertainment

of a family with 3 generations of osteoporosis segregating with a K386N/N387Y mutation in

ATP6V1H. We discovered a profound reduction in the amount of mature bone in homozy-

gous atp6v1h zebrafish mutants; cartilage formation was largely unaffected. Since injection of

mRNA carrying the human point mutation failed to induce any abnormality in wild type

embryos, we propose that K386N/N387Y is a loss-of-function mutation. Given that adult zeb-

rafish heterozygous for atp6v1h deficiency has bone defects and the human mutation was trans-

mitted in a heterozygous manner, this mutation can lead to haploinsufficiency of ATP6V1H

protein in humans.

The cellular targets of ATP6V1H function remain to be determined. Osteoblast markers

were only marginally affected, suggesting that ATP6V1H does not exert its primary effects on

osteoblast formation. The skeletal abnormalities in atp6v1hmutant zebrafish were associated

with dramatically increased expression ofmmp9 andmmp13, and inhibition of MMP9 and

MMP13 significantly restored bone volume. MMP9 and MMP13 are members of the matrix

metalloproteinase family, which are important for remodeling of the extracellular matrix in

diverse biological processes. The functions of MMP2, MMP9 and MMP13 in skeletal remodel-

ing have been extensively investigated through genetic studies. WhileMmp2-null mice have

osteoporosis [13],Mmp9-null andMmp13-null mice exhibit enlarged hypertrophic zones and

osteopetrosis [14,15]. The double knockout ofMmp9 andMmp13 leads to a more dramatic

expansion in the length of the hypertrophic zone than in single knockouts, suggesting a syner-

gistic relationship betweenMmp9 andMmp13 [16]. This is consistent with the findings in our

atp6v1h zebrafish mutant, in which increasedmmp9 andmmp13 expression combined to

induce the bone defect.

MMP13 acts as a collagenase to degrade type 1 collagen, the main component of bone

extracellular matrix. Collagenases degrade the osteoid layer covering the surfaces of bone to

expose calcified bone matrix to osteoclasts [17–20]. Significant induction ofmmp13 in atp6v1h
zebrafish mutant might, therefore, accelerate the degradation of type 1 collagen and provide

more mineral contact for osteoclasts, without increasing osteoclast numbers (Fig 4B). More-

over, extracellular matrix has been demonstrated to play a role in osteoblast growth and dif-

ferentiation [21]. Type I collagen influences osteoblast development and maintenance by

modifying the expression of genes supporting cell growth, adhesion and extracellular matrix

mineralization [21]. Thus, enhanced degradation of matrix collagen leads not only to increased

bone resorption but also to suppression of bone formation [22]. This is consistent with our

findings that expression of genes that label intermediate and mature stage osteoblasts is

reduced relative to early markers of osteoblast formation (Fig 4).

In zebrafish and mammals,mmp9 is highly expressed in skeletal cells, especially in osteoclasts

[9,23–25]. Mmp9 can degrade denatured collagens. Therefore, increasedmmp9 expression in

atp6v1hmutant zebrafish would be predicted to contribute to ECM degradation. Since the

expression level of other osteoclast genes, rank and ctsk, remained largely unchanged, we specu-

late that increased osteoclast numbers do not play a significant role in reducing bone density in

ATP6V1H Deficiency Impairs Bone Development
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atp6v1hmutants. However, increased maturation and activity of osteoclasts might be more rele-

vant, as demonstrated by the increased differentiation revealed by TRAP staining in mouse

ATP6V1H deficient pre-osteoclast cells and adult heterozygous atp6v1h zebrafish.

Apart from matrix degradation, Mmp9 also promotes the apoptosis of hypertrophic chon-

drocytes in the growth plate [14]. Hence, increased MMP9 activity in atp6v1hmutants may

also be associated with accelerated loss of hypertrophic chondrocytes or abnormal apoptosis,

contributing to bone loss. Interestingly, Mmp13 and Mmp9 induction are also found in

patients with arthritis [26]; these individuals also have abnormal matrix, and could share the

same pathogenetic mechanism. Inhibition of MMP9 and MMP13 might be considered as a

therapeutic approach for treating these diseases.

Vacuolar ATPases have complicated structures and functions, which may explain why

mutations in some subunits cause osteopetrosis while mutations in others cause osteoporosis.

V-ATPase is composed of 14 different subunits arranged in two structural domains, V1 and

V0. ATP hydrolysis occurs in the cytoplasmic V1 domain whereas proton translocation occurs

through the membrane V0 domain [1]. Knockout of the a3 subunit of V0 directly blocks its

function in proton translocation, thus causing an acidification defect; Atp6i-deficient mice

exhibit severe osteopetrosis [2]. Subunit H of V1 activates ATP-driven proton pumping in the

intact V-ATPase complex but, when V1 and V0 are disassociated, the H subunit inhibits the

Mg-ATPase activity of the cytosolic V1 domain to prevent unnecessary ATP hydrolysis

[27,28]. Isolated V1 complexes without subunit H show significantly higher levels of ATPase

activity compared to the wild-type V1 complexes. Therefore, in addition to the acidification

defect caused by loss of the H subunit, ATP hydrolysis is increased [29]. In yeast strains lacking

subunit H, V1-V0 complexes are inactive and unstable, suggesting that the H subunit serves as

an activator of the intact V-ATPase [30].

We propose a model of action in which mutation of the V0 subunit a3 causes reduced acidi-

fication, increasing bone density whereas mutation of the V1 subunit H causes excessive ATP

hydrolysis, decreasing bone density through increased MMP9/MMP13 activity (Fig 5). Sup-

porting this hypothesis is that knockdown of Atp6i in B16-F10 cells causes decreased expres-

sion ofMmp9 [31]. In our model, although acidification by V-ATPase is marginalized when

ATP6V1H is mutated, the increase in MMP9 /MMP13 activity related to the constitutive Mg-

ATPase activity of the cytosolic V1 sector, dominates, resulting in a net reduction in bone den-

sity. Enhanced ATP hydrolysis by cytosolic Mg-ATPase activity might activate signaling path-

ways to stimulatemmp9 andmmp13 expression, a topic for future research. In any event, the

bone defect caused by atp6v1h deficiency through activation ofmmp9/13 represents a novel

finding that offers potential therapeutic entry points for related diseases, since MMP9 levels

have been correlated to severity of osteoporosis [32].

Materials and Methods

Ethics statement

Patients were enrolled in the NIH Undiagnosed Diseases Program [5–7] and in protocol

76-HG-0238, “Diagnosis and Treatment of Patients with Inborn Errors of Metabolism and

Other Genetic Disorders”, approved by the NHGRI Institutional Review Board. All patients

involved in this study gave written, informed consent. All zebrafish experiments were ap-

proved by the UCLA Animal Care and Use Committee and the NHGRI ACUC Committee.

Zebrafish

To establish a mutant ATP6V1H zebrafish line, gRNA targeting the fourth exon of ATP6V1H

was designed and shown to induce indels by injection with Cas9 mRNA in zebrafish. Several

ATP6V1H Deficiency Impairs Bone Development
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mutant lines were established using gRNA with the sequence 5’-GTGTGTCATCAATCAGGG

TCAGG; the line used in this study carried a 17 bp insertion and produced a truncated peptide

of 94aa, whereas the wild type ATP6V1H encodes a 463aa protein. Stable heterozygous carriers

of the mutation were mated to produce homozygous mutants. Details of mutation generation

and characterization are presented in the supplementary section and S3 Fig. Staining for bone

and cartilage cells was performed as described [33,34].

Quantitative PCR

Total RNA was extracted in Trizol Reagent (Life Technologies) according to the manufactur-

er’s protocol. cDNA was synthesized using Superscript III (Life Technologies) and oligodT

(Life Technologies) following the manufacturer’s protocol. Quantitative real-time PCR was

performed using FastStart SYBR Green Master (Roche). Primer sequences are listed in S1

Table. Values of three independent samples (n = 50 each sample) are shown.

siRNA knockdown of Atp6v1h in mouse cells

See supplementary materials.

Fig 5. Model of action. A schema showing Vacuolar ATPase and its subunits. Subunit H (V1, cytosolic domain) is shown in green. Under physiologic

conditions, ATP hydrolysis occurs in the cytosolic domain while proton translocation occurs through the membrane domain. The V1H subunit activates

ATP-driven proton pumping in the intact V-ATPase complex, but when V1 and V0 are disassociated, inhibition of the Mg-ATPase activity of the V1

domain occurs to prevent unnecessary ATP hydrolysis. When V1H is mutated, significantly higher levels of ATPase activity compared to the wild-type

V1 complexes is expected, causing increased matrix degradation, leading to decreased bone density via increased MMP9/MMP13 activity.

doi:10.1371/journal.pgen.1006481.g005
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Whole-mount in situ hybridization

The probes listed in the figures were generated by PCR using zebrafish embryonic cDNA

(Primers in S1 Table). Regular and double fluorescence whole-mount in situ hybridization

was, respectively, performed as previously described [35,36].

Micro-computed tomography analysis and TRAP staining in adult

zebrafish

For X-ray imaging, adult zebrafish were fixed in 10% neutral-buffered formalin for 24 hours

and X-ray images were taken using Faxitron MX-20 System Digital Radiography system (Faxi-

tron Bioptics, Tucson, Arizona). For micro-computed tomography (μ-CT), adult zebrafish

were fixed in 10% neutral-buffered formalin for 24hours and mounted in 1% low-melt agarose

(Sigma) in a plastic vial. Specimens were scanned using SkyScan1172 Micro-CT scanner (Bru-

ker MicroCT, Kontich, Belgium) with the X-ray power at 55kVp and 185μA, and specimens

were scanned at a 10 μm voxel resolution. A three-dimensional reconstruction was generated

with NRecon software from the set of scans. The images were then analyzed using CTAn

(v.1.14.4) and CTVol (v.2.2) softwares. The first caudal bones were assessed for bone mineral

density (BMD), bone volume (BV), and bone surface (BS). For TRAP staining, fixed fish were

decalcified and sectioned (5 um) after paraffin embedding. TRAP staining was performed

using a kit (Sigma 387A-KT) according to the manufacturer’s instructions.

Treatment with MMP inhibitors

MMP9 Inhibitor II (Cat# 444293), MMP13 Inhibitor (Cat# 444283) and MMP9/13 Inhibitor I

(Cat# 444252) were purchased from EMD Millipore. Zebrafish were treated with designated

concentrations of each inhibitor from 1 to 6 days post fertilization in 2 ml of fish water.

Supporting Information

S1 Fig. Additional clinical features.

A. Table shows the levels of biochemistry findings from Patient 1 (P1) and Patient 2 (P2),

and Bone mineral densitometry scores.

B. Radiographic pictures from I.2 (father of P1) showing scoliosis and fractured fibula.

C, Dual-energy x-ray absorptiometry (DXA) results of I.2.

(TIF)

S2 Fig. Mutant ATP6V1H protein is degraded more rapidly than wild type protein.

Cell lysates form HEK cells transfected with full length ATP6V1H wild-type or mutant

(c.1158_1159delinsTT) cDNA and treated with cycloheximide were subjected to western blot.

Figure shows ATP6V1H bands at 0 hour (baseline), 6 hours, 12 hours, and 24 hours. Protein

loading is normalized with GAPDH. Experiments were done in three replicates.

(TIF)

S3 Fig. Generation and Genotyping of atp6v1h zebrafish mutants. Protein alignment of

ATP6V1H in human (NP_057025.2) and zebrafish (NP_775377.1) shows high homology

(~85%). More importantly, the region where the mutation is located is highly conserved (A).

Using CRISPR/Cas9, guide RNA (gRNA) targeting exon 4 of zebrafish atp6v1hwas co-injected

with Cas9 mRNA into zebrafish embryos and detected by T7 endonuclease digestion. Se-

quence of gRNA and target is shown (B). Several founders with indels were screened for germ-

line transmission, and the one with 17bp insertion was used throughout the study; The 17bp

insertion is predicted to produce a termination codon 94 amino acids after initiation of start
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codon (C). Genotyping done by polyacrylamide gel electrophoresis (PAGE) analysis demon-

strating a 168 bp band for wild type allele, and 185 bp band for mutant allele; representative

results for wild type (+/+), heterozygous (+/-), and homozygous (-/-) embryos are shown (D).

Using probes specific for atp6v1h, RNA in situ hybridization analysis of atp6v1h showed

expression in the head region in wild type embryos, while the expression is nearly absent in

homozygous atp6v1h embryos, suggesting that the 17bp insertion may lead to nonsense-medi-

ated decay (NMD) of mRNA and result in loss-of-function of this gene (E).

(TIF)

S4 Fig. Co-expression analysis of atp6v1h with osteoclast or osteoblast markers. Double

fluorescence RNA whole mount in situ hybridization with atp6v1h and rank or runx2a probes

were performed on 60 hpf embryos and imaged by confocal microscopy. Upper panels are

ventral views of merged lower magnification images of runx2a and atp6v1h or rank and

atp6v1h, in which the boxes indicate the regions shown in the lower panels of higher magnifi-

cation. The lower panels are images of individual colors (green fluorescence for probes of

runx2a or rank, red fluorescence for atp6v1h) and merged color (runx2a + atp6v1h, rank+
atp6v1h). Arrowheads point to cells that are mainly positive for runx2a and arrows point to

cells that appear positive both for rank and atp6v1h (co-expression: yellow fluorescence).

(TIF)

S5 Fig. Rescue of atp6v1h mutant zebrafish. Bone staining of uninjected wild type and

atp6v1h -/- embryos; loss of bone mineralization is seen in atp6v1hmutant embryos (A and

B). atp6v1hmutant embryos at single-cell stage injected with wild type mRNA (C, 200 pg; D,

300 pg) were stained at 5dpf; representative figures demonstrate the rescue of bone phenotype,

seen as increase in bone mineralization. atp6v1hmutant embryos injected with mutant mRNA

containing the same K386N and N387Y mutations found in humans (E, 200 pg; F, 300 pg) at

single-cell stage and stained at 5 dpf; representative figures show the absence of bone staining,

indicating that the mutations create a non-functional gene. Wild type and mutant mRNA

were injected into wild type embryos at single-cell stage and stained at 5 dpf (G and H); repre-

sentative figures show no alteration in morphology and bone staining, suggesting the absence

of gain-of-function resulting from overexpression of either wild type or mutant mRNA.

(TIF)

S6 Fig. Micro-CT analysis of heterozygous adult bone phenotype. A. Micro-CT data of the

first to fifth caudal vertebrae. Wild type sibling +/+. Heterozygous +/-. BMD, BV and BS desig-

nate bone mineral density, bone volume and bone surface (n = 3). B. Micro-CT images of

bone in 8-month-old male adult wild type zebrafish and heterozygous allele of retrovirus inser-

tion mutant, atp6v1hhi923+/- (n = 5 each).

(TIF)

S7 Fig. RNA in situ hybridization analysis of osteoblast and osteoclast gene markers. In situ
hybridization markers of osteoblast development (runx2a, runx2b, osx, osn, col1a2) show slight

reduction between 5dpf siblings (wild type) or mutant (-/-).

(TIF)

S8 Fig. siRNA knockdown of Atp6v1h in mouse osteoclast, osteoblast and chondrocyte

cells. siRNA knockdown of atp6v1h was performed in mouse chondrocytes (ATDC5) and

osteoblasts (MC3T3). Knockdown was confrmed by qPCR, showing reduced Atp6v1h expres-

sion as normalized with Gapdh (A and D).Mmp9 (B and E) andMmp13 (C and F) in chondro-

cytes and osteoblasts are slightly reduced after Atp6V1h knockdown, suggesting that Atp6v1h
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may not have a profound impact on osteoblasts or chondrocytes.

(TIF)

S9 Fig. Analysis of osteoclast maturation by TRAP. Differentiation of Raw264.7 (pre-osteo-

clast) cell was induced by RANKL (100ng/ml). Raw264.7 was transfected by siRNA anti-

ATP6V1H 2 times, and osteoclast cells were identified by TRAP staining (red color). (A) The

ATP6V1H siRNA groups have significantly more mature osteoclasts (red staining of large

multi-nuclei cells) than the scrambled controls. Included here are sets of five randomly

selected fields of images of ATP6V1H siRNA groups and scrambled controls. (B) The ratio of

TRAP positive cells and total cells is significantly higher in ATP6V1H siRNA group. Specific

data is listed in S2 Table.

(TIF)

S10 Fig. Analysis of osteoclast by TRAP in adult zebrafish. Adult zebrafish (10 month old)

of +/- for atp6v1h (line atp6v1hla439) and wild type sibling were fixed, sectioned and stained by

TRAP. Atp6v1hla439+/- fish appear to have more TRAP staining compared to their sibling

(n = 3, two images are shown here for wild type and +/- mutant). Scale bar: 50 um.

(TIF)

S1 Table. Table lists the primer sequences used in qPCR analysis and generation of probes

for in situ hybridization.

(DOCX)

S2 Table. Cell counts of TRAP-negative and positive Raw cells induced by RANKL.

(DOCX)

S1 Methods. This section describes the methods used to generate supplementary figures in

the study.

(DOCX)
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